
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 5827–5837,
November 16–20, 2020. c©2020 Association for Computational Linguistics

5827

Few-Shot Complex Knowledge Base Question Answering
via Meta Reinforcement Learning

Yuncheng Hua†,§, Yuan-Fang Li♦, Gholamreza Haffari♦, Guilin Qi†,‡∗and Tongtong Wu†
†School of Computer Science and Engineering, Southeast University, China

♦Faculty of Information Technology, Monash University, Australia
§Southeast University-Monash University Joint Research Institute, China

‡Key Laboratory of Computer Network and Information Integration, Southeast University
†{devinhua, gqi, wutong8023}@seu.edu.cn

♦{yuanfang.li, gholamreza.haffari}@monash.edu

Abstract

Complex question-answering (CQA) involves
answering complex natural-language ques-
tions on a knowledge base (KB). However, the
conventional neural program induction (NPI)
approach exhibits uneven performance when
the questions have different types, harboring
inherently different characteristics, e.g., dif-
ficulty level. This paper proposes a meta-
reinforcement learning approach to program
induction in CQA to tackle the potential distri-
butional bias in questions. Our method quickly
and effectively adapts the meta-learned pro-
grammer to new questions based on the most
similar questions retrieved from the training
data. The meta-learned policy is then used
to learn a good programming policy, utilizing
the trial trajectories and their rewards for simi-
lar questions in the support set. Our method
achieves state-of-the-art performance on the
CQA dataset (Saha et al., 2018) while using
only five trial trajectories for the top-5 re-
trieved questions in each support set, and meta-
training on tasks constructed from only 1% of
the training set. We have released our code at
https://github.com/DevinJake/MRL-CQA.

1 Introduction

Knowledge-base question-answering (KBQA) in-
terrogates a knowledge-base (KB) (Yin et al., 2016;
Yu et al., 2017; Jin et al., 2019) by interpreting
natural-language questions as logical forms (anno-
tations), which can be directly executed on the KB
to yield answers (denotations) (Pasupat and Liang,
2016). KBQA includes simple questions that re-
trieve answers from single-hop triples (“what is
Donald Trump’s nationality”) (Berant et al., 2013;
Yih et al., 2014), multi-hop questions that infer an-
swers over triple chains of at least 2 hops under
specific constraints (“who is the president of the
European Union 2012”) (Yih et al., 2016; Liang

∗Corresponding Author.

et al., 2017), and complex questions that involve set
operations (“how many rivers flow through India
and China”) (Saha et al., 2019). In particular, com-
plex question answering (CQA) (Saha et al., 2018)
is a sophisticated KBQA task in which a sequence
of discrete actions—e.g., set intersection and union,
counting, comparison—needs to be executed, and
is the subject of this paper.

Consider the complex question “How many
rivers flow through India and China?”. We first
form a set of entities whose type is river and flow in
China from the KB. We then form another set for
rivers that flow through India. The answer is then gen-
erated by counting the entities in the intersection of
the two sets. More concretely, the question is trans-
formed into the action sequence “Select (China, flow,
river), Intersection (India, flow, river), Count”, which is
executed on the KB to yield the answer. As such,
the CQA task results in a massive search space be-
yond just entities in the KB and includes (lists of)
Boolean values and integers. Multi-hop questions
only require the join operator. In contrast, CQA
requires various types of additional symbolic rea-
soning, e.g., logical, comparative, and quantitative
reasoning (Shen et al., 2019; Ansari et al., 2019),
where a more diverse array of complex queries is
involved (Saha et al., 2019). The massive search
space and complex queries make CQA consider-
ably challenging and more complicated than multi-
hop question answering.

Due to the difficulty of collecting annotations,
the existing CQA dataset (Saha et al., 2018) only
contains the denotations for each question. The
literature takes two approaches to deal with the
missing annotations. The first approach aims to
transform learning a CQA model into learning
by demonstration, aka imitation learning, where
a pseudo-gold action sequence is produced for the
questions in the training set (Guo et al., 2018). This
is done by employing a blind search algorithm, i.e.,

https://github.com/DevinJake/MRL-CQA

5828

breadth-first search (BFS), to find a sequence of
actions whose execution would yield the correct
answer. This pseudo-gold annotation is then used
to train the programmer using teacher forcing, aka
behaviour cloning. However, BFS inevitably pro-
duces a single annotation and is ignorant to many
other plausible annotations yielding the correct an-
swer. To alleviate this issue, a second approach was
proposed based on reinforcement learning (RL) to
use the search policy prescribed by the program-
mer (Hua et al., 2020; Neelakantan et al., 2016;
Liang et al., 2017). Compared to BFS which is a
blind search algorithm, the RL-trained programmer
can be regarded as an informed search algorithm
for target programs. Therefore, the RL policy not
only addresses the limitation of the 1-to-1 mapping
between the questions and annotations, but also
produces reasonable programs faster than BFS.

