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Abstract

Modern neural networks do not always pro-
duce well-calibrated predictions, even when
trained with a proper scoring function such as
cross-entropy. In classification settings, sim-
ple methods such as isotonic regression or
temperature scaling may be used in conjunc-
tion with a held-out dataset to calibrate model
outputs. However, extending these methods
to structured prediction is not always straight-
forward or effective; furthermore, a held-out
calibration set may not always be available.
In this paper, we study ensemble distillation
as a general framework for producing well-
calibrated structured prediction models while
avoiding the prohibitive inference-time cost of
ensembles. We validate this framework on two
tasks: named-entity recognition and machine
translation. We find that, across both tasks, en-
semble distillation produces models which re-
tain much of, and occasionally improve upon,
the performance and calibration benefits of en-
sembles, while only requiring a single model
during test-time.

1 Introduction

For a calibrated model, an event with a forecast
confidence p occurs in held-out data with prob-
ability p. Calibrated probabilities enable mean-
ingful decision making, either by machines such
as downstream probabilistic systems (Nguyen and
O’Connor, 2015), or by end-users who must inter-
pret and trust system outputs (Jiang et al., 2012).
The calibration of modern neural models has re-
cently received increased attention in both the
natural language processing and machine learn-
ing communities. A major finding is that mod-
ern neural networks do not always produce well-
calibrated predictions. As a result, much re-
cent work has focused on improving model cal-
ibration, predominantly with post-hoc calibration
methods (Guo et al., 2017).

However, post-hoc calibration methods have
primarily been developed in the context of classi-
fication tasks. Thus, it is unclear how these meth-
ods will affect the performance of sequence-level
structured prediction tasks (Kumar and Sarawagi,
2019). Additionally, post-hoc calibration meth-
ods require a held out calibration dataset, which
may not be available in all circumstances. To im-
prove calibration, an alternate approach is model
ensembling, which is closely related to approxi-
mating the intractable posterior distribution over
model parameters (Lakshminarayanan et al., 2017;
Pearce et al., 2018; Dusenberry et al., 2020). Al-
though computationally expensive, both at train-
ing and inference time, ensembling does not re-
quire a separate calibration set. Furthermore, en-
sembles have been found to be competitive or
even outperform other calibration methods, partic-
ularly in more challenging settings such as dataset
shift (Snoek et al., 2019).

In this paper, we study ensemble distillation as a
means of achieving calibrated and accurate struc-
tured models while avoiding the high cost of naive
ensembles at inference time (Hinton et al., 2015).
Ensemble distillation consists of two stages: In the
first stage, we select a base model for the task,
such as a recurrent neural network or Transformer,
and then train an ensemble of K such models,
ensuring diversity either via sub-sampling (§4) or
with different random seeds (§5). In the second
stage, the ensemble of K teacher models is dis-
tilled into a single student model. Prior work has
examined the effects of ensemble distillation on
measures of uncertainty in vision tasks (Li and
Hoiem, 2019; Englesson and Azizpour, 2019). To
our knowledge, this is the first systematic study
of the effect of ensemble distillation on the cali-
bration of structured prediction models—we con-
sider NER and NMT—which we find poses dis-
tinct challenges both in terms of measuring cali-
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Figure 1: Plots of a) BLEU score (↑ is better) and b) Top-1 ECE (↓ is better) of ensembles and distilled ensembles
of NMT models, compared to the mean (and standard error, the shaded region) of five individual standard models.
Ensembles vastly improve both performance and calibration over individual models, and ensemble distillation is
able to retain much of this improvement in a single model. Further, we find that even small ensembles, e.g. of size
3, are enough to see significant improvements over single models. Experimental details are described in §5.

bration and efficiently distilling large ensembles.

To this end, our contributions may be summa-
rized as follows:

• Our key finding is that a model distilled from
an ensemble consistently outperforms baseline
single models (§4, §5), both in terms of cali-
bration and task performance.

• We propose a straightforward memoization
technique which, when combined with a top-K
approximation, enables distillation of large en-
sembles with negligible training overhead for
NMT (§5.1).

• We study the interaction between ensembling,
distillation, and other commonly employed
techniques including stochastic weight averag-
ing and label smoothing in NMT (§5.3).

• We investigate methods to produce effective
ensembles in structured prediction settings,
finding that small numbers of independent
models initialized from different random seeds
outperform an alternative based on single op-
timization trajectories (§6.1).

• Finally, we compare the calibration perfor-
mance of ensembles relative to temperature
scaling, which requires a separate calibration
dataset, finding that it provides an orthogonal
benefit (§6.2).

Our findings suggest that ensemble distillation
has potential to become a standard training recipe
in settings where calibration is important.

2 Calibration

Given an arbitrary observation X and a model
with parameters θ, we are interested in the pre-
dictive uncertainty, pθ(Y | X), of an event Y .
Our objective is to compute the predictive uncer-
tainty of pθ over of a finite sample of held-out data,
{(X(i), Y (i))}Ni=1 of size N . We then say that pθ
is calibrated if the predictive uncertainty agrees
with held-out observations; that is, if the model
predicts an event with confidence p, then that event
prediction is correct p% of the time.

