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Abstract

An intermediate step in the linguistic analysis
of an under-documented language is to find
and organize inflected forms that are attested
in natural speech. From this data, linguists
generate unseen inflected word forms in or-
der to test hypotheses about the language’s
inflectional patterns and to complete inflec-
tional paradigm tables. To get the data lin-
guists spend many hours manually creating in-
terlinear glossed texts (IGTs). We introduce a
new task that speeds this process and automat-
ically generates new morphological resources
for natural language processing systems: IGT-
to-paradigms (IGT2P). IGT2P generates entire
morphological paradigms from IGT input. We
show that existing morphological reinflection
models can solve the task with 21% to 64% ac-
curacy, depending on the language. We further
find that (i) having a language expert spend
only a few hours cleaning the noisy IGT data
improves performance by as much as 21 per-
centage points, and (ii) POS tags, which are
generally considered a necessary part of NLP
morphological reinflection input, have no ef-
fect on the accuracy of the models considered
here.

1 Introduction

Over the last few years, multiple shared tasks have
encouraged the development of systems for learn-
ing morphology, including generating inflected
forms of the canonical form—the lemma—of a
word. NLP systems that account for morphology
can reduce data sparsity caused by an abundance
of individual word forms in morphologically rich
languages (Cotterell et al., 2016, 2017a, 2018; Mc-
Carthy et al., 2019; Vylomova et al., 2020) and
help mitigate bias in training data for natural lan-
guage processing (NLP) systems (Zmigrod et al.,
2019). However, such systems have often been lim-
ited to languages with publicly available structured
data, i.e. languages for which tables containing

Figure 1: Inflected word forms attested in interlin-
ear glossed texts (IGT) train transformer encoder-
decoder to generalize morphological paradigmatic pat-
terns and generate word forms when given known mor-
phosyntatic features of missing paradigm cells. Noisy
paradigms are automatically constructed from IGT and
a language expert creates “cleaned” paradigms. Both
sets are tested on the same missing word forms and the
results are compared.

inflectional patterns can be found, for example, in
online dictionaries like Wiktionary.1 This limits
the development of NLP systems for morphology
to languages for which morphological information
can be easily extracted.

Here, we propose to instead make use of a re-
source which is much more common, especially
for low-resource languages: we explore how to
leverage interlinear glossed text (IGT)—a com-
mon artifact of linguistic field research—to gen-
erate unseen forms of inflectional paradigms, as
illustrated in Figure 1. This task, which we call
IGT-to-paradigms (IGT2P), differs from the ex-

1https://www.wiktionary.org

https://www.wiktionary.org
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isting morphological inflection (Yarowsky and Wi-
centowski, 2000; Faruqui et al., 2016) task in three
aspects: (1) inflected forms extracted from IGT are
noisier than curated training data for morphologi-
cal generation, (2) since lemmas are not explicitly
identified in IGT, systems cannot be trained on typ-
ical lemma-to-form mappings and, instead, must
be trained on form-to-form mappings, and (3) part-
of-speech (POS) tags are often unavailable in IGT.
IGT2P can thus be seen as a noisy version of mor-
phological reinflection (Cotterell et al., 2016), but
without explicit POS information. Our experiments
show that morphological reinflection systems fol-
lowing preprocessing are strong baselines for this
task.

We further perform two analyses:

(i) Part-of-speech (POS) tags are usually consid-
ered necessary inputs for learning morpholog-
ical generation. However, they are frequently
missing from IGT, since they result from a
later step in a linguist’s pipeline. Thus, we
ask: are POS tags necessary for morpholog-
ical generation? Surprisingly, we find that
POS tags are of little use for morphological
generation systems.

(ii) How much does manual cleaning of IGT data
by a domain expert improve performance? As
expected, cleaning the data improves perfor-
mance across the board with a transformer
model: by 1.27% to 16.32%, depending on
the language.

We examine which inflection model performs
better on noisy and cleaned IGT data and how the
performance varies across languages and data qual-
ity or size.

2 A New Morphological Task: IGT2P

2.1 Background: Morphological Generation
An inflectional paradigm is illustrated in tables,
such as Table 1. Paradigms can be large; for exam-
ple, Polish verbs paradigms can have up to 30 cells
and other languages may have several more. Here
we define the notation related to morphological
inflection systems for the remainder of this paper.

We denote the paradigm of a lemma ` as:

π(`) =
〈
f(`,~tγ)

〉
γ∈Γ(`)

(1)

where f : Σ∗×T → Σ∗ defines a mapping from a
tuple consisting of the lemma and a vector ~tγ ∈ T

present past
sing. pl. sing. pl.

1 person am are was were

2 person are are were were

3 person is are was were

Table 1: The inflectional paradigm of the English verb
“to be”. This verb has more inflected forms than any
other English lemma, but is quite small compared to
paradigms in many other languages.

of morphological features to the corresponding in-
flected form. Σ is an alphabet of discrete symbols,
i.e., the characters used in the natural language.
Γ(`) is the set of slots in lemma `’s paradigm. We
will abbreviate f(`,~tγ) as fγ(`) for simplicity. Us-
ing this notation, we now describe the most im-
portant generation tasks from the computational
morphology literature.

Morphological inflection. The task of morpho-
logical inflection consists of generating unknown
inflected forms, given a lemma ` and a feature vec-
tor~tγ . Thus, it corresponds to learning the mapping
f : Σ∗ × T → Σ∗.

Morphological reinflection. Morphological
reinflection is a generalized version of the previous
task. Here, instead of having a lemma as input,
system are given some inflected form f(`,~tγ1) –
optionally together with ~tγ1 – and a target feature
vector ~tγ2 . The goal is then to produce the inflected
form f(`,~tγ2).