The conventional approach to CQA is to train
one model to fit the entire training set, and then
use it for answering all complex questions at the
test time. However, such a one-size-fits-all strat-
egy is sub-optimal as the test questions may have
diversity due to their inherently different charac-
teristics (Huang et al., 2018). For instance, in the
CQA dataset, the samples could be categorized
into seven different types, e.g., those capturing
logical/comparative/quantitative reasoning. The
length and complexity of questions in one group are
likely to differ from those in other groups. There-
fore, action sequences relevant to different groups
may have significant deviations, and it is hard to
learn a one-size-fits-all model that could adapt to
varied types of questions. An exception is (Guo
et al., 2019), which proposes a few-shot learning
approach, i.e., S2A, to solve the CQA problem
with a retriever and a meta-learner. The retriever
selects similar instances from the training dataset
to form tasks, and the meta-learner is trained on
these tasks to learn how to quickly adapt to a new
task created by the target question of interest at the
test time. However, Guo et al. (2019) make use of
teacher forcing within the learning by demonstra-
tion approach, which suffers from the aforemen-
tioned drawbacks. Also, though S2A is the most
similar to ours, the tasks are very different. S2A
aims to answer context-dependent questions, where
each question is part of a multiple-turn conversa-
tion. On the contrary, we consider the different
task where the questions are single-turn and have
no context. Thus, a novel challenge arises in re-

trieving accurate support sets without conversation-
based context information.

In this paper, we propose a Meta-RL approach
for CQA (MRL-CQA), where the model adapts to
the target question by trials and the correspond-
ing reward signals on the retrieved instances. In
the meta-learning stage, our approach learns a RL
policy across the tasks for both (i) collecting trial
trajectories for effective learning, and (ii) learning
to adapt programmer by effectively combining the
collected trajectories.

The accumulated general knowledge acquired
during meta-learning enables the model to gener-
alize over varied tasks instead of fitting the distri-
bution of data points from a single task. Thus, the
tasks generated from tiny (less than 1%) portion
of the training data are sufficient for meta learner
to acquire the general knowledge. Our method
achieves state-of-the-art performance on the CQA
dataset with overall macro and micro F1 scores of
66.25% and 77.71%, respectively.

2 Meta-RL for Complex Question
Answering

The problem we study in this paper is transform-
ing a complex natural-language question into a
sequence of actions, i.e., a sequence-to-sequence
learning task. By executing the actions, relevant
triples are fetched from the KB, from which the
answer to the question is induced. We tackle this
problem with few-shot meta reinforcement learn-
ing to decrease the reliance on data annotation and
increase the accuracy for different questions.

Let q denote the input sequence, including the
complex question and the KB artifacts, i.e., entities,
relations, and types in KB that are relevant to the
problem. Let τ denotes the output sequence, i.e.,
an action sequence that the agent generates to an-
swer the question. Let R(τ |q) ∈ [0, 1] denotes the
partial reward feedback that tells whether or not the
action sequence yields the correct answer. To sim-
plify the notation, we denote the reward function by
R(τ). The training objective is to maximize the ex-
pected reward by optimizing the parameter θ of the
policy π(τ |q;θ), i.e., improving the accuracy of
the policy in answering unseen questions. For the
test, the agent needs to generate an action sequence
τ ∗ for the input sequence using a search algorithm,
e.g., greedy decoding, which is then executed on
KB to get the answer.

5829

Figure 1: The high-level architecture of our approach.

2.1 Overview of the Framework

Our framework for few-shot learning of CQA is
illustrated in Figure 1. In our framework, we view
each new training question as the test sample of a
pseudo task, and we aim to learn a specific model
devoted to solving the task. When faced with a
question qmeta, we first employ the retriever to
find top-N samples sqmeta in the training dataset,
which are the most similar to qmeta. We consider
sqmeta as meta-training data used to learn a par-
ticular model, and view the question qmeta as the
meta-testing data to evaluate the model. Therefore,
meta-training data sqmeta and meta-testing data
qmeta form a pseudo task T pse.

In the meta-training step (Step 1 in Figure 1), the
action sequences that correspond to sqmeta will
be generated based on the current parameter θ of
the programmer. The interpreter executes the ac-
tion sequences and evaluates the generated answers
to produce rewards. The rewards lead to gradient
updates that finetune the current model to get a
task-specific programmer with the parameter of
θ′. After that, in the meta-testing step (Step 2 in
Figure 1), the actions of qmeta are produced based
on θ′ and are evaluated to update θ. The train-
ing approach is depicted in Algorithm 1. In both
the meta-training and meta-testing steps, REIN-
FORCE (Williams, 1992) is used to optimize the
programmer.

Similarly, in the inference phase, we consider
each test question as a new individual task. We
retrieve top-N data points from the training dataset
to form the meta-training data. Instead of applying
the general programmer with θ directly, the meta-
training data is used to finetune a specific parameter
θ′ that fits the test question and infer the output.

2.2 Programmer and Interpreter
Programmer Our programmer is a sequence-to-
sequence (Seq2Seq) model. Given the input se-
quence q with tokens (w1, . . . , wM), the program-
mer produces actions (a1, . . . , aT). The input se-
quence is the original complex question concate-
nated with the KB artifacts appear in the query, and
the output is the words or tokens. The output at
each time step is a single token.

