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Abstract

Many tasks in natural language processing in-
volve predicting structured outputs, e.g., se-
quence labeling, semantic role labeling, pars-
ing, and machine translation. Researchers
are increasingly applying deep representation
learning to these problems, but the structured
component of these approaches is usually
quite simplistic. In this work, we propose sev-
eral high-order energy terms to capture com-
plex dependencies among labels in sequence
labeling, including several that consider the
entire label sequence. We use neural pa-
rameterizations for these energy terms, draw-
ing from convolutional, recurrent, and self-
attention networks. We use the framework of
learning energy-based inference networks (Tu
and Gimpel, 2018) for dealing with the dif-
ficulties of training and inference with such
models. We empirically demonstrate that this
approach achieves substantial improvement us-
ing a variety of high-order energy terms on
four sequence labeling tasks, while having the
same decoding speed as simple, local classi-
fiers. We also find high-order energies to help
in noisy data conditions.1

1 Introduction

Conditional random fields (CRFs; Lafferty et al.,
2001) have been shown to perform well in various
sequence labeling tasks. Recent work uses rich
neural network architectures to define the “unary”
potentials, i.e., terms that only consider a single
position’s label at a time (Collobert et al., 2011;
Lample et al., 2016; Ma and Hovy, 2016; Strubell
et al., 2018). However, “binary” potentials, which
consider pairs of adjacent labels, are usually quite
simple and may consist solely of a parameter or
parameter vector for each unique label transition.

∗Equal contribution.
1Code is available at https://github.com/

tyliupku/Arbitrary-Order-Infnet

Models with unary and binary potentials are gener-
ally referred to as “first order” models.

A major challenge with CRFs is the complexity
of training and inference, which are quadratic in
the number of output labels for first order models
and grow exponentially when higher order depen-
dencies are considered. This explains why the most
common type of CRF used in practice is a first or-
der model, also referred to as a “linear chain” CRF.

One promising alternative to CRFs is structured
prediction energy networks (SPENs; Belanger and
McCallum, 2016), which use deep neural networks
to parameterize arbitrary potential functions for
structured prediction. While SPENs also pose chal-
lenges for learning and inference, Tu and Gimpel
(2018) proposed a way to train SPENs jointly with
“inference networks”, neural networks trained to
approximate structured arg max inference.

In this paper, we leverage the frameworks of
SPENs and inference networks to explore high-
order energy functions for sequence labeling.
Naively instantiating high-order energy terms can
lead to a very large number of parameters to learn,
so we instead develop concise neural parameteriza-
tions for high-order terms. In particular, we draw
from vectorized Kronecker products, convolutional
networks, recurrent networks, and self-attention.
We also consider “skip-chain” connections (Sutton
and McCallum, 2004) with various skip distances
and ways of reducing their total parameter count
for increased learnability.

Our experimental results on four sequence label-
ing tasks show that a range of high-order energy
functions can yield performance improvements.
While the optimal energy function varies by task,
we find strong performance from skip-chain terms
with short skip distances, convolutional networks
with filters that consider label trigrams, and recur-
rent networks and self-attention networks that con-
sider large subsequences of labels.

https://github.com/tyliupku/Arbitrary-Order-Infnet
https://github.com/tyliupku/Arbitrary-Order-Infnet
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We also demonstrate that modeling high-order
dependencies can lead to significant performance
improvements in the setting of noisy training and
test sets. Visualizations of the high-order energies
show various methods capture intuitive structured
dependencies among output labels.

Throughout, we use inference networks that
share the same architecture as unstructured clas-
sifiers for sequence labeling, so test time infer-
ence speeds are unchanged between local mod-
els and our method. Enlarging the inference net-
work architecture by adding one layer leads consis-
tently to better results, rivaling or improving over
a BiLSTM-CRF baseline, suggesting that training
efficient inference networks with high-order energy
terms can make up for errors arising from approxi-
mate inference. While we focus on sequence label-
ing in this paper, our results show the potential of
developing high-order structured models for other
NLP tasks in the future.

2 Background

2.1 Structured Energy-Based Learning

We denote the input space by X . For an input
x ∈ X , we denote the structured output space
by Y(x). The entire space of structured outputs
is denoted Y = ∪x∈XY(x). We define an en-
ergy function (LeCun et al., 2006; Belanger and
McCallum, 2016) EΘ parameterized by Θ that
computes a scalar energy for an input/output pair:
EΘ : X × Y → R. At test time, for a given input
x, prediction is done by choosing the output with
lowest energy:

ŷ = arg miny∈Y(x)EΘ(x,y) (1)

2.2 Inference Networks

Inference. Solving equation (1) requires combi-
natorial algorithms because Y is a structured, dis-
crete space. This becomes intractable when EΘ

does not decompose into a sum over small “parts”
of y. Belanger and McCallum (2016) relax this
problem by allowing the discrete vector y to be
continuous. Let YR denote the relaxed output
space. They solve the relaxed problem by using
gradient descent to iteratively minimize the energy
with respect to y.

Tu and Gimpel (2018) propose an alternative that
replaces gradient descent with a neural network
trained to do inference, i.e., to mimic the function
performed in equation (1). This “inference network”

AΨ : X → YR is parameterized by Ψ and trained
with the goal that

AΨ(x) ≈ arg min
y∈YR(x)

EΘ(x,y) (2)

Tu and Gimpel (2019) show that inference net-
works achieve a better speed/accuracy/search er-
ror trade-off than gradient descent given pretrained
energy functions.