Calibrated models can be useful for down-
stream systems which benefit from accurate esti-
mates of uncertainty (Jiang et al., 2012; Nguyen
and O’Connor, 2015). Recently, it has been noted
that a large portion of modern neural networks
are not well calibrated after training (Nguyen and
O’Connor, 2015; Ott et al., 2018a; Kumar and
Sarawagi, 2019), although it has been found that
pre-training can help with this in natural language
processing (Desai and Durrett, 2020).

2.1 Measuring calibration

In this work, we are interested in tasks where Y =
{y1, y2, . . . , yT } is a sequence, such that each yi
is drawn from some fixed vocabulary V such as
a fixed set of named-entity types or a language-
specific sub-word vocabulary.1 However, due to
the combinatorially large size of the output space

1Note that this encapsulates a wealth of “sequence-to-
sequence” problems of interest such as sequence tagging,
translation, co-reference resolution, and (linearized) parsing.
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Y , any event Y ∈ Y has a minuscule probability,
making it difficult to meaningfully calculate cali-
bration. Thus, when evaluating the calibration of
pθ, we focus on calibration with respect to token-
level sub-sequences of Y , i.e. pθ(yt | X).

Since we evaluate model calibration on a finite
amount of data, it is not possible to directly de-
termine exactly what proportion of all events with
probability pθ will be correct. Instead, various
metrics have been proposed to estimate how well
calibrated a model is. Our evaluations in this work
center around two metrics which are common in
the literature: the Brier score (Brier, 1950), which
is the mean squared error between the model’s pre-
dictions and the targets, and the Expected Cali-
bration Error (ECE; Naeini et al., 2015), which
uses binning to measure the correlation between
confidence and accuracy. Following (Nguyen and
O’Connor, 2015), we use adaptive binning to se-
lect bin boundaries that allow an equal number of
sampled confidences per bin.

2.2 Addressing calibration

A number of post-hoc solutions to the problem
of poor calibration have been proposed, includ-
ing Platt scaling (Platt, 1999), isotonic regres-
sion (Zadrozny and Elkan, 2001), and temperature
scaling (Guo et al., 2017). However, these meth-
ods were predominantly designed for classifica-
tion problems; in structured prediction problems,
post-hoc re-calibration can sometimes hurt orig-
inal performance (Kumar and Sarawagi, 2019).
Additionally, post-hoc methods assume the avail-
ability of a held-out calibration set, which may not
always be feasible in some settings. Thus, improv-
ing neural network calibration during the training
procedure is still an open area of research.

It is well-known that neural model ensembles
may improve task performance relative to indi-
vidual models, although at the cost of increased
compute and memory resources during training
and inference (Simonyan and Zisserman, 2014;
He et al., 2015; Jozefowicz et al., 2016). Re-
cently, it has been observed that ensembles of in-
dependent models trained with different random
seeds also manifest improved calibration (Laksh-
minarayanan et al., 2017; Snoek et al., 2019). In-
tuitively, independently initialized models may be
over- or under-confident in different ways on am-
biguous inputs; as a result, the average of their
predictive distributions provides a more robust es-

timate of the true uncertainty associated with any
given input.

3 Ensemble Distillation

3.1 Knowledge distillation

Hinton et al. (2015) first proposed knowledge dis-
tillation as a procedure to train a low-capacity stu-
dent model on the fixed distribution q of a higher-
capacity teacher model. In its general form, the
distillation loss LStudent optimized by the student
model with parameters θ has the form

LStudent(θ) = (1− β) ∗ LNLL(θ,D)
+ β ∗ LKD(pθ, q,D),

where β is an interpolation between the stan-
dard negative log-likelihood loss2 (LNLL) and the
knowledge distillation loss (LKD), and D is the
training dataset. In general, LKD is some measure
of dissimilarity between a the student and teacher
distributions over examples in the training data,
typically cross-entropy or KL-Divergence.

As our full output space Y is combinatori-
ally large, exact comparison of pθ(Y | X) and
q(Y | X) is intractable. A common method to
address this is to instead distill teacher distribu-
tions at the token level (Hinton et al., 2015; Kim
and Rush, 2016). In models that make Markov-
assumptions, such as some NER models with CRF
layers, we can efficiently compute the token-level
distributions marginalized over all possible label
sequences Y for each token. In auto-regressive
models, such as the NMT models we consider,
marginalization over all possible sequences is in-
tractable. In this case, the token-level loss is eval-
uated using teacher-forcing (Williams and Zipser,
1989), by conditioning on true targets up to time t.

3.2 Ensemble distillation

Ensemble distillation uses knowledge distillation
to train a student model on the output of an ensem-
ble. Most previous approaches to ensemble dis-
tillation collapses the ensemble distribution into a
single point estimate by averaging the teacher dis-
tributions (Hinton et al., 2015; Korattikara et al.,
2015). This has been shown to be an effective way
of distilling the uncertainty captured by an ensem-
ble in computer vision tasks (Li and Hoiem, 2019;
Englesson and Azizpour, 2019). Recently Malinin

2Possibly against target distributions which have been
augmented by label smoothing.
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et al. (2020) showed that by instead distilling the
distribution over the ensemble into a prior net-
work (Malinin and Gales, 2018), the student can
learn to model both the epistemic and aleatory un-
certainty of the ensemble.