In the programmer, the encoder is a Long Short
Term Memory (LSTM) network that takes a ques-
tion of variable length as input and generates an
encoder output vector ei at each time step i as:
(ei,hi) = LSTM [φE(wi),hi−1]. Here φE(wi)
is word embedding of token wi, and (ei,hi) is the
output and hidden vector of the i-th time step. The
dimension of ei and hi are set as the same.

Our decoder of the programmer is another
attention-based LSTM model that selects output
token at from the output vocabulary Voutput. The
decoder generates a hidden vector gt from the
previous output token at−1. The previous step’s
hidden vector gt−1 is fed to an attention layer to
obtain a context vector ct as a weighted sum of
the encoded states using the standard attention
mechanism. The current step’s gt is generated via
gt = LSTM{gt−1, [φD(at−1), ct]}, where φD is
the word embedding of input token at−1. The de-
coder state gt is used to compute the score of the
target word v ∈ Voutput as,

π(at = v|a<t, q) = softmax(W · gt + b)v (1)

where W and b are trainable parameters, and a<t
denotes all tokens generated before the time step t.
We view all the weights in the programmer as the
parameter θ, thus we have the probability that the
programmer produces an action sequence τ with
tokens {a1, ..., aT } as,

π(τ |q; θ) =
T∏
t=1

π(at = v|a<t, q). (2)

When adapting the policy to a target question, our
programmer outputs action sequences following
the distribution computed by equation 2. By treat-
ing decoding as a stochastic process, the program-
mer performs random sampling from the probabil-
ity distribution of action sequences to increase the
output sequences’ diversity.

Interpreter After the programmer generates the
entire sequence of actions, the interpreter executes

5830

the sequence to produce an answer. It compares the
predicted answer with the ground-truth answer and
outputs a partial reward. If the type of the output
answer is different from that of the ground-truth
answer, the action sequence that generates this an-
swer will be given a reward of 0. Otherwise, to
alleviate the sparse reward problem, the interpreter
takes the Jaccard score of the output answer set
and the ground-truth answer set as the partial re-
ward, and sends it back to update parameters of the
programmer as the supervision signal.

2.3 Meta Training and Testing

We formulate training of the programmer in a RL
setting, where an agent interacts with an environ-
ment in discrete time steps. At each time step t, the
agent produces an action (in our case a word/token)
at sampled from the policy π(at|a<t, q;θ), where
a<t denotes the sequence generated by the agent
from step 1 to t − 1, and q is the input sequence.
The policy of the agent is the programmer, i.e.,
LSTM-attention model M with parameter θ. The
natural-language question concatenated with the
KB artifacts will be fed into the encoder as an in-
put, and a sequence of actions is output from the
decoder. In our work, we regard each action se-
quence produced by the model as one trajectory.
The action sequence is therefore executed to yield
a generated answer, and the similarity between the
output answer with the ground-truth answer is then
computed. The environment considers the similar-
ity as the reward R corresponding to the trajectory
τ and gives it back to the agent. In standard RL, the
parameter of the policy θ is updated to maximize
the expected reward, Eτ∼π(τ |q;θ)[R(τ)].

In our work, answering each question in the train-
ing dataset is considered as an individual task, and
a model adaptive to a new task is learned from the
support set questions. To make the meta-learned
model generalize to all unseen tasks, we sample
the tasks following the distribution of tasks in the
training dataset. We first sample a small subset
of the questions Qmeta from the training dataset
and expand the questions into tasks Tmeta through
retrieving the top-N samples, then extract a batch
of tasks T ′ from Tmeta under the distribution of
tasks in Tmeta to update parameters.

To fully use the training dataset and decrease
training time, we study how to train a competitive
model by using as few training samples as possible.
As we view CQA as a RL problem under few-shot

learning conditions, we make use of Meta-RL tech-
niques (Finn et al., 2017) to adapt the programmer
to a new task with a few training samples. Meta-RL
aims to meta-learn an agent that can rapidly learn
the optimal policy for a new task T . It amounts to
learn optimized θ∗ using K trial trajectories and
the rewards for the support set of a new task.

We use the gradient-based meta-learning method
to solve the Meta-RL problem such that we can
obtain the optimal policy for a given task after
performing a few steps of vanilla policy gradient
(VPG) (Williams, 1992; Sutton et al., 2000). We
divide the meta-learning process into two steps to
solve a task, namely the meta-training step and the
meta-testing step. Suppose we are trying to solve
the pseudo-task Tpse, which consists of N meta-
training questions sqmeta that are the most similar
to the meta-testing sample qmeta. The model first
generatesK trajectories for each question in sqmeta

based on θ. The reward of each trajectory is given
by the environment and then subsequently used to
compute θ′ adapted to task Tpse, as

θ′ ← θ + η1∇θ
∑

q∈sqmeta

Eτ∼π(τ |q;θ)[R(τ)] (3)

During meta-testing, another K ′ trajectories corre-
sponding to question qmeta are further produced
by θ′. The reward of K ′ trajectories are considered
as the evaluation of the adapted policy θ′ for the
given task Tpse; thus we have the objective,

J(θ′)
def
= Eτ ′∼π(τ ′|qmeta;θ′)[R(τ

′)] (4)

The parameter of the generic policy θ are then
trained by maximising the objective J(θ′),

θ ← θ + η2∇θJ(θ′) (5)

In each VPG step, since we have N samples in
sqmeta , we use N policy gradient adaptation steps
to update θ′. Meanwhile, we use one policy gradi-
ent step to optimize θ based on the evaluation of
θ′. Monte Carlo integration is used as the approx-
imation strategy in VPG (Guu et al., 2017). We
summarise the meta-learning approach in Alg.1.