Joint training of energy functions and inference
networks. Belanger and McCallum (2016) pro-
posed a structured hinge loss for learning the en-
ergy function parameters Θ, using gradient descent
for the “cost-augmented” inference step required
during learning. Tu and Gimpel (2018) replaced
the cost-augmented inference step in the structured
hinge loss with training of a “cost-augmented infer-
ence network” FΦ(x) trained with the following
goal:

FΦ(x) ≈ arg min
y∈YR(x)

(EΘ(x,y)−4(y,y∗))

where4 is a structured cost function that computes
the distance between its two arguments. The new
optimization objective becomes:

min
Θ

max
Φ

∑
〈x,y〉∈D

[4(FΦ(x),y)

− EΘ(x,FΦ(x)) + EΘ(x,y)]+

where D is the set of training pairs and [h]+ =
max(0, h). Tu and Gimpel (2018) alternatively
optimized Θ and Φ, which is similar to training in
generative adversarial networks (Goodfellow et al.,
2014).

2.3 An Objective for Joint Learning of
Inference Networks

One challenge with the optimization problem above
is that it still requires training an inference net-
work AΨ for test-time prediction. Tu et al. (2020a)
proposed a “compound” objective that avoids this
by training two inference networks jointly (with
shared parameters), FΦ for cost-augmented infer-
ence and AΨ for test-time inference:

min
Θ

max
Φ,Ψ

∑
〈x,y〉∈D

[4(FΦ(x),y)−EΘ(x,FΦ(x))+EΘ(x,y)]+︸ ︷︷ ︸
margin-rescaled hinge loss

+ λ [−EΘ(x,AΨ(x))+EΘ(x,y)]+︸ ︷︷ ︸
perceptron loss
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As indicated, this loss can be viewed as the sum of
the margin-rescaled and perceptron losses. Θ, Φ,
and Ψ are alternatively optimized. The objective
for the energy function parameters Θ is:

Θ̂← arg min
Θ[

4(FΦ(x),y)− EΘ(x,FΦ(x)) + EΘ(x,y)
]
+

+ λ
[
−EΘ(x,AΨ(x)) + EΘ(x,y)

]
+

The objective for the other parameters is:

Ψ̂, Φ̂← arg max
Ψ,Φ

4(FΦ(x),y)− EΘ(x,FΦ(x))

− λEΘ(x,AΨ(x))− τ`token(y,AΨ(x))

where `token is a supervised token-level loss which
is added to aid in training inference networks.
In this paper, we use the standard cross entropy
summed over all positions. Like Tu et al. (2020a),
we drop the zero truncation (max(0, .)) when up-
dating the inference network parameters to improve
stability during training, which also lets us remove
the terms that do not have inference networks. We
use two independent networks but with the same
architecture for the two inference networks.

3 Energy Functions

Our experiments in this paper consider sequence
labeling tasks, so the input x is a length-T sequence
of tokens where xt denotes the token at position
t. The output y is a sequence of labels also of
length T . We use yt to denote the output label at
position t, where yt is a vector of length L (the
number of labels in the label set) and where yt,j is
the jth entry of the vector yt. In the original output
space Y(x), yt,j is 1 for a single j and 0 for all
others. In the relaxed output space YR(x), yt,j can
be interpreted as the probability of the tth position
being labeled with label j. We use the following
energy: EΘ(x,y) =

−

(
T∑
t=1

L∑
j=1

yt,j

(
U>j b(x, t)

)
+ EW (y)

)
(3)

whereUj ∈ Rd is a parameter vector for label j and
EW (y) is a structured energy term parameterized
by parameters W . In a linear chain CRF, W is a
transition matrix for scoring two adjacent labels.
Different instantiations of EW will be detailed in
the sections below. Also, b(x, t) ∈ Rd denotes the
“input feature vector” for position t. We define it

to be the d-dimensional BiLSTM (Hochreiter and
Schmidhuber, 1997) hidden vector at t. The full
set of energy parameters Θ includes the Uj vectors,
W , and the parameters of the BiLSTM.

The above energy functions are trained with the
objective in Section 2.3. Table 1 shows the training
and test-time inference requirements of our method
compared to previous methods. For different for-
mulations of the energy function, the inference net-
work architecture is the same (e.g., BiLSTM). So
the inference complexity is the same as the standard
neural approaches that do not use structured predic-
tion, which is linear in the label set size. However,
even for the first order model (linear-chain CRF),
the time complexity is quadratic in the label set
size. The time complexity of higher-order CRFs
grows exponentially with the order.

3.1 Linear Chain Energies

Our first choice for a structured energy term is
relaxed linear chain energy defined for sequence
labeling by Tu and Gimpel (2018):

EW (y) =
T∑
t=1

y>t−1Wyt

Where Wi ∈ RL×L is the transition matrix, which
is used to score the pair of adjacent labels. If this
linear chain energy is the only structured energy
term in use, exact inference can be performed effi-
ciently using the Viterbi algorithm.

3.2 Skip-Chain Energies

We also consider an energy inspired by “skip-chain”
conditional random fields (Sutton and McCallum,
2004). In addition to consecutive labels, this energy
also considers pairs of labels appearing in a given
window size M + 1:

EW (y) =
T∑
t=1

M∑
i=1

y>t−iWiyt

where each Wi ∈ RL×L and the max window size
M is a hyperparameter. While linear chain energies
allow efficient exact inference, using skip-chain
energies causes exact inference to require time ex-
ponential in the size of M .