As our goal is to improve model calibration,
which captures both types of uncertainty, we fol-
low previous methods of ensemble distillation
which collapse the ensemble distribution into a
point-estimate by uniformly averaging the distri-
butions of each teacher. Formally, given an ensem-
ble of K models, our task is to train a single stu-
dent model to match a teacher distribution q which
is composed of the K distributions from the en-
semble, qk. Maintaining consistency with how we
derive predictions from an ensemble, when per-
forming token-level distillation we construct the
teacher distribution q as a mixture of each ensem-
ble distribution:

q(yt | X) =
1

K

K∑
k=1

qk(yt | X)

In addition to token-level distillation, Kim and
Rush (2016) proposed sequence-level distillation,
which approximates the global distribution q(Y |
X(i0)) with the top M samples and treats each
samples as an additional training example dur-
ing student learning. This technique can be pro-
hibitively expensive to use, as it increases the
training time of the student by a factor of M ;
a problem which is exacerbated during ensemble
distillation, as the factor becomes M × K. To
maintain simplicity in our distillation procedure,
and comparability to tasks for which this tech-
nique does not apply,3 we focus only on token-
level ensemble distillation.

4 Ensemble Distillation for NER

We evaluate the calibration and performance ef-
fects of ensemble distillation on NER models.
In these experiments, we examine teacher en-
sembles that use either strong independence as-
sumptions (subsequently referred to as “IID”),
or 1st order Markov assumptions. These set-
tings allow us to examine the effects of distilling
globally-marginalized versus locally-marginalized
structured distributions into student models. We
experiment on the 2003 CoNLL Dataset (Tjong

3For example, an NER model with a Conditional Random
Field, for which we can already obtain globally normalized
token-level posterior distributions.

Kim Sang and De Meulder, 2003), which contains
datasets in English and German, and consider both
languages in our experiments.

Our NER models use representations from pre-
trained masked language models: BERT for En-
glish and multilingual-BERT (mBERT) for Ger-
man (Devlin et al., 2019). Given an input sequence
X = {x1, . . . , xT } BERT outputs representations
for each xt.4 We consider two separate models
in our experiments: The ‘IID’ model makes pre-
dictions based solely off of the token-level logits
output from a feed-forward layer applied to the
BERT representations, making each prediction ŷt
independently from all others. The ‘CRF’ model
instead passes the representations through a bi-
directional LSTM layer, and the result into a con-
ditional random field (CRF) with learned transi-
tion parameters (Lample et al., 2016). All models
are trained using the Adafactor optimizer; we use
a learning rate of 1e–4 for training the ensembles,
and 5e–5 during distillation.

For each dataset, we trained K = 9 models in
both the IID and CRF framework. To encourage
diversity, each model in a given framework uses a
different 1/10 split5 of the training set for its early
stopping criterion, in addition to using a different
random seed. We then consider ensembles of sizes
K = 3, 6, 9 models, where for K = 3, 6 the indi-
vidual models are chosen randomly, but in such a
way that the ensemble of 3 is always a subset of
the ensemble of 6. During inference time, each
ensemble’s per-token distribution qk(yt | X) is
averaged uniformly to create the ensemble’s dis-
tribution q(yt | X). In IID ensembles, qk(yt | X)
is taken directly from the logits at timestep t. In
the CRF model, the Forward-Backward algorithm
is used to compute distributions for each timestep
which are globally normalized over all possible
output sequences Y . Predictions are then made
for each token based on the maximum likelihood
prediction from the ensembled distribution, q. For
comparison, we also train a collection of 9 mod-
els, each with a different random initialization, on
the entire training dataset and report their aver-
age performance and standard error. Note that this
setup disadvantages the ensemble, as each indi-
vidual model in an ensemble has access to strictly
less training data than the individual models.

4We fine-tune only the last 4 layers of BERT and mBERT.
All other BERT parameters are frozen.

5This leaves a split of 1/10th of training data which acts
as a unique validation set for the distillation training.
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IID Model
English German

Model Setting BS+ BS- B-BS B-ECE F1 BS+ BS- B-BS B-ECE F1

Individual
Avg 6.401 0.310 6.109 5.516 91.11 17.212 0.233 9.444 8.542 81.68
± 0.068 0.006 0.102 0.048 0.05 0.359 0.006 0.144 0.064 0.26

Ensemble
3 5.693 0.249 4.946 3.031 91.64 15.544 0.169 8.306 5.343 82.73
6 5.539 0.241 4.862 2.863 91.76 14.615 0.167 8.058 5.016 83.53
9 5.451 0.241 4.852 3.017 91.74 14.457 0.158 8.015 4.337 83.51

Ensemble
3 5.801 0.269 5.246 3.744 91.49 13.920 0.230 8.824 6.739 82.60

Distillation
6 5.936 0.256 5.144 3.683 91.61 14.440 0.228 8.958 6.763 82.02
9 5.959 0.259 5.174 3.289 91.51 14.495 0.197 8.699 5.694 82.86

