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Abstract

Recent studies on event detection (ED) have
shown that the syntactic dependency graph can
be employed in graph convolution neural net-
works (GCN) to achieve state-of-the-art per-
formance. However, the computation of the
hidden vectors in such graph-based models is
agnostic to the trigger candidate words, po-
tentially leaving irrelevant information for the
trigger candidate for event prediction. In addi-
tion, the current models for ED fail to exploit
the overall contextual importance scores of the
words, which can be obtained via the depen-
dency tree, to boost the performance. In this
study, we propose a novel gating mechanism
to filter noisy information in the hidden vec-
tors of the GCN models for ED based on the
information from the trigger candidate. We
also introduce novel mechanisms to achieve
the contextual diversity for the gates and the
importance score consistency for the graphs
and models in ED. The experiments show that
the proposed model achieves state-of-the-art
performance on two ED datasets.

1 Introduction

Event Detection (ED) is an important task in Infor-
mation Extraction of Natural Language Processing.
The main goal of this task is to identify event in-
stances presented in text. Each event mention is
associated with a word or a phrase, called an event
trigger, which clearly expresses the event (Walker
et al., 2006). The event detection task, precisely
speaking, seeks to identify the event triggers and
classify them into some types of interest. For in-
stance, consider the following sentences:

(1) They’ll be fired on at the crossing.
(2) She is on her way to get fired.
An ideal ED system should be able to recog-

nize the two words “fired” in the sentences as the
triggers of the event types “Attack” (for the first

sentence) and “End-Position” (for the second sen-
tence).

The dominant approaches for ED involve deep
neural networks to learn effective features for the
input sentences, including separate models (Chen
et al., 2015) and joint inference models with event
argument prediction (Nguyen and Nguyen, 2019).
Among those deep neural networks, graph convo-
lutional neural networks (GCN) (Kipf and Welling,
2017) have achieved state-of-the-art performance
due to the ability to exploit the syntactic depen-
dency graph to learn effective representations for
the words (Nguyen and Grishman, 2018; Liu et al.,
2018; Yan et al., 2019). However, two critical is-
sues should be addressed to further improve the
performance of such models.

First, given a sentence and a trigger candidate
word, the hidden vectors induced by the current
GCN models are not yet customized for the trig-
ger candidate. As such, the trigger-agnostic rep-
resentations in the GCN models might retain re-
dundant/noisy information that is not relevant to
the trigger candidate. As the trigger candidate is
the focused word in the sentence, that noisy infor-
mation might impair the performance of the ED
models. To this end, we propose to filter the noisy
information from the hidden vectors of GCNs so
that only the relevant information for the trigger
candidate is preserved. In particular, for each GCN
layer, we introduce a gate, computed from the hid-
den vector of the trigger candidate, serving as the
irrelevant information filter for the hidden vectors.
Besides, as the hidden vectors in different layers of
GCNs tend to capture the contextual information
at different abstract levels, we argue that the gates
for the different layers should also be regulated
to exhibit such abstract representation distinction.
Hence, we additionally introduce a novel regular-
ization term for the overall loss function to achieve
these distinctions for the gates.
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Second, the current GCN models fail to con-
sider the overall contextual importance scores of
every word in the sentence. In previous GCN mod-
els, to produce the vector representation for the
trigger candidate word, the GCN models mostly
focus on the closest neighbors in the dependency
graphs (Nguyen and Grishman, 2018; Liu et al.,
2018). However, although the non-neighboring
words might not directly carry useful context in-
formation for the trigger candidate word, we argue
that their overall importance scores/rankings in the
sentence for event prediction can still be exploited
to provide useful training signals for the hidden
vectors in ED. In particular, we propose to lever-
age the dependency tree to induce a graph-based
importance score for every word based on its dis-
tance to the trigger candidate. Afterward, we pro-
pose to incorporate such importance scores into the
ED models by encouraging them to be consistent
with another set of model-based importance scores
that are computed from the hidden vectors of the
models. Based on this consistency, we expect that
graph-based scores can enhance the representation
learning for ED. In our experiments, we show that
our method outperforms the state-of-the-art models
on the benchmark datasets for ED.

2 Related Work

Prior studies on ED involve handcrafted feature
engineering for statistical models (Ahn, 2006; Ji
and Grishman, 2008; Hong et al., 2011; Li et al.,
2013; Mitamura et al., 2015) and deep neural net-
works, e.g., CNN (Chen et al., 2015, 2017; Nguyen
and Grishman, 2015; Nguyen et al., 2016g), RNN
(Nguyen et al., 2016; Jagannatha and Yu, 2016;
Feng et al., 2016), attention mechanism (Liu et al.,
2017; Chen et al., 2018), contextualized embed-
dings (Yang et al., 2019), and adversarial training
(Wang et al., 2019). The last few years witness
the success of graph convolutional neural networks
for ED (Nguyen and Grishman, 2018; Liu et al.,
2018; Veyseh et al., 2019; Yan et al., 2019) where
the dependency trees are employed to boost the
performance. However, these graph-based models
have not considered representation regulation for
GCNs and exploiting graph-based distances as we
do in this work.