3.3 High-Order Energies

We also consider M th-order energy terms. We use
the function F to score the M + 1 consecutive
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Training Inference
Time Number of Parameters Time Number of Parameters

BiLSTM O(T ∗ L) O(|Ψ|) O(T ∗ L) O(|Ψ|)
CRF O(T ∗ L2) O(|Θ|) O(T ∗ L2) O(|Θ|)

Energy-Based Inference Networks O(T ∗ L) O(|Ψ|+ |Φ|+ |Θ|) O(T ∗ L) O(|Ψ|)

Table 1: Time complexity and number of parameters of different methods during training and inference, where T
is the sequence length, L is the label set size, Θ are the parameters of energy function, and Φ,Ψ are the parameters
of two energy-based inference networks. For arbitrary-order energy functions or different parameterizations, the
size of Θ can be different.

labels yt−M , . . . ,yt, then sum over positions:

EW (y) =
T∑

t=M

F (yt−M , . . . ,yt) (4)

We consider several different ways to define the
function F , detailed below.

Vectorized Kronecker Product (VKP): A
naive way to parameterize a high-order energy
term would involve using a parameter tensor
W ∈ RLM+1

with an entry for each possible la-
bel sequence of length M + 1. To avoid this
exponentially-large number of parameters, we de-
fine a more efficient parameterization as follows.
We first define a label embedding lookup table
∈ RL×nl and denote the embedding for label j by
ej . We consider M = 2 as an example. Then, for
a tensor W ∈ RL×L×L, its value Wi,j,k at indices
(i, j, k) is calculated as

v>LayerNorm([ei; ej ; ek] + MLP([ei; ej ; ek]))

where v ∈ R(M+1)nl is a parameter vector and ;
denotes vector concatenation. MLP expects and
returns vectors of dimension (M + 1)× nl and is
parameterized as a multilayer perceptron. Then,
the energy is computed:

F (yt−M , . . . ,yt) = VKP(yt−M , . . . ,yt−1)Wyt

where W is reshaped as ∈ RLM×L. The operator
VKP is somewhat similar to the Kronecker product
of the k vectors v1, . . . ,vk

2. However it will return
a vector, not a tensor:

VKP(v1, . . . ,vk) =
v1 k = 1

vec(v1v
>
2 ) k = 2

vec(VKP(v1, . . . ,vk−1)v>k ) k > 2

2There are some work (Lei et al., 2014; Srikumar and
Manning, 2014; Yu et al., 2016) that use Kronecker product for
higher order feature combinations with low-rank tensors. Here
we use this form to express the computation when scoring the
consecutive labels.

Where vec is the operation that vectorizes a tensor
into a (column) vector.

CNN: Convolutional neural networks (CNN) are
frequently used in NLP to extract features based on
words or characters (Collobert et al., 2011; Kim,
2014). We apply CNN filters over the sequence
of M + 1 consecutive labels. The F function is
computed as follows:

F (yt−M , . . . ,yt) =
∑
n

fn(yt−M , . . . ,yt)

fn(yt−M , . . . ,yt) = g(Wn[yt−M ; ...;yt] + bn)

where g is a ReLU nonlinearity and the vector
Wn ∈ RL(M+1) and scalar bn ∈ R are the pa-
rameters for filter n. The filter size of all filters is
the same as the window size, namely, M + 1. The
F function sums over all CNN filters. When view-
ing this high-order energy as a CNN, we can think
of the summation in Eq. 4 as corresponding to sum
pooling over time of the feature map outputs.

Tag Language Model (TLM): Tu and Gimpel
(2018) defined an energy term based on a pretrained
“tag language model”, which computes the proba-
bility of an entire sequence of labels. We also use
a TLM, scoring a sequence of M + 1 consecutive
labels in a way similar to Tu and Gimpel (2018);
however, the parameters of the TLM are trained in
our setting:

F (yt−M , . . . ,yt) =

−
t∑

t′=t−M+1

y>t′ log(TLM(〈yt−M , ...,yt′−1〉))

where TLM(〈yt−M , ..., yt′−1〉) returns the soft-
max distribution over tags at position t′ (under the
tag language model) given the preceding tag vec-
tors. When each yt′ is a one-hot vector, this energy
reduces to the negative log-likelihood of the tag
sequence specified by yt−M , . . . ,yt.
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Self-Attention (S-Att): We adopt the multi-head
self-attention formulation from Vaswani et al.
(2017). Given a matrix of the M + 1 consecu-
tive labels Q = K = V = [yt−M ; . . . ;yt] ∈
R(M+1)×L:

H = attention(Q,K, V )

F (yt−M , . . . ,yt) =
∑

H

where attention is the general attention mecha-
nism: the weighted sum of the value vectors V
using query vectors Q and key vectors K (Vaswani
et al., 2017). The energy on the M + 1 consecutive
labels is defined as the sum of entries in the fea-
ture map H ∈ RL×(M+1) after the self-attention
transformation.

3.4 Fully-Connected Energies

We can simulate a “fully-connected” energy func-
tion by setting a very large value for M in the
skip-chain energy (Section 3.2). For efficiency and
learnability, we use a low-rank parameterization
for the many translation matrices Wi that will re-
sult from increasing M . We first define a matrix
S ∈ RL×d that allWi will use. Each i has a learned
parameter matrix Di ∈ RL×d and together S and
Di are used to compute Wi:

Wi = SD>i

where d is a tunable hyperparameter that affects the
number of learnable parameters.

4 Related Work

Linear chain CRFs (Lafferty et al., 2001), which
consider dependencies between at most two ad-
jacent labels or segments, are commonly used in
practice (Sarawagi and Cohen, 2005; Lample et al.,
2016; Ma and Hovy, 2016).