CRF Model
English German

Model Setting BS+ BS- B-BS B-ECE F1 BS+ BS- B-BS B-ECE F1

Individual
Avg 6.998 0.308 5.911 4.607 90.37 15.942 0.233 8.997 6.047 80.60
± 0.153 0.012 0.094 0.092 0.11 0.256 0.005 0.089 0.095 0.14

Ensemble
3 6.078 0.271 5.334 3.539 91.30 15.653 0.194 8.432 4.994 81.56
6 5.939 0.243 4.932 2.179 91.46 15.446 0.185 8.485 4.485 81.37
9 5.872 0.235 4.811 2.219 91.52 15.629 0.176 8.375 4.313 81.47

Ensemble
3 6.055 0.261 5.113 3.574 91.52 15.155 0.161 7.877 3.936 82.87

Distillation
6 5.545 0.268 5.086 3.451 91.13 14.582 0.171 8.178 3.956 83.13
9 5.874 0.286 5.464 4.259 91.46 15.273 0.164 8.240 4.056 81.95

Table 1: Ensemble and Ensemble-Distillation results on CoNLL NER. All values are percentages. Bold results
represent the best results of each model (IID or CRF) for each metric. Note that ensembles have higher F1 and
are better calibrated than individual models. Furthermore, the distilled ensemble also significantly outperforms
single models in all metrics. Surprisingly, distilling token-level CRF distributions can boost student models past
the ensembles abilities. Dev results for these experiments are in Appendix D.

4.1 Ensemble distillation

During ensemble distillation, we only distill into
IID models, although we consider both IID and
CRF ensembles as teacher distributions. This al-
lows us to examine the effects of distilling globally
marginalized distributions into locally marginal-
ized models. Each student’s distillation loss LKD
is the token-level cross-entropy6 between the stu-
dent’s distribution pθ(yt | X) and the ensembled
distribution q(yt | X), with an interpolation pa-
rameter of β = 5

6 between LKD and the true train
loss, LNLL(θ). All distilled models are trained us-
ing the final 1/10th training split as validation data.

4.2 Evaluating calibration in NER

For highly imbalanced data, like NER labels,
common measurements of calibration do not suf-
ficiently distinguish between models (Benedetti,
2010). One way we account for this is to use strat-
ified Brier score (Wallace and Dahabreh, 2014),
which has two components: the Brier score over

6We did not use label smoothing, which is not commonly
used in NER, for the results here, as we found to not improve
results. Details can be found in Appendix C.

all positive events (BS+) and over all negative
events (BS−), whereby one of these (usually BS+)
is more sensitive to a model’s calibration.

However, we note a potential drawback of rely-
ing on BS+, namely that it is entangled with the
model’s recall.7 We also wish to use Expected
Calibration Error, which more closely captures
calibration in the sense defined in §2, but ECE is
also rendered useless in an imbalanced setting.

To address both of these issues, we therefore
propose an alternative “balanced” version of each
metric: for each entity-type,8 we consider the top
2N most confident predictions, where N is the
number of tokens with true labels of that class.
After this filtering, “Balanced ECE” (B-ECE) is
computed as the weighted sum of each class’s
(adaptively binned) ECE. “Balanced Brier score”
(B-BS) is similarly computed as the weighted sum
of each class’s Brier score over this filtered set.
These metrics correct the problem of imbalance
and better reflect a model’s calibration indepen-
dent of its recall (and thus test performance).

7That is, lower recall is strongly correlated to worse BS+.
8We collapse B and I tags into type-level annotations for

this measurement.
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4.3 Results
We report the results of single models, ensembles,
and distilled ensembles on F1, BS-, BS+, B-BS,
and B-ECE in Table 1. We find that, across all
settings and languages, ensembles outperform in-
dividual models in both F1 and calibration. Distil-
lation only moderately hurts these numbers. Dis-
tilled models still outperform single models; addi-
tionally, they are vastly better calibrated than sin-
gle models, indicating that distillation is effective
at retaining the calibration benefits of ensembles.

While distilling IID ensembles into an IID stu-
dent generally lowers performance compared to
the ensemble, distilling the ensembled CRF dis-
tributions obtained into an IID model can actually
yield higher performance and calibration than the
ensemble. This suggests that global CRF distri-
butions may not ensemble well at the token level,
but are still effective distillation teachers when dis-
tilled into a local IID model with no global distri-
bution of its own.

As a further examination of the benefits of im-
proved calibration, we produce precision-recall
curves (PR) by thresholding token-level probabil-
ities. We find that improved calibration translates
to higher area under the PR curve. Figures and
experimental details are reported in Appendix B.

5 Ensemble Distillation for NMT

In this section, we evaluate ensemble distillation
for NMT models.9 State-of-the-art NMT mod-
els such as the Transformer are auto-regressive,
meaning that the probability of a given target yt
is a function of all previous targets y<t (Vaswani
et al., 2017). Thus, distilling teacher information
in this scenario is different from what is done in
NER; the structure level knowledge which is being
distilled is inherently greedy (the teacher distribu-
tions do not take into account future sequences)
and the distributions are built off of the gold la-
beled sequences up to that point (making it diffi-
cult to distill the global behavior of the ensemble).