3 Model

Task Description: The goal of ED consists of
identifying trigger words (trigger identification)

and classifying them for the event types of inter-
est (event classification). Following the previous
studies (Nguyen and Grishman, 2015), we com-
bine these two tasks as a single multi-way clas-
sification task by introducing a None class, in-
dicating non-event. Formally, given a sentence
X = [x1, x2, . . . , xn] of n words, and an index t
(1 ≤ t ≤ n) of the trigger candidate xt, the goal
is to predict the event type y∗ for the candidate xt.
Our ED model consists of three modules: (1) Sen-
tence Encoder, (2) GCN and Gate Diversity, and
(3) Graph and Model Consistency.

Sentence Encoder: We employ the pre-trained
BERT (Devlin et al., 2019) to encode the given sen-
tence X . In particular, we create an input sequence
of [[CLS], x1, · · · , xn, [SEP ], xt, [SEP ]] where
[CLS] and [SEP ] are the two special tokens in
BERT. The word pieces, tokenized from the words,
are fed to BERT to obtain the hidden vectors of all
layers. We concatenate the vectors of the top M
layers to obtain the corresponding hidden vectors
for each word piece, whereM is a hyper-parameter.
Then, we obtain the representation of the sentence
E = {e1, · · · , en} in which the vectors ei of xi
is the average of layer-concatenated vectors of its
word pieces. Finally, we feed the embedding vec-
tors in E to a bidirectional LSTM, resulting in a
sequence of hidden vectors h0 = {h01, · · · , h0n}.

GCN and Gate Diversity: To apply the GCN
model, we first build the sentence graph G = (V, E)
for X based on its dependency tree, where V, E are
the sets of nodes and edges, respectively. V has n
nodes, corresponding to the n words X . Each edge
(xi, xj) in E amounts to a directed edge from the
head xi to the dependent xj in the dependency tree.
Following (Marcheggiani and Titov, 2017), we also
include the opposite edges of the dependency edges
and the self-loops in E to improve the information
flow in the graph.

Our GCN module contains L stacked GCN lay-
ers (Kipf and Welling, 2017), operating over the
sequence of hidden vectors h0. The hidden vector
hli (1 ≤ i ≤ n, 1 ≤ l ≤ L) of the word xi at
the l-th layer is computed by averaging the hidden
vectors of neighboring nodes of xi at the (l− 1)-th
layer. Formally, hli is computed as follow:

hli = ReLU

W l
∑

(xi,xj)∈E

hl−1j

|{xj}|

 (1)

where W l is a learnable weight of the GCN layer.
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The major issue of the current GCN for ED is
that its hidden vectors hli are induced without spe-
cial awareness of the trigger candidate xt. This
might result in irrelevant information (for the trig-
ger word candidate) in the hidden vectors of GCNs
for ED, thus hindering further performance im-
provement. To address this problem, we propose
to filter that unrelated information by introduc-
ing a gate for each GCN layer. The vector gl

for the gate at the l-th layer is computed from
the embedding vector et of the trigger candidate:
gl = σ(W l

get) where W l
g are learnable parameters

for the l-th layer. Then, we apply these gates over
the hidden vectors of the corresponding layer via
the element-wise product, resulting in the filtered
vectors: ml

i = gl ◦ hli.
As each layer in the GCN module has access

to a particular degree of neighbors, the contextual
information captured in these layers is expectedly
distinctive. Besides, the gates for these layers con-
trol which information is passed through, therefore,
they should also demonstrate a certain degree of
contextual diversity. To this end, we propose to
encourage the distinction among the outcomes of
these gates once they are applied to the hidden vec-
tors in the same layers. Particularly, starting with
the hidden vectors hl of of the l-layer, we apply
the gates gk (for all (1 ≤ k ≤ L)) to the vectors
in hl, which results in a sequence of filtered vec-
tors m̄k,l

i = gk ◦ hli. Afterward, we aggregate the
filtered vectors obtained by the same gates using
max-pooling: m̄k,l = max pool(m̄k,l

1 , · · · , m̄k,l
n ).

To encourage the gate diversity, we enforce vector
separation between m̄l,l with all the other aggre-
gated vectors from the same layer l (i.e., m̄k,l for
k 6= l). As such, we introduce the following cosine-
based regularization term LGD (for Gate Diversity)
into the overall loss function:

LGD =
1

L(L− 1)

L∑
l=1

L∑
k=l+1

cosine(m̄l,l, m̄l,k)

(2)
Note that the rationale for applying the gates gk

to the hidden vectors hl for the gate diversity is to
ground the control information in the gates to the
contextual information of the sentence in the hid-
den vectors to facilitate meaningful context-based
comparison for representation learning in ED.