There have been several efforts in developing ef-
ficient algorithms for handling higher-order CRFs.
Qian et al. (2009) developed an efficient decoding
algorithm under the assumption that all high-order
features have non-negative weights. Some work
has shown that high-order CRFs can be handled rel-
atively efficiently if particular patterns of sparsity
are assumed (Ye et al., 2009; Cuong et al., 2014).
Mueller et al. (2013) proposed an approximate CRF
using coarse-to-fine decoding and early updating.
Loopy belief propagation (Murphy et al., 1999) has
been used for approximate inference in high-order

CRFs, such as skip-chain CRFs (Sutton and Mc-
Callum, 2004), which form the inspiration for one
category of energy function in this paper.

CRFs are typically trained by maximizing condi-
tional log-likelihood. Even assuming that the graph
structure underlying the CRF admits tractable in-
ference, it is still time-consuming to compute the
partition function. Margin-based methods have
been proposed (Taskar et al., 2004; Tsochantaridis
et al., 2004) to avoid the summation over all possi-
ble outputs. Similar losses are used when training
SPENs (Belanger and McCallum, 2016; Belanger
et al., 2017), including in this paper. The energy-
based inference network learning framework has
been used for multi-label classification (Tu and
Gimpel, 2018), non-autoregressive machine transla-
tion (Tu et al., 2020b), and previously for sequence
labeling (Tu and Gimpel, 2019).

Moving beyond CRFs and sequence labeling,
there has been a great deal of work in the NLP com-
munity in designing non-local features, often com-
bined with the development of approximate algo-
rithms to incorporate them during inference. These
include n-best reranking (Och et al., 2004), beam
search (Lowerre, 1976), loopy belief propagation
(Sutton and McCallum, 2004; Smith and Eisner,
2008), Gibbs sampling (Finkel et al., 2005), stacked
learning (Cohen and de Carvalho, 2005; Krishnan
and Manning, 2006), sequential Monte Carlo algo-
rithms (Yang and Eisenstein, 2013), dynamic pro-
gramming approximations like cube pruning (Chi-
ang, 2007; Huang and Chiang, 2007), dual decom-
position (Rush et al., 2010; Martins et al., 2011),
and methods based on black-box optimization like
integer linear programming (Roth and Yih, 2004).
These methods are often developed or applied with
particular types of non-local energy terms in mind.
By contrast, here we find that the framework of
SPEN learning with inference networks can sup-
port a wide range of high-order energies for se-
quence labeling.

5 Experimental Setup

We perform experiments on four tasks: Twitter part-
of-speech tagging (POS), named entity recognition
(NER), CCG supertagging (CCG), and semantic
role labeling (SRL).

5.1 Datasets

POS. We use the annotated data from Gimpel
et al. (2011) and Owoputi et al. (2013) which con-
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tains 25 POS tags. We use the 100-dimensional
skip-gram embeddings from Tu et al. (2017) which
were trained on a dataset of 56 million English
tweets using word2vec (Mikolov et al., 2013).
The evaluation metric is tagging accuracy.

NER. We use the CoNLL 2003 English data
(Tjong Kim Sang and De Meulder, 2003). We use
the BIOES tagging scheme, so there are 17 labels.
We use 100-dimensional pretrained GloVe (Pen-
nington et al., 2014) embeddings. The task is eval-
uated with micro-averaged F1 score.

CCG. We use the standard splits from CCG-
bank (Hockenmaier and Steedman, 2002). We only
keep sentences with length less than 50 in the orig-
inal training data during training. We use only the
400 most frequent labels. The training data con-
tains 1,284 unique labels, but because the label dis-
tribution has a long tail, we use only the 400 most
frequent labels, replacing the others by a special tag
∗. The percentages of ∗ in train/development/test
are 0.25/0.23/0.23%. When the gold standard tag
is ∗, the prediction is always evaluated as incorrect.
We use the same GloVe embeddings as in NER.
The task is evaluated with per-token accuracy.

SRL. We use the standard split from CoNLL
2005 (Carreras and Màrquez, 2005). The gold pred-
icates are provided as part of the input. We use the
official evaluation script from the CoNLL 2005
shared task for evaluation. We again use the same
GloVe embeddings as in NER. To form the inputs
to our models, an embedding of a binary feature
indicating whether the word is the given predicate
is concatenated to the word embedding.3

5.2 Training
Local Classifiers. We consider local baselines
that use a BiLSTM trained with the local loss `token.
For POS, NER and CCG, we use a 1-layer BiLSTM
with hidden size 100, and the word embeddings
are fixed during training. For SRL, we use a 4-
layer BiLSTM with hidden size 300 and the word
embeddings are fine-tuned.

BiLSTM-CRF. We also train BiLSTM-CRF
models with the standard conditional log-likelihood
objective. A 1-layer BiLSTM with hidden size 100
is used for extracting input features. The CRF

3Our SRL baseline is most similar to Zhou and Xu (2015),
though there are some differences. We use GloVe embeddings
while they train word embeddings on Wikipedia. We both use
the same predicate context features.

part uses a linear chain energy with a single tag
transition parameter matrix. We do early stopping
based on development sets. The usual dynamic
programming algorithms are used for training and
inference, e.g., the Viterbi algorithm is used for
inference. The same pretrained word embeddings
as for the local classifiers are used.

Inference Networks. When defining architec-
tures for the inference networks, we use the same
architectures as the local classifiers. However, the
objective of the inference networks is different,
which is shown in Section 2.3. λ = 1 and τ = 1
are used for training. We do early stopping based
on the development set.

Energy Terms. The unary terms are parameter-
ized using a one-layer BiLSTM with hidden size
100. For the structured energy terms, the VKP op-
eration uses nl = 20, the number of CNN filters is
50, and the tag language model is a 1-layer LSTM
with hidden size 100. For the fully-connected en-
ergy, d = 20 for the approximation of the transition
matrix and M = 20 for the approximation of the
fully-connected energies.