All experiments are run on the WMT16 En→De
and De→En tasks, using the vanilla Transformer-
Base architecture from Vaswani et al. (2017).10

We use a vocabulary of 32K symbols based on a
9All NMT experiments are run using the fairseq

framework (Ott et al., 2019), using standard recipes and com-
modity hardware.

10Unless otherwise specified, our experimental configura-
tion mirrors that of Vaswani et al. (2017) model with the
“base” architecture.

joint source and target byte pair encoding (Sen-
nrich et al., 2015; Ott et al., 2018b). Unlike
in our NER setting, all models are trained on
the full training set, with variation being in-
stilled only through different random initializa-
tions and data order. All models considered use
stochastic weight averaging (SWA; Izmailov et al.,
2018). Additionally, to evaluate the effect of label
smoothing (Szegedy et al., 2016; Müller et al.,
2019) on calibration we consider 2 variations of
NMT experiments: Models trained on standard
cross-entropy loss (CE-SWA), and models trained
on cross-entropy loss with a smoothing factor of
λ = 0.1 (LS-SWA). Models are added to en-
sembles based on order of random seed.11 Dur-
ing ensemble inference, the next output token is
taken from the argmax of the averaged token-
distribution across all models in the ensemble.

5.1 Challenges of ensemble distillation

Token-level distillation requires access to the
teacher distribution during training, which in our
experiments involves a distribution over 32K sub-
words. As we are interested in distilling an en-
semble of teacher models, when training on de-
vices like GPUs with limited memory, it may not
feasible to keep all models in the ensemble on de-
vice. Even on devices with sufficient memory, the
additional overhead associated with ensemble in-
ference may lead to impractical training times.

To enable scaling to large ensembles with min-
imal training overhead, we memoize to disk the
ensemble predictive distributions associated with
each token in the training data. During train-
ing, the memoized values are streamed along with
source and target subwords for calculation of the
NLL and distillation losses. However, this solu-
tion incurs a large storage cost, namely O(T · V )
floating point numbers for a training dataset con-
sisting of T tokens and V subwords. Thus, we pro-
pose the following simple approximation scheme
to reduce the storage requirements to O(T · V ′),
where V ′ � V . For each token t = 1, . . . , T ,
we store a vector v(t) ∈ ZV ′

of indices associated
with the top-V ′ tokens of the teacher distribution,
along with a vector p(t) ∈ RK of corresponding
probabilities. During training, LKD is evaluated
with respect to these fixed top-V ′ events.

11For example, an ensemble of 4 models will contain the
models trained with random seeds 1, 2, 3, and 4. Note that
this is essentially random selection, but it enforces that all
ensembles are strict subsets of larger ensembles.
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(a) English → German

Method Model # Models BLEU ECE-1 ECE-5

LS + SWA

Individual
Avg 27.45 3.466 1.295
± 0.05 0.078 0.010

Ensemble
3 28.40 5.979 1.673
5 28.74 6.611 1.758
7 28.82 6.810 1.796

CE + SWA

Individual
Avg 27.10 3.697 1.149
± 0.12 0.045 0.015

Ensemble
3 28.52 1.055 0.313
5 28.52 0.920 0.301
7 28.67 1.020 0.328

Distilled
3 28.25 1.153 0.527

V ′: 64
5 28.41 1.154 0.507
7 28.32 1.053 0.588

(b) German → English

Method Model # Models BLEU ECE-1 ECE-5

LS + SWA

Individual
Avg 30.98 2.330 1.198
± 0.029 0.016 0.003

Ensemble
3 32.46 4.891 1.513
5 32.95 5.442 1.617
7 32.98 5.714 1.663

CE + SWA

Individual
Avg 30.57 4.92 1.50
± 0.033 0.013 0.006

Ensemble
3 32.23 1.941 0.603
5 32.45 1.612 0.459
7 32.74 1.496 0.401

Distilled
3 31.71 1.519 0.591

V ′: 64
5 31.63 1.456 0.659
7 31.84 1.497 0.636

Table 2: Performance of Transformer-Base ensembles and individual models on the WMT16 English→ German
(a) and German→ English (b) tasks. ECE values are given as percentages. LS+SWA and CE+SWA indicate mod-
els trained with and without label smoothing, respectively. Additionally, we report the performance of distilling
CE-SWA ensembles into a single student model (see §5.2 for details). Similar to our NER results, we find that
distillation is able to retain much of the benefits of an ensemble, both in terms of performance and calibration, over
individual models. The best single-model performance is in bold.

5.2 Distillation experimental details

As we found label smoothing to significantly hurt
ensemble calibration (Table 2), our distillation ex-
periments only consider the CE-SWA ensembles
as teachers. We use a truncation level of V ′ = 64
in Table 2 and report additional results for differ-
ent truncation amounts in Table 3. The distilla-
tion loss with weight β is evaluated over the to-
kens which are in top-V ′ using a fixed tempera-
ture of 1. The negative log-likelihood loss with
weight 1− β is identical to other models and also
uses label smoothing with λ = 0.1. All results
use a weight of β = 0.5 on the distillation objec-
tive and use a random initialization of the model
parameters, which preliminary experiments sug-
gested was optimal.12 Other experimental details
match those of single models.