When making inferences, for each question qtest,
the retriever creates a pseudo-task, similar to the
meta-learning process. The top-N similar ques-
tions to qtest form the support set sqtest , and are
used to obtain the adapted model θ∗

′
, starting from

the meta learned policy θ∗. The adapted model is
then used to generate the program and compute the
target question’s final answer.

5831

Algorithm 1: Meta-RL (training time)
Input: Dataset Qtrain, step size η1, η2
Output: Meta-learned policy θ∗

1 Randomly initialize θ
2 Randomly sample Qmeta ∼ Qtrain
3 Expand Qmeta → Tmeta
4 while not done do
5 Sample a batch of tasks T ′ ∼ Tmeta
6 for Tpse ∈ T ′ do
7 L ← 0
8 for each question q ∈ sqmeta do
9 Sample K trajectories:

τk ∼ π(τ |q;θ)
10 L ←

L+ 1
K

∑K
k=1R(τk)logpθ(τk)

11 θ′ ← θ + η1∇θL
12 Sample K ′ trajectories:

τk′ ∼ π(τ |qmeta;θ′)
13 Jqmeta(θ

′)←
1
K′

∑K′

k′=1R(τk′)logpθ′(τk′)

14 θ ← θ + η2∇θ
∑
Tpse∈T ′ Jqmeta(θ

′)

15 Return The meta-learned policy θ∗ ← θ

2.4 Question Retriever

We propose an unsupervised retriever that finds,
from the training dataset, relevant support samples
for the tasks in both the training and test phases.
We propose a relevance function that measures the
similarity between two questions in two aspects:
(1) the number of KB artifacts (i.e., entities, rela-
tions, and types) in the questions and (2) question
semantic similarity.

If the two questions have the same number of
KB artifacts, the structure of their correspond-
ing action sequences are more likely to be resem-
bled. We calculate the similarity in terms of the
number of entities of two questions q1 and q2 by
sime(q1, q2) = 1 − |qe(q1)−qe(q2)|

max(qe(q1),qe(q2))
. The func-

tion qe(q) counts the number of entities in the
question. Similarly, we compute the similarities in
terms of relations and types in the same way with
simr(q1, q2) and simt(q1, q2) respectively. The
KB artifact similarity sima(q1, q2) is computed by
the product of the above three similarities.

For two questions, the more common words they
have, the more semantically similar they are. Based
on this intuition, we propose a semantic similarity
function based on Jaccard similarity in an unsu-

pervised way. Suppose there is a set of i words
{w1

1, ..., w
i
1} in q1 and j words {w1

2, ..., w
j
2} in q2,

and word similarity sim(wi, wj) is calculating us-
ing the Cosine similarity.

For each word in q1, we first collect the word
pairs from the words in q2, whose highest similarity
exceeds a pre-defined threshold value. We denote
with semint(q1, q2) the sum of similarity values
of the word pairs:

semint(q1, q2) =
i∑

m=1

(
j

max
n=1

(sim(wm1 , w
n
2)))

(6)
After removing this set of highly similar words

from the two questions, we denote the remaining
tokens as {wremain1 } and {wremain2 }, which repre-
sent the different parts of the two questions. We
sum up the embeddings of the words in {wremain1 }
as wremain

1 , and compute wremain
2 in the same way.

The function semdiff (q1, q2) measures how dif-
ferent q1 and q2 are:

semdiff (q1, q2) = max(|{wremain1 }|, |{wremain2 }|)
∗(1− sim(wremain

1 ,wremain
2)),

(7)
where |{w}| returns the cardinality of the set {w}.

We define the semantic similarity be-
tween q1 and q2 as: sims(q1, q2) =

semint(q1,q2)
semint(q1,q2)+semdiff (q1,q2)

, and therefore
calculate the similarity between q1 and q2 with
sima(q1, q2) ∗ sims(q1, q2).

3 Experiments

In this section, we present the empirical evaluation
of our MRL-CQA framework.

Dataset. We evaluated our model on the large-
scale CQA (Complex Question Answering)
dataset (Saha et al., 2018). Generated from the
Wikidata KB (Vrandecic and Krötzsch, 2014),
CQA contains 944K/100K/156K QA pairs for train-
ing, validation, and testing, respectively. In the
CQA dataset, each QA pair consists of a complex,
natural-language question and the corresponding
ground-truth answer (i.e., denotation). We note that
annotations, i.e., gold action sequences related to
the questions, are not given in the CQA dataset.
The CQA questions are organized into seven cat-
egories of different characteristics, as shown in
the Table 1. Some categories have entities as an-
swers (e.g., “Simple Question”), while others have
(lists of) numbers (e.g., “Quantitative (Count)”)

5832

or Booleans (e.g., “Verification (Boolean)”) as an-
swers. The size of different categories in CQA
is uneven. The number of instances in each cate-
gory in the training set is 462K, 93K, 99K, 43K,
41K, 122K, and 42K for Simple Question, Logical
Reasoning, Quantitative Reasoning, Verification
(Boolean), Comparative Reasoning, Quantitative
(Count), and Comparative (Count), respectively.