Hyperparameters. For the inference network
training, the batch size is 100. We update the
energy function parameters using the Adam op-
timizer (Kingma and Ba, 2014) with learning rate
0.001. For POS, NER, and CCG, we train the infer-
ence networks parameter with stochastic gradient
descent with momentum as the optimizer. The
learning rate is 0.005 and the momentum is 0.9.
For SRL, we train the inference networks using
Adam with learning rate 0.001.

6 Results

Parameterizations for High-Order Energies.
We first compare several choices for energy func-
tions within our inference network learning frame-
work. In Section 3.3, we considered several ways
to define the high-order energy function F . We
compare performance of the parameterizations on
three tasks: POS, NER, and CCG. The results are
shown in Table 2.

For VKP high-order energies, there are small
differences between 2nd and 3rd order models,
however, 4th order models are consistently worse.
The CNN high-order energy is best when M=2
for the three tasks. Increasing M does not consis-
tently help. The tag language model (TLM) works
best when scoring the entire label sequence. In
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POS NER CCG
Linear Chain 89.5 90.6 92.8

VKP
M = 2 89.9 91.1 93.1
M = 3 89.8 91.2 92.9
M = 4 89.5 90.8 92.8
M = 1 89.7 91.1 93.0

CNN M = 2 90.0 91.3 93.0
M = 3 89.9 91.2 92.9
M = 4 89.7 91.0 93.0
M = 2 89.7 90.8 92.4

TLM M = 3 89.8 91.0 92.7
M = 4 89.8 91.3 92.7
all 90.0 91.4 92.9
M = 2 89.7 90.7 92.6
M = 4 89.8 90.8 92.8

S-Att M = 6 89.9 90.9 92.8
M = 8 89.9 91.0 93.0
all 89.7 90.8 93.1

Table 2: Development results for different parameter-
izations of high-order energies when increasing the
window size M of consecutive labels, where “all” de-
notes the whole relaxed label sequence. The inference
network architecture is a one-layer BiLSTM. We ran
t-tests for the mean performance (over five runs) of
our proposed energies (the settings in bold) and the
linear-chain energy. All differences are significant at
p < 0.001 for NER and p < 0.005 for other tasks.

the following experiment with TLM energies, we
always use it with this “all” setting. Self-attention
(S-Att) also shows better performance with larger
M . However, the results for NER are not as high
overall as for other energy terms.

Overall, there is no clear winner among the four
types of parameterizations, indicating that a variety
of high-order energy terms can work well on these
tasks, once appropriate window sizes are chosen.
We do note differences among tasks: NER benefits
more from larger window sizes than POS.

Comparing Structured Energy Terms. Above
we compared parameterizations of the high-order
energy terms. In Table 3, we compare instantiations
of the structured energy term EW (y): linear-chain
energies, skip-chain energies, high-order energies,
and fully-connected energies.4 We also compare
to local classifiers (BiLSTM). The models with
structured energies typically improve over the local
classifiers, even with just the linear chain energy.

The richer energy terms tend to perform better
than linear chain, at least for most tasks and en-
ergies. The skip-chain energies benefit from rela-
tively large M values, i.e., 3 or 4 depending on the

4M values are tuned based on dev sets. Tuned M values
for POS/NER/CCG/SRL: Skip-Chain: 3/4/3/3; VKP: 2/3/2/2;
CNN: 2/2/2/2; TLM: whole sequence; S-Att: 8/8/8/8.

POS NER CCG SRL
WSJ Brown

BiLSTM 88.7 85.3 92.8 81.8 71.8
Linear Chain 89.7 85.9 93.0 81.7 72.0
Skip-Chain 90.0 86.7 93.3 82.1 72.4

VKP 90.1 86.7 93.3 81.8 72.0
High- CNN 90.1 86.5 93.2 81.9 72.2
Order TLM 90.0 86.6 93.0 81.8 72.1

S-Att 90.1 86.5 93.3 82.2 72.2
Fully-Connected 89.8 86.3 92.9 81.4 71.4

Table 3: Test results on all tasks for local classifiers
(BiLSTM) and different structured energy functions.
POS/CCG use accuracy while NER/SRL use F1. The
architecture of inference networks is one-layer BiL-
STM. More results are shown in the appendix.

POS NER CCG
2-layer BiLSTM 88.8 86.0 93.4
BiLSTM-CRF 89.2 87.3 93.1
Linear Chain 90.0 86.6 93.7
Skip-Chain 90.2 87.5 93.8

VKP 90.2 87.2 93.8
High- CNN 90.2 87.3 93.6
Order TLM 90.1 87.1 93.6

S-Att 90.0 87.3 93.7
Fully-Connected 90.0 87.2 93.3

Table 4: Test results when inference networks have 2
layers (so the local classifier baseline also has 2 layers).

task. These tend to be larger than the optimal VKP
M values. We note that S-Att high-order energies
work well on SRL. This points to the benefits of
self-attention on SRL, which has been found in
recent work (Tan et al., 2018; Strubell et al., 2018).

Both the skip-chain and high-order energy mod-
els achieve substantial improvements over the lin-
ear chain CRF, notably a gain of 0.8 F1 for NER.
The fully-connected energy is not as strong as the
others, possibly due to the energies from label pairs
spanning a long range. These long-range energies
do not appear helpful for these tasks.

Comparison using Deeper Inference Networks.
Table 4 compares methods when using 2-layer BiL-
STMs as inference networks.5 The deeper infer-
ence networks reach higher performance across all
tasks compared to 1-layer inference networks.