5.3 Results

Calibration for NMT is typically measured using
the ECE of next-token predictions (ECE-1).13 To
better understand the calibration of the distribu-
tion of the model’s predictions, we supplement
this with the ECE of the top five predictions at

12In preliminary experiments, we also explored other train-
ing strategies, such as initializing from a constituent model
using a larger weight of β = 0.9 on the distillation objective.
However, this did not work as well as training from scratch
with LNLL and LKD evenly weighted.

13See (Müller et al., 2019; Kumar and Sarawagi, 2019).

each token (ECE-5).14 We report the BLEU scores
and calibration metrics of our ensembles, students,
and baseline models in Table 2.

We find that individual models trained with la-
bel smoothing have slightly better BLEU scores
and calibration than those trained without, which
is consistent with the findings in (Müller et al.,
2019), in which they attribute this improvement to
reducing overconfidence. Surprisingly, however,
ensembles of models trained using label smooth-
ing actually have worse calibration than indepen-
dent models, and this effect grows as more models
are incorporated. We hypothesize that penalizing
overconfidence is effective for improving calibra-
tion of a single model, but that this results in over-
correction when models which have been similarly
penalized are ensembled together. This is sup-
ported by the reliability plots in Figure 2, which
show that the individual LS models are under-
confident in their top predictions, which is com-
pounded by ensembling, whereas non-LS individ-
ual models are slightly overconfident in their top
predictions, which is corrected by ensembling.

For ensembles that do not incorporate label
smoothing, we observe the same trends for NMT
as we do for NER: ensembles consistently im-
prove performance, and distillation results in a sin-
gle model which significantly outperforms base-
line models both in terms of calibration and

14We use adaptive binning, as described in section §2.1, to
compute both metrics.
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(b) Models trained without label smoothing

Figure 2: Reliability plots comparing predictions of
single models to those of ensembles for models trained
a) with and b) without label smoothing. The dotted di-
agonal line represents perfect calibration; the regions
above and below it correspond to underconfidence and
overconfidence, respectively.

BLEU. We also see a more consistent trend
of improvement as the ensemble size increases,
which we attribute to the substantially larger NMT
dataset size (Figure 1).

Effect of truncation size V′. We con-
sider V ′ = {32, 64, 128, 256} which requires
{32, 64, 128, 254} gigabytes of storage respec-
tively to memoize the teacher distributions. To put
these storage requirements in perspective, naively
storing the full predictive distribution would re-
quire approximately 17 terabytes of storage. Note
that the storage requirements of the proposed dis-
tillation procedure are constant with respect to the
number of models in the teacher ensemble, so in
principle the proposed approach could be used to
distill significantly larger ensembles than consid-
ered in this work. The results for De→En are re-

V′ BLEU ECE-1 ECE-5

32 31.64 1.602 0.623
64 31.84 1.497 0.636

128 31.80 1.567 0.642
256 31.72 1.325 0.648

Table 3: Distillation performance for De→En as the
truncation V ′ is varied. An ensemble of 7 models is
used as the teacher.

ported in Table 3. Surprisingly, as V ′ becomes
smaller, performance does not monotonically de-
grade, suggesting that truncation could have a ben-
eficial regularisation effect. In fact, although V ′ =
32 has a marginally worse BLEU score than the
best models, it has the best ECE-5 score. This
suggests that for large datasets it may be reason-
able to use aggressive truncations, although we do
not experiment with values smaller than V ′ = 32.

6 Further Experiments

6.1 Single-model ensembles

Our findings suggest that even ensembles of rela-
tively small size (3-4) can still yield significant im-
provements over single models. In this section, we
explore whether these findings can be mirrored by
an ensemble which is built from a single optimiza-
tion trajectory, built from multiple checkpoints.

For this purpose we consider a popular tech-
nique introduced by Loshchilov and Hutter
(2016). The authors define SGDR, a scheme for
training with a cyclical learning rate, and find that
an ensemble of ‘snapshots’ of the model taken
when the learning rate is at a minimum gives simi-
lar improvements in accuracy to proper ensembles.

We follow the same procedure used to train our
single CE+SWA NMT models, stopping 3 epochs
earlier. We then warm-start this model and train
for 3 epochs15 using a cyclical learning rate, sav-
ing the model at the end of each. Table 4 gives the
results obtained by ensembling the saved check-
points, and a comparison to an equivalent proper
ensemble. We find that SGDR improves calibra-
tion over single models, but not to the same extent
as the ensemble, and does not improve BLEU.

15We use 3 epochs to align with the recommendation in
(Loshchilov and Hutter, 2016). For SGDR, we set Tmult pa-
rameter to 1, but found that other settings gave similar re-
sults. Reported runs used 2000 steps between saved models,
but values in {500, 1000, 3000} did not produce significantly
different results.
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Method # Models BLEU ECE-1 ECE-5

SGDR 3 26.97 1.105 0.394
CE + SWA Ind. 27.10 3.697 1.149
CE + SWA 3 28.52 0.904 0.303

Table 4: Single-run ensemble performance for NMT.
We include the performance of the 3-model ensemble
and the average individual model performance. We find
that single-run ensembles have better calibration than
single models, but do not see the same performance
gains that true ensembles do.