Based on the length of the induced programs
and performance of the best models, we further
organized the seven categories into two groups:
easy—the first four categories, and hard—the last
three types, in Table 1. We used the same evalua-
tion metrics employed in the original paper (Saha
et al., 2018), the F1 measure, to evaluate models.

Training Configuration. In the CQA dataset,
since the annotated action sequence are not pro-
vided, we randomly sampled 1% of the training set
(approx. 10K out of 944K training samples) and
followed (Guo et al., 2019) to annotate them with
pseudo-gold action sequences by using a BFS algo-
rithm. We denoted the 1% questions and relevant
pseudo-gold action sequences as Qpre. The Qpre
was used to train the LSTM-based programmer,
which was further optimized through the Policy
Gradient (PG) algorithm (Williams, 1992; Sutton
et al., 2000) with another 1% unannotated ques-
tions from the training set. We denoted this model
by PG, which is also a model variant proposed
in (Hua et al., 2020). We trained the meta learner
on another 2K training samples (Qmeta in Alg.1),
representing only approx. 0.2% of the training set.
This meta learner is our full model: MRL-CQA.

In our work, we chose the attention-based LSTM
model instead of the Transformer (Vaswani et al.,
2017) to design the programmer. We set the sizes
of embedding and hidden units in our LSTM model
as 50 and 128 respectively, thus the maximum num-
ber of the parameters in our model is about 1.2M.
However, the base model of the Transformer (12
layers, 12 heads, and 768 hidden units) has 110M
parameters (Wolf et al., 2019), which are much
more than those of our model. Given the small size
of the training samples and the weak supervision
signal (reward in our work), it is harder to train the
model with more parameters. Therefore we chose
LSTM rather than the Transformer.

We implemented our model in PyTorch and em-
ployed the Reptile meta-learning algorithm to op-
timize the meta-learned policy (Nichol and Schul-
man, 2018). The weights of the model and the

word embeddings were randomly initialized and
further updated within the process of training. In
meta-learning, we set η1 = 1e−4 (Equation 3) and
η2 = 0.1 (Equation 5). We set N = 5 and thresh-
old value at 0.85 when forming the support set. For
each question, we generate five action sequences
to output the answers. The Adam optimizer is used
in RL to maximizes the expected reward.

Among the baseline models, we ran the open-
source code of KVmem (Saha et al., 2018) and
CIPITR (Saha et al., 2019) to train the model. As
the code of NSM (Liang et al., 2017) has not been
made available, we re-implemented it and incor-
porated our programmer to predict programs, and
employed the reinforcement learning settings in
NSM to optimize the programmer. When inferring
the testing samples, we used the top beam, i.e., the
predicted program with the highest probability in
the beam to yield the answers. We presented the
best result we got to compare the baseline models.

3.1 Model Comparisons

We evaluated our model, MRL-CQA, against three
baseline methods on the CQA dataset: KVmem,
NSM, and CIPITR. It must be pointed out that
CIPITR separately trained one single model for
each of the seven question categories. We denote
the model learned in this way as CIP-Sep. CIPITR
also trained one single model over all categories
of training instances and used this single model to
answer all questions. We denote this single model
as CIP-All. We separately present the performance
of these two variations of CIPITR in Table 1. On
the contrary, we tuned MRL-CQA on all categories
of questions with one set of model parameters.

Table 1 summarizes the performance in F1 of
the six models on the test set of CQA, organised
into seven question categories. We note that the
first four categories (first four rows in Table 1) are
relatively simple, and the last three (middle three
rows) are more challenging. We also report the
overall macro and micro F1 values (last two rows).

As can be seen, our MRL-CQA model achieves
the overall best macro and micro F1 values, achiev-
ing state-of-the-art results of 66.25% and 77.71%,
respectively. MRL-CQA also achieves the best or
second-best performance in six out of the seven
categories. Of the three hardest categories (the last
three types in Table 1), MRL-CQA delivers the best
performance in all three types. This validates the ef-
fectiveness of our meta-learning-based approach in

5833

Table 1: Performance comparison (measured in F1) of the seven methods on the CQA test set. For each category,
best result is bolded and second-best result is underlined.

Question category KVmem NSM CIP-All CIP-Sep PG MRL-CQA

Simple Question 41.40% 88.83% 41.62% 94.89% 85.20% 88.37%
Logical Reasoning 37.56% 80.21% 21.31% 85.33% 78.23% 80.27%
Quantitative Reasoning 0.89% 36.68% 5.65% 33.27% 44.22% 45.06%
Verification (Boolean) 27.28% 58.06% 30.86% 61.39% 84.42% 85.62%

Comparative Reasoning 1.63% 59.45% 1.67% 9.60% 59.43% 62.09%
Quantitative (Count) 17.80% 58.14% 37.23% 48.40% 61.80% 62.00%
Comparative (Count) 9.60% 32.50% 0.36% 0.99% 38.53% 40.33%

Overall macro F1 19.45% 59.12% 19.82% 47.70% 64.55% 66.25%
Overall micro F1 31.18% 74.68% 31.52% 73.31% 75.40% 77.71%

effectively learning task-specific knowledge. Note
that the two categories that MRL-CQA performs
the best, Comparative Reasoning and Comparative
(Count), both account for less than 5% of the train-
ing set, which further demonstrates our model’s
excellent adaptability.