We observe that inference networks trained
with skip-chain energies and high-order energies
achieve better results than BiLSTM-CRF on the
three datasets (the Viterbi algorithm is used for

5M values are retuned based on dev sets when us-
ing 2-layer inference networks. Tuned M values for
POS/NER/CCG: Skip-Chain: 3/4/3; VKP: 2/3/2; CNN: 2/2/2;
TLM: whole sequence; S-Att: 8/8/8.
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α=0.1 α=0.2 α=0.3
BiLSTM 75.0 67.2 58.8
Linear Chain 75.2 67.4 59.1
Skip-Chain (M=4) 75.5 67.9 59.5
VKP (M=3) 75.3 67.7 59.3
CNN (M=0) 75.7 67.9 59.4
CNN (M=2) 76.3 68.6 60.2
CNN (M=4) 76.7 69.8 60.4
TLM 76.0 67.8 59.9
S-Att (M=8) 75.6 67.6 59.7

Table 5: UnkTest setting for NER: words in the test
set are replaced by the unknown word symbol with
probability α. For CNN energies (the settings in bold)
and linear-chain energy, they differ significantly with
p < 0.001.

α=0.1 α=0.2 α=0.3
BiLSTM 80.1 76.0 70.6
Linear Chain 80.4 76.3 70.9
Skip-Chain (M=4) 81.2 76.7 71.2
VKP (M=3) 81.4 76.8 71.4
CNN (M=0) 81.1 76.7 71.5
CNN (M=2) 81.8 77.0 71.8
CNN (M=4) 82.0 77.1 71.7
TLM 80.9 76.3 71.1
S-Att (M=8) 81.4 76.9 71.4

Table 6: UnkTrain setting for NER: training on noisy
text, evaluating on noisy test sets. Words are replaced
by the unknown word symbol with probability α. For
CNN energies (the settings in bold) and linear-chain
energy, they differ significantly with p < 0.001.

exact inference for BiLSTM-CRF). This indicates
that adding richer energy terms can make up for ap-
proximate inference during training and inference.
Moreover, a 2-layer BiLSTM is much cheaper com-
putationally than Viterbi, especially for tasks with
large label sets.

6.1 Results on Noisy Datasets

We now consider the impact of our structured en-
ergy terms in noisy data settings. Our motivation
for these experiments stems from the assumption
that structured energies will be more helpful when
there is a weaker relationship between the observa-
tions and the labels. One way to achieve this is by
introducing noise into the observations.

So, we create new datasets: for any given sen-
tence, we randomly replace a token x with an un-
known word symbol “UNK” with probability α.
From previous results, we see that NER shows
more benefit from structured energies, so we fo-
cus on NER and consider two settings: UnkTest:
train on clean text, evaluate on noisy text; and Unk-
Train: train on noisy text, evaluate on noisy text.

Baselines:
BERT (local loss) 92.13
BERT-CRF 92.34
Energy-based inference networks:
Linear Chain 92.14
Skip-Chain (M=3) 92.46

Table 7: Test results for NER when using BERT. When
using energy-based inference networks (our frame-
work), BERT is used in both the energy function and
as the inference network architecture.

Table 5 shows results for UnkTest. CNN ener-
gies are best among all structured energy terms, in-
cluding the different parameterizations. Increasing
M improves F1, showing that high-order informa-
tion helps the model recover from the high degree
of noise. Table 6 shows results for UnkTrain. The
CNN high-order energies again yield large gains:
roughly 2 points compared to the local classifier
and 1.8 compared to the linear chain energy.

7 Incorporating BERT

Researchers have recently been applying large-
scale pretrained transformers like BERT (Devlin
et al., 2019) to many tasks, including sequence
labeling. To explore the impact of high-order ener-
gies on BERT-like models, we now consider exper-
iments that use BERTBASE in various ways. We use
two baselines: (1) BERT finetuned for NER using
a local loss, and (2) a CRF using BERT features
(“BERT-CRF”). Within our framework, we also
experiment with using BERT in both the energy
function and inference network architecture. That
is, the “input feature vector” in Equation 3 is re-
placed by the features from BERT. The energy and
inference networks are trained with the objective in
Section 2.3. For the training of energy function and
inference networks, we use Adam with learning
rate 5e−5, a batch size of 32, and L2 weight decay
of 1e−5. The results are shown in Table 7.6

There is a slight improvement when moving
from BERT trained with the local loss to using
BERT within the CRF (92.13 to 92.34). There
is little difference (92.13 vs. 92.14) between the
locally-trained BERT model and when using the
linear-chain energy function within our framework.
However, when using the higher-order energies, the
difference is larger (92.13 to 92.46).

6Various high-order energies were explored. We found
the skip-chain energy (M=3) to achieve the best performance
(96.28) on the dev set, so we use it when reporting the test
results.
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(a) Skip-chain energy matrix W1.

(b) Skip-chain energy matrix W3.

Figure 1: Learned pairwise potential matrices W1 and
W3 for NER with skip-chain energy. The rows corre-
spond to earlier labels and the columns correspond to
subsequent labels.

8 Analysis of Learned Energies

In this section, we visualize our learned energy
functions for NER to see what structural dependen-
cies among labels have been captured.

Figure 1 visualizes two matrices in the skip-
chain energy with M = 3. We can see strong
associations among labels in neighborhoods from
W1. For example, B-ORG and I-ORG are more
likely to be followed by E-ORG. The W3 matrix
shows a strong association between I-ORG and E-
ORG, which implies that the length of organization
names is often long in the dataset.

For the VKP energy with M=3, Figure 2 shows
the learned matrix when the first label is B-PER,
showing that B-PER is likely to be followed by
“I-PER E-PER”, “E-PER O”, or “I-PER I-PER”.