Applying SGDR to NER experiments yielded
results which did not improve over the individ-
ual NER models in Table 1. We posit that using
pretrained BERT reduces the amount of diversity
which can be introduced in a single training run.

6.2 Temperature scaling
One of the benefits of the proposed framework is
that it does not require the use of a separate vali-
dation set to achieve improvements in calibration.
This also means that when one is available, it can
be used in conjunction with our method to fur-
ther improve calibration. A well-studied method
for performing post-hoc re-calibration using ad-
ditional data is temperature scaling (Guo et al.,
2017). To explore the interactions between tem-
perature scaling and ensemble distillation, we per-
form temperature scaling on our German NER IID
models and our largest IID ensemble, using the
validation set for tuning calibration. Additionally,
we train a new student on the temperature-scaled
ensemble. We report the test performance and cal-
ibration of all models, compared to the models
without temperature scaling, in Table 5.

We find that temperature scaling can improve
individual model calibration, but it does not sur-
pass the calibration of ensembles.16 Additionally,
we see that temperature scaling can further be used
to improve the calibration of both ensembles and
ensemble-distilled models. However, the effect
on performance varies; while temperature scaling
hurts ensemble performance, it has a significant
positive effect on the student model.

7 Conclusion

Summary of contributions. We present a system-
atic study of the effect of ensembles on the calibra-

16Note that temperature scaling has no effect on an indi-
vidual IID model’s performance, as it does not change the
ranking of predictions.

Model TS BS+ BS- B-BS B-ECE F1

Individual
17.212 0.233 9.444 8.542 81.68

X 16.463 0.184 8.052 4.098 81.68

Ensemble: 9
14.457 0.158 8.015 4.337 83.51

X 14.806 0.141 7.978 3.428 83.32

Distilled: 9
14.495 0.197 8.699 5.694 82.86

X 14.081 0.160 7.857 3.647 84.27

Table 5: CoNLL-2003 German IID results for indi-
vidual models, 9-ensembles, and distilled 9-ensembles
with and without temperature scaling (TS). We find that
we can utilize temperature scaling in all cases to boost
calibration, but temperature scaling only helps overall
performance when used in combination with distilla-
tion.

tion of structured prediction models, which con-
sistently improve calibration and performance rel-
ative to single models. Our key finding is that en-
semble distillation may be used to produce a single
model that preserves much of the improved cal-
ibration and performance of the ensemble while
being as efficient as single models at inference
time. Furthermore, we show that calibration of the
single student models can be further improved by
other, orthogonal, re-calibration methods. We re-
lease all code and scripts.17

Open research questions. Non-autoregressive
translation (NAT) is an active area of research
for NMT (Gu et al., 2017; Stern et al., 2019;
Ghazvininejad et al., 2019). Most knowledge dis-
tillation for NAT is performed at the sequence
level, and ignores distributional information at the
token level. In future work, we are interested
in exploring NAT using distilled ensembles with
truncated distributions, and assessing how im-
proved calibration impacts non-sequential decod-
ing performance. Finally, Snoek et al. (2019) find
that deep ensembles can significantly improve out-
of-domain performance over single models, and
we are interested in exploring whether our distil-
lation techniques retain these benefits.
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A Additional NMT results

Table 6 gives results for ensembles of models
which do not use SWA to combine checkpoints.
We see that although the performance of the
independent models is worse than those which
use SWA, ensembles of them essentially match
the performance of the corresponding ensembles
which did use SWA. This suggests that ensem-
bling obviates the need for checkpoint averaging.

Method # Models BLEU ECE-1 ECE-5

CE

1 26.80 3.667 1.144
± 0.10 0.140 0.030
3 28.38 0.904 0.303
5 28.60 1.068 0.311
7 28.42 1.286 0.325

Table 6: Additional results for the WMT14 English→
German task.

B The effect of calibration on PR curves
for NER

In this section, we illustrate a further advantage of
calibrated NER models, which is that they enable
straightforward thresholding of the returned confi-
dences at different operating points of interest. In
general, one may be willing to trade-off precision
or recall according to the application. The popular
F1 metric for NER evaluates at one such operat-
ing point. The framework of precision-recall (PR)
curves provides a graphical illustration of perfor-
mance of different models across a range of oper-
ating points, and the area under the PR curve pro-
vides a summary statistic that enables comparing
different models across the entire range of operat-
ing points (Flach and Kull, 2015).

Note however that sequence distributions do not
enable straightforward thresholding because the
probability of any particular sequence is vanish-
ingly small. Therefore, it is necessary to consider
marginal probabilities of positions or short spans
instead. While expensive in the case of the CRF,
requiring dynamic programming for each possible
event of interest, note that our distilled IID model
enables direct thresholding on the calibrated per-
position probabilities.