Also, our RL-based programmer PG achieves
second-best result in overall macro and micro F1,
with about 2% difference below MRL-CQA. More-
over, PG achieves second-best in four categories.
Such strong performance indicates the effective-
ness of our CQA framework.

Besides the above main result, several important
observations can be made from Table 1.

1. CIP-Sep got the best result in two categories,
i.e., “Simple Question” and “Logical Reasoning”.
However, it performed poorly for the three hard cat-
egories. Consequently, the overall macro F1 value
of CIP-Sep is substantially lower than both PG and
MRL-CQA. Note that CIP-Sep trained a different
model separately for each of the seven question
categories. The results reported for each category
were obtained from the models tuned specifically
for each category (Saha et al., 2019), which neces-
sitated a classifier to be trained first to recognize
the question categories. Thus, CIP-Sep needs to
re-train the models to adapt to new/changed cate-
gories, which impedes it from generalizing to un-
seen instances. However, we tuned our models
on all questions with one set of model parameters,
disregarding the question category information.

2. As presented in Table 1, CIP-All, the model
that trained over all types of the questions, per-
formed much worse in all the categories than CIP-
Sep. A possible reason for CIP-All’s significant
performance degradation is that it is hard for such

a one-size-fits-all model to find the weights that fit
the training data when the examples vary widely.
Besides, the imbalanced classes of questions also
deteriorate the performance of the model. Different
from CIPITR, MRL-CQA is designed to adapt ap-
propriately to various categories of questions with
one model, thus only needs to be trained once.

3. Our programmer and carefully-defined primi-
tive actions presented in this work were used in our
re-implementation of NSM. In the hard categories,
by comparing the F1 scores of PG and MRL-CQA,
it could be observed that NSM performed compet-
itively. Furthermore, NSM performed the second
best in “Simple Question” and “Comparative Rea-
soning” categories. This helps to validate the ef-
fectiveness of our proposed techniques. However,
NSM is worse than MRL-CQA in six out of the
seven categories. This verifies the adaptability of
our model, which can quickly adapt to new tasks
by employing the learned task-specific knowledge.

Note that our model was trained only on 1%
of the training set, whereas the baseline models
use the entire training set. Besides, our method
trains one model to solve all questions, while CIP-
Sep trains seven models, one for each category
of problems. Thus our model is compared with
seven individually trained models in CIPITR but
still achieves the best overall performance, demon-
strating the effectiveness of our technique.

3.2 Model Analysis

We conduct an ablation experiment to study the
effect of meta-learning. We also study the effect
of smaller training samples by comparing MRL-
CQA’s performance trained on 500 and 1K samples,
against 2K used in the full model.

5834

Table 2: Ablation study on the test set on macro F1
score change with different sizes of training samples.

Feature Overall macro F1

PG 75.40%

MRL-CQA
500-training +0.01%
1,000-training +0.58%
2,000-training +2.31%

Table 2 summarizes the ablation study result.
Trained on 500 samples only, MRL-CQA slightly
improves performance by 0.01 percentage points
compared to PG. When training sample increases
to 1K, MRL-CQA outperforms PG by 0.58 percent-
age points. The full MRL-CQA model, trained on
2K samples, achieves a performance improvement
over PG of 2.31 percentage points. These results
demonstrate the ability to design a specific model
for answering each question precisely, which is
afforded by meta-learning.

3.3 Case Study

We provide a case study of different types of ques-
tions that MRL-CQA could answer, but our RL-
based model, aka PG, could not solve. The com-
parison is given in Table 3, which lists the action
sequences and the corresponding results these two
models predicted when answering the same ques-
tions. We highlight the different parts of the action
sequences that the two models generated.

For example, when answering the Logical Rea-
soning question in Table 3, PG was confused about
what relations should be used to form feasible ac-
tions. It could be seen that PG failed to distinguish
the two different relations for the two actions and
thus produced a wrong answer.

Similarly, when answering the Verification ques-
tion in Table 3, PG also yielded an infeasible action
sequence. After forming a set of political territories
that Hermine Mospointner is a citizen of, the bool ac-
tion should be used to judge whether Valdeobispo
and Austria are within the set. It can be seen that
PG missed one action: Bool (Austria).

The different optimization goals lead to the dif-
ferent results of the two models. PG, as a typical
one-size-fits-all model, aims to estimate the glob-
ally optimal parameters by fitting itself to the train-
ing samples. Such a model extracts the information
from the training data to update model parameters,

applies the parameters to the new samples without
modification thereafter. Therefore, when facing a
wide variety of questions, it is hard for the model to
find a set of parameters that fits all samples. Under
the circumstances, like what is presented in Table 3,
such a one-size-fits-all model could not handle the
questions well.