In order to visualize the learned CNN filters,

Figure 2: Learned 2nd-order VKP energy matrix begin-
ning with B-PER in NER dataset.

filter 26 B-MISC I-MISC E-MISC
filter 12 B-LOC I-LOC E-LOC
filter 15 B-PER I-PER I-PER
filter 5 B-MISC E-MISC O
filter 6 O B-LOC I-LOC
filter 16 S-LOC B-ORG I-ORG
filter 44 B-PER I-PER I-PER
filter 3 B-MISC I-MISC E-MISC
filter 2 I-LOC E-LOC O
filter 45 O B-LOC E-LOC

Table 8: Top 10 CNN filters with high inner product
with 3 consecutive labels for NER.

we calculate the inner product between the filter
weights and consecutive labels. For each filter, we
select the sequence of consecutive labels with the
highest inner product. Table 8 shows the 10 filters
with the highest inner product and the correspond-
ing label trigram. All filters give high scores for
structured label sequences with a strong local de-
pendency, such as “B-MISC I-MISC E-MISC”
and “B-LOC I-LOC E-LOC”, etc. Figure 3 in the
appendix shows these inner product scores of 50
CNN filters on a sampled NER label sequence. We
can observe that filters learn the sparse set of label
trigrams with strong local dependency.

9 Conclusion

We explore arbitrary-order models with differ-
ent neural parameterizations on sequence labeling
tasks via energy-based inference networks. This
approach achieve substantial improvement using
high-order energy terms, especially in noisy data
conditions, while having same decoding speed as
simple local classifiers.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
JMLR.

Nguyen Viet Cuong, Nan Ye, Wee Sun Lee, and
Hai Leong Chieu. 2014. Conditional random field
with high-order dependencies for sequence labeling
and segmentation. Journal of Machine Learning Re-
search, 15(28):981–1009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by Gibbs
sampling. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL’05), pages 363–370, Ann Arbor, Michi-
gan. Association for Computational Linguistics.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-speech tagging
for twitter: Annotation, features, and experiments.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 42–47.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing
Systems 27, pages 2672–2680. Curran Associates,
Inc.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation.

Julia Hockenmaier and Mark Steedman. 2002. Acquir-
ing compact lexicalized grammars from a cleaner
treebank. In Proceedings of the Third International
Conference on Language Resources and Evaluation
(LREC’02), Las Palmas, Canary Islands - Spain. Eu-
ropean Language Resources Association (ELRA).

Liang Huang and David Chiang. 2007. Forest rescor-
ing: Faster decoding with integrated language mod-
els. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, pages
144–151, Prague, Czech Republic. Association for
Computational Linguistics.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Vijay Krishnan and Christopher D. Manning. 2006. An
effective two-stage model for exploiting non-local
dependencies in named entity recognition. In Pro-
ceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1121–1128, Sydney, Australia. Associa-
tion for Computational Linguistics.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proc. of ICML.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North

https://www.aclweb.org/anthology/W05-0620
https://www.aclweb.org/anthology/W05-0620
https://www.aclweb.org/anthology/W05-0620
https://doi.org/10.1162/coli.2007.33.2.201
https://doi.org/10.1162/coli.2007.33.2.201
http://ijcai.org/Proceedings/05/Papers/0378.pdf
http://jmlr.org/papers/v15/cuong14a.html
http://jmlr.org/papers/v15/cuong14a.html
http://jmlr.org/papers/v15/cuong14a.html
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.3115/1219840.1219885
https://doi.org/10.3115/1219840.1219885
https://doi.org/10.3115/1219840.1219885
https://www.aclweb.org/anthology/P11-2008
https://www.aclweb.org/anthology/P11-2008
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://www.lrec-conf.org/proceedings/lrec2002/pdf/263.pdf
http://www.lrec-conf.org/proceedings/lrec2002/pdf/263.pdf
http://www.lrec-conf.org/proceedings/lrec2002/pdf/263.pdf
https://www.aclweb.org/anthology/P07-1019
https://www.aclweb.org/anthology/P07-1019
https://www.aclweb.org/anthology/P07-1019
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/1220175.1220316
https://doi.org/10.3115/1220175.1220316
https://doi.org/10.3115/1220175.1220316
https://doi.org/10.18653/v1/N16-1030


5579

American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270.

Yann LeCun, Sumit Chopra, Raia Hadsell,
Marc’Aurelio Ranzato, and Fu-Jie Huang. 2006. A
tutorial on energy-based learning. In Predicting
Structured Data. MIT Press.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and
Tommi Jaakkola. 2014. Low-rank tensors for scor-
ing dependency structures. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1381–1391, Baltimore, Maryland. Association for
Computational Linguistics.

Bruce T. Lowerre. 1976. The HARPY Speech Recogni-
tion System. Ph.D. thesis, Pittsburgh, PA, USA.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1064–1074.
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POS NER CCG SRL
Dev Test Dev Test Dev Test Dev WSJ Brown