To illustrate the benefit of improved calibration,
Figure 3 shows PR curves for four models:

• An individual CRF model
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Figure 3: Precision-Recall curves of NER models.

• An individual IID model

• A model distilled from a 9-ensemble of CRFs

• A model distilled from a 9-ensemble of IIDs

We find that the distilled ensembles, which have
better calibration, have greater AUC than individ-
ual models, and generally dominate them around
the threshold corresponding to F1.

C Label smoothing in NER

We are not aware of a thorough study of the ef-
fects of label smoothing on NER tasks. Our ex-
periments found that, similar to the NMT case, la-
bel smoothing did somewhat improve calibration
for individual models. However, label smoothing
gave mixed results when used in conjunction with
our framework for ensembles and ensemble distil-
lation, and generally the best results were achieved
without it. We report our findings in Table 7.

D Dev results for CoNLL-2003

Table 8 contains results for our ensemble and dis-
tilled ensemble experiments on the CoNLL-2003
English and German development splits. Each
model is the same as the one used to produce the
corresponding test result in Table 1.

E Information about datasets

CoNLL-2003 comprises annotated text in two
languages—English and German—taken from
news articles. Details about sources, splits,
and entity-type statistics can be found in (Tjong
Kim Sang and De Meulder, 2003). The NER in-
formation is annotated in IOB format; we modify
this to IOB2 as a pre-processing step.
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Setting # Models BS+ BS- B-BS B-ECE F1

Individual Avg 17.121 0.276 8.633 5.314 80.50
LS Model ± 0.308 0.011 0.173 0.063 0.30

LS Distilled
3 14.312 0.217 8.301 5.101 81.96

non-LS Ensemble
6 14.355 0.224 8.557 5.915 82.09
9 14.516 0.181 8.383 5.132 82.95

LS Ensemble
3 15.857 0.175 7.946 5.107 83.28
6 15.366 0.179 7.915 5.150 83.21
9 15.153 0.185 7.932 5.054 83.24

LS Distilled
3 15.012 0.214 8.415 5.324 82.04

LS Ensemble
6 15.947 0.198 8.056 4.925 82.61
9 15.876 0.231 8.445 4.955 81.50

Table 7: Results for experiments on the CoNLL-2003 German dataset in which label smoothing was used. All
models are have the IID architecture. Where applicable, the label smoothing factor α = 0.1.

IID Model
English German

Model Setting BS+ BS- B-BS B-ECE F1 BS+ BS- B-BS B-ECE F1

Ensemble
3 3.154 0.095 2.546 0.905 95.30 12.235 0.183 6.950 4.514 86.39
6 2.878 0.087 2.333 0.850 95.79 11.694 0.185 6.888 4.420 86.75
9 2.801 0.089 2.303 0.745 95.72 11.688 0.177 7.006 4.279 86.76

Ensemble
3 3.377 0.119 2.884 1.706 95.02 11.890 0.235 7.610 5.872 85.37

Distillation
6 3.401 0.112 2.836 1.704 94.94 12.147 0.265 8.308 7.047 84.25
9 3.479 0.114 2.861 1.504 95.10 11.802 0.193 7.346 4.962 85.91

CRF Model
English German

Model Setting BS+ BS- B-BS B-ECE F1 BS+ BS- B-BS B-ECE F1

Ensemble
3 3.385 0.108 2.777 1.207 95.09 12.245 0.212 7.077 3.705 85.36
6 3.365 0.099 2.701 0.803 95.10 11.951 0.200 7.043 3.411 85.71
9 12.135 0.193 6.987 3.273 85.77 12.135 0.193 6.987 3.273 85.77

Ensemble
3 3.370 0.103 2.676 1.301 95.03 12.259 0.165 6.552 3.279 86.44

Distillation
6 3.468 0.117 2.901 1.713 94.92 11.893 0.180 6.780 3.211 86.29
9 3.264 0.117 2.842 1.771 95.17 12.477 0.162 6.812 3.766 85.68

Table 8: Dev set results for the models reported in Table 1.

WMT16 gives parallel translations of parlia-
mentary proceedings and news articles in a
number of languages. We restrict our focus
to the English-German language pair. De-
tails about the corpus and splits can be found
at http://www.statmt.org/wmt16/
translation-task.html. We follow the
procedure provided by (Ott et al., 2019) for
obtaining and processing the data.

F Information about computing
infrastructure

NER. The IID and CRF models for our NER ex-
periments were each trained on one Nvidia GTX
1080 Ti GPU. Most of the models are trained

using early stopping, which makes the training
time somewhat variable, but typically requires 3-4
hours. Distilled student models tend to converge
more quickly, sometimes requiring 2 hours or less
to train.

NMT. Training the Transformer models used for
NMT is more computationally expensive due to
the size of the training datasets. However, using 4
Nvidia RTX 2080 Ti GPUs, all models converged
in less than 4 days, where we used 2 steps of gradi-
ent accumulation (Ott et al., 2019). We note that it
would be possible to reproduce our experiments
using a single GPU by using more steps gradi-
ent accumulation, at the expense of longer training
times.

http://www.statmt.org/wmt16/translation-task.html
http://www.statmt.org/wmt16/translation-task.html