However, our MRL-CQA model aims to learn
general knowledge across tasks and fix the knowl-
edge into the initial parameters. We thus learn a
model that can subsequently adapt the initial pa-
rameters to each new given question and specialize
the adapted parameters to the particular domain of
the new questions. Therefore, with the help of the
adapted parameters, MRL-CQA can answer each
new question more precisely than PG.

4 Related Work

Imitation Learning. Imitation Learning aims to
learn the policy based on the expert’s demonstra-
tion by supervised learning. Saha et al. (2018)
propose a CQA model that combines Hierarchical
Recurrent Encoder-Decoder (HRED) with a Key-
Value memory (KVmem) network and predicts the
answer by attending on the stored memory. Guo
et al. (2018) present a Dialog-to-Action (D2A)
approach to answer complex questions by learn-
ing from the annotated programs. D2A employs
a deterministic BFS procedure to label questions
with pseudo-gold actions and trains an encoder-
decoder model to generate programs by manag-
ing dialog memory. Multi-task Semantic Pars-
ing (MaSP) (Shen et al., 2019) jointly optimizes
two modules to solve the CQA task, i.e., entity
linker and semantic parser, relying on annotations
to demonstrate the desired behaviors. Different
from the above approaches, our model performs
better while removing the need for annotations.

Neural Program Induction (NPI). NPI is a
paradigm for mapping questions into executable
programs by employing neural models. Neural-
Symbolic Machines (NSM) (Liang et al., 2017)
is proposed to answer the multi-hop questions.
NSM annotates the questions and then anchors
the model to the high-reward programs by as-
signing them with a deterministic probability.
Neural-Symbolic Complex Question Answering
(NS-CQA) model (Hua et al., 2020) augments the
NPI approach with a memory buffer to alleviate
the sparse reward and data inefficiency problems
appear in the CQA task. Complex Imperative

5835

Table 3: A comparison of the action sequences and results that PG (the second column) and MRL-CQA (the third
column) yield when answering the same questions.

An Example of Logical Reasoning Question
Question Information PG MRL-CQA
Question: Which occupations are the
professions of Sergio Piacentini or were
a position held by Antoinette Sandbach?

Action sequence: Action sequence:
Select (Sergio Piacentini, position held,
occupation)

Select (Sergio Piacentini, occupation of,
occupation)

Union (Antoinette Sandbach, posi-
tion held, occupation)

Union (Antoinette Sandbach, posi-
tion held, occupation)

Ground-truth answer: Execution result: Execution result:
Member of the National Assembly for
Wales,

Member of the National Assembly for
Wales

Member of the National Assembly for
Wales,

association football manager, association football manager,
association football player association football player

An Example of Verification (Boolean) Question
Question Information PG MRL-CQA
Question: Is Hermine Mospointner a
civilian of Valdeobispo and Austria?

Action sequence: Action sequence:
Select (Hermine Mospointner, coun-
try of citizenship, political territory)

Select (Hermine Mospointner, coun-
try of citizenship, political territory)

Bool (Valdeobispo) Bool (Valdeobispo)
Bool (Austria)

Ground-truth answer: Execution result: Execution result:
False and True False False and True

Program Induction from Terminal Rewards (CIP-
ITR) (Saha et al., 2019) relies on auxiliary awards,
KB schema, and inferred answer types for training
an NPI model to solve the CQA task. However,
CIPITR separately trains one model for each cate-
gory of questions with a different difficulty level.
Compared with the NPI models, our model can
flexibly adapt to the question under processing.

Meta-learning. Meta-learning, aka learning-
to-learn, aims to make learning a new task more
effective based on the inductive biases that are
meta-learned in learning similar tasks in the past.
Huang et al. (2018) use MAML to learn a Seq2Seq
model to convert questions in WikiSQL into SQL
queries. More closely related to our work, Guo et
al. (2019) propose Sequence-to-Action (S2A) by
using MAML to solve CQA problems. They label
all the examples in training set with pseudo-gold
annotations, then train an encoder-decoder model
to retrieve relevant samples and a Seq2Seq based
semantic parser to generate actions based on the
annotations. Unlike S2A, we introduce a Meta-RL
approach, which uses RL to train an NPI model
without annotating questions in advance.

5 Conclusion

CQA refers to answering complex natural language
questions on a KB. In this paper, we propose
a meta-learning method to NPI in CQA, which
quickly adapts the programmer to unseen ques-
tions to tackle the potential distributional bias in

questions. We take a meta-reinforcement learn-
ing approach to effectively adapt the meta-learned
programmer to new questions based on the most
similar questions retrieved. To effectively create
the support sets, we propose an unsupervised re-
triever to find the questions that are structurally and
semantically similar to the new questions from the
training dataset. When evaluated on the large-scale
complex question answering dataset, CQA, our
proposed approach achieves state-of-the-art perfor-
mance with overall macro and micro F1 score of
66.25% and 77.71%, respectively.

In the future, we plan to improve MRL-CQA by
designing a retriever that could be optimized jointly
with the programmer under the meta-learning
paradigm, instead of manually pre-defining a static
relevance function. Other potential directions of re-
search could be toward learning to cluster questions
into fine-grained groups and assign each group a
set of specific initial parameters, making the model
finetune the parameters more precisely.