Graph and Model Consistency: As stated
above, we seek to supervise the model using the
knowledge from the dependency graph. Inspired
by the contextual importance of the neighboring

words for the event prediction of the trigger candi-
date xt, we compute the graph-based importance
scores P = p1, · · · , pn in which pi is the negative
distance from the word xi to the trigger candidate.

In contrast, the model-based importance scores
for each word xi is computed based on the hidden
vectors of the models. In particular, we first form
an overall feature vector Vt that is used to predict
the event type for xt via:

Vt = [et,m
L
t ,max pool(mL

1 , · · · ,mL
n)]

In this work, we argue that the hidden vector of an
important word in the sentence for ED should carry
more useful information to predict the event type
for xt. Therefore, we consider a word xi as more
important for the prediction of the trigger candidate
xt if its representation mL

i is more similar to the
vector Vt. We estimate the model-based impor-
tant scores for every word xi with respect to the
candidate xt as follow:

qi = σ(W vVt) · σ(WmmL
i ) (3)

where W v and Wm are trainable parameters.
Afterward, we normalize the scores P and Q =

q1, . . . , qn using the softmax function. Finally, we
minimize the KL divergence between the graph-
based important scores P and the model-based
importance scores Q by injecting a regularization
term LISC (for the graph-model Importance Score
Consistency) into the overall loss function:

LISC(P,Q) = −
n∑

i=1

pi
pi
qi

(4)

To predict the event type, we feed Vt into a
fully connected network with softmax function
in the end to estimate the probability distribu-
tion P (ŷ|X, t). To train the model, we use the
negative log-likelihood as the classification loss
LCE = − logP (y∗|X, t). Finally, we minimize
the following combined loss function to train the
proposed model:

L = LCE + αLGD + βLISC (5)

where α and β are trade-off coefficients.

4 Experiments

Datasets: We evaluate our proposed model
(called GatedGCN) on two ED datasets, i.e., ACE-
2005 and Litbank. ACE-2005 is a widely used
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benchmark dataset for ED, which consists of 33
event types. In contrast, Litbank is a newly pub-
lished dataset in the literature domain, annotating
words with two labels event and none-event (Sims
et al., 2019). Hence, on Litbank, we essentially
solve trigger identification with a binary classifica-
tion problem for the words.

As the sizes of the ED dataset are generally
small, the pre-processing procedures (e.g., tok-
enization, sentence splitting, dependency parsing,
and selection of negative examples) might have a
significant effect on the models’ performance. For
instance, the current best performance for ED on
ACE-2005 is reported by (Yang et al., 2019) (i.e.,
80.7% F1 score on the test set). However, once we
re-implement this model and apply it to the data ver-
sion pre-processed and provided by the prior work
(Nguyen and Grishman, 2015, 2018), we are only
able to achieve an F1 score of 76.2% on the test
set. As the models share the way to split the data,
we attribute such a huge performance gap to the
difference in data pre-processing that highlights the
need to use the same pre-processed data to measure
the performance of the ED models. Consequently,
in this work, we employ the exact data version that
has been pre-processed and released by the early
work on ED for ACE-2005 in (Nguyen and Grish-
man, 2015, 2018) and for Litbank in (Sims et al.,
2019).

The hyper-parameters for the models in this
work are tuned on the development datasets, lead-
ing to the following selected values: one layer for
the BiLSTM model with 128 hidden units in the
layers, L = 2 for the number of the GCN layers
with 128 dimensions for the hidden vectors, 128
hidden units for the layers of all the feed-forward
networks in this work, and 5e-5 for the learning
rate of the Adam optimizer. These values apply for
both the ACE-2005 and Litbank datasets. For the
trade-off coefficients α and β in the overall loss
function, we use α = 0.1 and β = 0.2 for the ACE
dataset while α = 0.3 and β = 0.2 are employed
for Litbank. Finally, we use the case BERTbase
version of BERT and freeze its parameters during
training in this work. To obtain the BERT repre-
sentations of the word pieces, we use M = 12 for
ACE-2005 and M = 4 for Litbank (Sims et al.,
2019).