BiLSTM 88.6 88.7 90.4 85.3 92.6 92.8 80.2 81.8 71.8
BiLSTM + CRF 89.1 89.2 91.6 87.3 93.0 93.1 - - -
Linear Chain 89.5 89.7 90.6 85.9 92.8 93.0 80.3 81.7 72.0
VKP (M=2) 89.9 90.1 91.1 86.5 93.1 93.3 80.3 81.8 72.0
VKP (M=3) 89.7 89.8 91.2 86.7 92.9 93.0 80.1 81.6 71.6
VKP (M=4) 89.4 89.5 90.8 86.3 92.8 93.0 79.9 81.2 71.3
VKP (M=[2,3,4]) 89.8 89.9 91.0 86.5 93.0 93.3 80.3 81.9 71.8
Skip Chain (M=2) 89.7 89.8 90.8 86.2 92.8 93.1 80.3 81.8 71.8
Skip Chain (M=3) 89.9 90.0 91.2 86.5 93.0 93.3 80.4 82.1 72.4
Skip Chain (M=4) 89.8 89.9 91.3 86.7 92.7 92.8 80.2 81.6 71.7
Skip-Chain (M=5) 89.5 89.6 91.0 86.2 92.5 92.7 80.2 81.7 71.7
Fully Connect (M=20) 89.7 89.8 91.1 86.3 92.8 92.9 80.0 81.4 71.4
CNN (M=0) 89.6 89.8 90.9 86.2 92.6 92.8 80.0 81.7 71.8
CNN (M=1) 89.7 89.8 91.1 86.4 92.8 93.0 80.1 81.8 72.0
CNN (M=2) 90.0 90.1 91.3 86.5 93.0 93.2 80.3 81.9 72.2
CNN (M=3) 89.9 89.9 91.2 86.4 92.9 93.0 80.0 81.7 71.9
CNN (M=4) 89.7 89.8 91.0 86.2 93.0 93.1 80.2 81.7 72.2
CNN (M=1,2,3) 90.0 90.0 91.3 86.6 93.1 93.3 80.3 82.0 72.2
TLM (M=1) 89.6 89.7 90.9 86.3 92.4 92.6 79.8 81.3 71.3
TLM (M=2) 89.7 89.8 90.8 86.3 92.4 92.7 80.0 81.6 71.7
TLM (M=3) 89.8 89.8 91.0 86.4 92.7 92.9 80.1 81.7 71.9
TLM (M=4) 89.8 90.0 91.3 86.5 92.7 92.8 80.0 81.6 71.8
TLM 90.0 90.0 91.4 86.6 92.9 93.0 80.2 81.8 72.1
S-Att(M=2) 89.7 89.8 90.7 86.3 92.6 92.8 80.0 81.6 71.8
S-Att(M=4) 89.8 89.9 90.8 86.4 92.8 93.0 80.0 81.7 71.8
S-Att(M=6) 89.9 90.0 90.9 86.4 92.8 93.1 80.2 81.9 72.0
S-Att(M=8) 89.9 90.1 91.0 86.5 93.0 93.3 80.4 82.2 72.2
S-Att 89.7 89.9 90.8 86.4 93.1 93.3 80.3 82.0 72.2

Table 9: Results on all tasks for local classifiers and different structured energy functions: linear-chain energy,
Kronecker Product high-order energies, skip-chain energy and fully-connected energies. The metrics of the four
tasks POS, NER, CCG, SRL are accuracy, F1, accuracy and F1. The architecture of inference networks is one-layer
BiLSTM.

POS NER CCG
Dev Test Dev Test Dev Test

2-layer BiLSTM 88.7 88.8 90.9 86.0 93.2 93.4
Linear Chain 89.9 90.0 91.2 86.6 93.3 93.7
Skip-Chain 90.0 90.2 91.7 87.5 93.5 93.8
VKP 89.9 90.2 91.5 87.2 93.6 93.8
CNN 90.0 90.2 91.5 87.3 93.5 93.6
TLM 89.9 90.1 91.4 87.1 93.3 93.6
S-Att (M=8) 89.9 90.0 91.6 87.3 93.5 93.7
Fully Connected 89.8 90.0 91.4 87.2 93.2 93.3

Table 10: Results when inference networks use 2-layer BiLSTMs (so the local classifier baseline also has 2 layers).

α=0.1 α=0.2 α=0.3
Dev Test Dev Test Dev Test

BiLSTM 80.0 75.0 70.1 67.2 62.4 58.8
Linear Chain 80.2 75.2 70.3 67.4 62.7 59.1
Skip-Chain (M=4) 80.6 75.5 70.9 67.9 63.2 59.5
VKP (M=3) 80.5 75.3 70.5 67.7 62.8 59.3
CNN (M=0) 80.8 75.7 71.3 67.9 63.3 59.4
CNN (M=2) 81.4 76.3 72.4 68.6 64.0 60.2
CNN (M=4) 81.9 76.7 73.0 69.8 64.5 60.4
TLM 81.0 76.0 71.3 67.8 63.8 59.9
S-Att (M=8) 80.6 75.6 71.5 67.6 63.2 59.7

Table 11: UnkTest setting for NER: Words in the test set are randomly replaced by the unknown word symbol with
probability α.
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α=0.1 α=0.2 α=0.3
Dev Test Dev Test Dev Test

BiLSTM 85.0 80.1 80.0 76.0 75.0 70.6
Linear Chain 85.4 80.4 80.5 76.3 75.2 70.9
Skip-Chain (M=4) 85.7 81.2 80.7 76.7 75.4 71.2
VKP (M=3) 85.9 81.4 81.0 76.8 75.5 71.4
CNN (M=0) 85.6 81.1 80.8 76.7 75.6 71.5
CNN (M=2) 86.0 81.8 81.2 77.0 76.1 71.8
CNN (M=4) 86.1 82.0 81.2 77.1 75.9 71.7
TLM 85.6 80.9 80.6 76.3 75.3 71.1
S-Att (M=8) 85.8 81.4 81.0 76.9 75.6 71.4

Table 12: UnkTrain setting for NER: training on noisy text, evaluating on noisy test sets. Words are randomly
replaced by the unknown word symbol with probability α.

Figure 3: Visualization of the scores of 50 CNN filters on a sampled label sequence. We can observe that filters
learn the sparse set of label trigrams with strong local dependency.