Acknowledgments

This work was partially supported by the Na-
tional Key Research and Development Program
of China under grants (2018YFC0830200), the
Natural Science Foundation of China grants
(U1736204, 61602259), Australian Research Coun-
cil (DP190100006), the Judicial Big Data Research
Centre, School of Law at Southeast University, and
the project no. 31511120201 and 31510040201.

5836

References
Ghulam Ahmed Ansari, Amrita Saha, Vishwajeet Ku-

mar, Mohan Bhambhani, Karthik Sankaranarayanan,
and Soumen Chakrabarti. 2019. Neural program in-
duction for kbqa without gold programs or query an-
notations. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence, pages
4890–4896. AAAI Press.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70,
pages 1126–1135. JMLR. org.

Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and
Jian Yin. 2018. Dialog-to-action: conversational
question answering over a large-scale knowledge
base. In Advances in Neural Information Process-
ing Systems, pages 2942–2951.

Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and
Jian Yin. 2019. Coupling retrieval and meta-
learning for context-dependent semantic parsing. In
Proceedings of the 57th Conference of the Associa-
tion for Computational Linguistics, ACL 2019, Flo-
rence, Italy, July 28- August 2, 2019, Volume 1:
Long Papers, pages 855–866. Association for Com-
putational Linguistics.

Kelvin Guu, Panupong Pasupat, Evan Liu, and Percy
Liang. 2017. From language to programs: Bridg-
ing reinforcement learning and maximum marginal
likelihood. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 1051–
1062.

Yuncheng Hua, Yuan-Fang Li, Guilin Qi, Wei Wu,
Jingyao Zhang, and Daiqing Qi. 2020. Less is
more: Data-efficient complex question answering
over knowledge bases. Journal of Web Semantics,
Accepted.

Po-Sen Huang, Chenglong Wang, Rishabh Singh, Wen-
tau Yih, and Xiaodong He. 2018. Natural language
to structured query generation via meta-learning. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 732–738.

Hailong Jin, Chengjiang Li, Jing Zhang, Lei Hou,
Juanzi Li, and Peng Zhang. 2019. XLORE2: large-
scale cross-lingual knowledge graph construction
and application. Data Intell., 1(1):77–98.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D For-
bus, and Ni Lao. 2017. Neural symbolic machines:

Learning semantic parsers on freebase with weak su-
pervision. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 23–33.

Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever.
2016. Neural programmer: Inducing latent pro-
grams with gradient descent. In 4th International
Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Con-
ference Track Proceedings.

Alex Nichol and John Schulman. 2018. Reptile: a
scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2.

Panupong Pasupat and Percy Liang. 2016. Inferring
logical forms from denotations. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany, Volume 1: Long Papers. The
Association for Computer Linguistics.

Amrita Saha, Ghulam Ahmed Ansari, Abhishek
Laddha, Karthik Sankaranarayanan, and Soumen
Chakrabarti. 2019. Complex program induction for
querying knowledge bases in the absence of gold
programs. Transactions of the Association for Com-
putational Linguistics, 7:185–200.

Amrita Saha, Vardaan Pahuja, Mitesh M Khapra,
Karthik Sankaranarayanan, and Sarath Chandar.
2018. Complex sequential question answering: To-
wards learning to converse over linked question an-
swer pairs with a knowledge graph. In Thirty-
Second AAAI Conference on Artificial Intelligence.

Tao Shen, Xiubo Geng, Tao QIN, Daya Guo, Duyu
Tang, Nan Duan, Guodong Long, and Daxin Jiang.
2019. Multi-task learning for conversational ques-
tion answering over a large-scale knowledge base.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2442–
2451, Hong Kong, China. Association for Computa-
tional Linguistics.

Richard S Sutton, David A McAllester, Satinder P
Singh, and Yishay Mansour. 2000. Policy gradient
methods for reinforcement learning with function ap-
proximation. In Advances in neural information pro-
cessing systems, pages 1057–1063.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Denny Vrandecic and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commun.
ACM, 57:78–85.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

https://www.aclweb.org/anthology/P19-1082/
https://www.aclweb.org/anthology/P19-1082/
https://doi.org/10.1162/dint_a_00003
https://doi.org/10.1162/dint_a_00003
https://doi.org/10.1162/dint_a_00003
http://arxiv.org/abs/1511.04834
http://arxiv.org/abs/1511.04834
https://www.aclweb.org/anthology/P16-1003/
https://www.aclweb.org/anthology/P16-1003/
https://doi.org/10.18653/v1/D19-1248
https://doi.org/10.18653/v1/D19-1248

5837

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019.
Huggingface’s transformers: State-of-the-art natural
language processing. ArXiv, abs/1910.03771.

Wen-tau Yih, Xiaodong He, and Christopher Meek.
2014. Semantic parsing for single-relation question
answering. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), volume 2, pages 643–648.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206.

Wenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou, and
Hinrich Schütze. 2016. Simple question answering
by attentive convolutional neural network. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 1746–1756.

Mo Yu, Wenpeng Yin, Kazi Saidul Hasan, Cicero dos
Santos, Bing Xiang, and Bowen Zhou. 2017. Im-
proved neural relation detection for knowledge base
question answering. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1,
pages 571–581.