Results: We compare our model with two
classes of baselines on ACE-2005. The first
class includes the models with non-contextualized

Model P R F
CNN 71.8 66.4 69.0
NCNN - - 71.3
GCN-ED 77.9 68.8 73.1
DMBERT 79.1 71.3 74.9
BERT+MLP 77.8 74.6 76.2
GatedGCN (Ours) 78.8 76.3 77.6

Table 1: Performance on the ACE-2005 test set.

embedding, i.e., CNN: a CNN model (Nguyen
and Grishman, 2015), NCNN: non-consecutive
CNN model: (Nguyen and Grishman, 2016), and
GCN-ED: a GCN model (Nguyen and Grishman,
2018). Note that these baselines use the same
pre-processed data like ours. The second class
of baselines concern the models with the contex-
tualized embeddings, i.e., DMBERT: a model
with dynamic pooling (Wang et al., 2019) and
BERT+MLP: a MLP model with BERT (Yang
et al., 2019). These models currently have the best-
reported performance for ED on ACE-2005. Note
that as these works employ different pre-processed
versions of ACE-2005, we re-implement the mod-
els and tune them on our dataset version for a
fair comparison. For Litbank, we use the follow-
ing baselines reported in the original paper (Sims
et al., 2019): BiLSTM: a BiLSTM model with
word2vec, BERT+BiLSTM: a BiLSTM model
with BERT, and DMBERT (Wang et al., 2019).

Table 1 presents the performance of the models
on the ACE-2005 test set. This table shows that
GatedGCN outperforms all the baselines with a
significant improvement of 1.4% F1-score over the
second-best model BERT+MLP. In addition, Table
2 shows the performance of the models on the Lit-
bank test set. As can be seen, the proposed model
is better than all the baseline models with 0.6% F1-
score improvement over the state-of-the-art model
BERT+BiLSTM. These improvements are signif-
icant on both datasets (p < 0.05), demonstrating
the effectiveness of GatedGCN for ED.

Ablation Study: The proposed model involves
three major components: (1) the Gates to filter ir-
relevant information, (2) the Gate Diversity to en-
courage contextual distinction for the gates, and (3)
the Consistency between graph and model-based
importance scores. Table 3 reports the ablation
study on the ACE-2005 development set when
the components are incrementally removed from
the full model (note that eliminating Gate also re-
moves Diversity at the same time). As can be seen,
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They also deployed along the border with Israel .

1 1 Movement:Transport 2 2 1 2 1 1

nsubj

advmod

obl
obl

punct

case
det case

Other legislators surrounded the two to head off a brawl .

4 3 2 4 3 2 1 2 1 Conflict:Attack 3

amod nsubj

obj
xcomp

punct

det mark

obj

compound det

Figure 1: Visualization of the model-based importance scores computed by the proposed model for several
GatedGCN-successful examples. The words with bolder colors have larger importance scores in this case. Note
that the golden event types “Movement:Transport” and “Conflict:Attack” are written under the trigger words in the
sentences. Also, below each word in the sentences, we indicate the number of the words along the path from that
word to the trigger word (i.e., the distances used in the graph-based importance scores).

Model P R F
BiLSTM 70.4 60.7 65.2
+ document context 74.2 58.8 65.6
+ sentence CNN 71.6 56.4 63.1
+ subword CNN 69.2 64.8 66.9
DMBERT 65.0 76.7 70.4
BERT+BiLSTM 75.5 72.3 73.9
GatedGCN (Ours) 69.9 79.8 74.5

Table 2: Performance on the Litbank test set.

excluding any component results in significant per-
formance reduction, clearly testifying to the bene-
fits of the three components in the proposed model
for ED.

Importance Score Visualization: In order to
further demonstrate the operation of the proposed
model GatedGCN for ED, we analyze the model-
based importance scores for the words in test set
sentences of ACE-2005 that can be correctly pre-
dicted by GatedGCN, but leads to incorrect pre-
dictions for the ablated model “-Gate-Consistency”
in Table 3 (called the GatedGCN-successful exam-
ples). In particular, Figure 1 illustrates the model-
based importance scores for the words in the sen-
tences of several GatedGCN-successful examples.
Among others, we find that although the trigger
words are directly connected to several words (in-
cluding the irrelevant ones) in these sentences, the
Gates, Diversity, and Consistency components in
GatedGCN help to better highlight the most infor-
mative words among those neighboring words by
assigning them larger importance scores. This en-
ables the representation aggregation mechanism
in GCN to learn better hidden vectors, leading to
improved performance for ED in this case.

5 Conclusion

We demonstrate how gating mechanisms, gate di-
versity, and graph structure can be used to inte-
grating syntactic information and improve the hid-

Model P R F
GatedGCN (full) 76.7 70.5 73.4
-Diversity 78.5 67.0 72.3
-Consistency 80.5 64.7 71.7
-Diversity -Consistency 79.0 63.0 70.1
-Gates 77.8 65.3 71.3
-Gates -Consistency 83.0 62.5 71.0

Table 3: Ablation study on the ACE-2005 dev set.

den vectors for ED models. The proposed model
achieves state-of-the-art performance on two ED
datasets. In the future, we plan to apply the pro-
posed model for the related tasks and other settings
of ED, including new type extension (Nguyen et al.,
2016b; Lai and Nguyen, 2019), and few-shot learn-
ing (Lai et al., 2020a,b).
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