Paradigm completion. The task of paradigm
completion consists of, given a partial paradigm
πP (`) =

〈
f(`,~tγ)

〉
γ∈ΓP (`)

of a lemma `, gener-

ating all inflected forms for all slots γ ∈ Γ(`) −
ΓP (`). Training data for this task consists of entire
paradigms.

Unsupervised morphological paradigm com-
pletion. For the unsupervised version of the
paradigm completion task, systems are given a
corpus D = w1, . . . , w|D| with a vocabulary V
of word types {wi} and a lexicon L = {`j} with
|L| lemmas belonging to the same part of speech.
However, no explicit paradigms are observed dur-
ing training. The task of unsupervised morphologi-
cal paradigm completion then consists of generat-
ing the paradigms {π(`)}`∈L of all lemmas ` ∈ L.
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2.2 IGT-to-Paradigms

The task we propose, IGT-to-paradigms (IGT2P),
can be described as the paradigm completion prob-
lem above, with an additional step of inference
regarding which of the attested forms is associated
with which lemma.

Formally, systems are given IGTs consisting of
words with – potentially empty – morphological
feature vectors: D = (w1,~t1) . . . , (w|D|,~t|D|) and
a list U = {uj} with |U| inflected words, uj =
f(`j ,~tγj ). The goal of IGT2P is to generate the
paradigms {π(`j)}f(`j ,~tγj )∈U .

Similar to unsupervised paradigm completion,
we do not assume information about the lemma
to be explicit. Similar to morphological reinflec-
tion, the input includes word forms with features,
and a system has to learn to generate inflections
from other word forms and morphological feature
vectors. IGT2P is further similar to paradigm com-
pletion in that we aim at generating all inflected
forms for each lemma.2

2.3 Why IGT2P?

Descriptive linguistics aims to objectively analyze
primary language data in new languages and pub-
lish descriptions of their structure. This work in-
forms our understanding of human language and
provides resources for NLP development through
academic literature, which informs projects such as
UniMorph (Kirov et al., 2016), or through crowd-
sourced effort such as Wiktionary. Yet with most
descriptive work performed manually with very
little NLP assistance, language resources for thou-
sands of under-described languages remain limited.
This includes languages with millions of speakers,
such as Manipuri in India.

However, there exists a type of labeled data that
is available in nearly all languages where a lin-
guist has undertaken any scientific endeavor: in-
terlinear glossed texts (IGT), illustrated in Table
2. They are the output of early steps in a field
linguist’s pipeline which consist of recording nat-
ural speech, transcribing it, and then identifying
minimal meaningful units—the morphemes—and
using internally consistent tags to label the mor-
phemes’ morphosyntactic features. IGTs serve
as vital sources of morphological, syntactic, and

2We currently approximate this during evaluation, since
we do not have gold standard paradigms for the languages.
Also, our list U consists of words in D, which we exclude
from the input.

higher levels of linguistic information. They are of-
ten archived in long-term repositories, and openly
accessible for non-commercial purposes, yet they
are rarely utilized in NLP.

IGT2P has potential benefits for NLP (by in-
creasing available resources in low-resource lan-
guages) but also for linguistic inquiry. First, since
machine-assistance has been shown to increase
speed and accuracy of manual linguistic annota-
tion with just 60% model accuracy (Felt, 2012),
such a model could assist the initial analysis of
morphological patterns in IGT. Second, by quickly
learning morphological patterns from word forms
attested in IGT, IGT2P generates forms that fill
empty cells in a lemma’s paradigm. Since IGTs
are unlikely to contain complete paradigms of lem-
mas, an accompanying step in fieldwork is that of
elicitation of inflectional paradigms for selected
lemmas. Presenting candidate words to a native
speaker for acceptance or rejection is often easier
than asking the speaker to grasp the abstract con-
cept of a paradigm and to generate the missing cells
in a table. With the help of IGT2P, linguists could
use the machine-generated word forms to support
this elicitation process. IGT2P then becomes a
tool for the discovery of morphological patterns in
under-described and endangered languages.

3 Related Work

IGT for NLP. The AGGREGATION project
(Bender, 2014) has used IGT to automatically con-
struct grammars for multiple languages. This in-
cludes inferring and visualizing systems of mor-
phosyntax (Lepp et al., 2019; Wax, 2014). Much of
their data comes from the Online Database of IN-
terlinear Text (Lewis and Xia, 2010, ODIN) which
is a collection of IGTs extracted from published
linguistic documents on the web. Published IGT
excerpts, such as those in ODIN, differ from IGTs
produced by field linguists such as those used in
our experiments. First, noise is generally removed
from the published examples. Second, the amount
of glossed information in published IGT snippets
can vary widely depending on the phenomenon that
is the main focus of the publication.

Computational morphology. Our work is fur-
ther related to and takes inspiration from research
on the tasks described in Section 2.1.

Most recent work in the area of computational
morphology which was concerned with generation
(as opposed to analysis) has focused on morpholog-
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Text Vecherom ya pobejala v magazin.
Segmented vecher-om ya pobeja-la v magazin

Glossed evening-INS 1.SG.NOM run-PFV.PST.SG.FEM in store.ACC
Translation ‘In the evening I ran to the store.’

Table 2: An example of typical interlinear glossed text (IGT) with a transliterated Russian sentence, including
translation. This paper leverages the original text and gloss lines.

ical inflection or reinflection. Approaches include
Durrett and DeNero (2013); Nicolai et al. (2015);
Faruqui et al. (2016); Kann and Schütze (2016);
Aharoni and Goldberg (2017). Partially build-
ing on these, other research has developed mod-
els which are more suitable for low-resource lan-
guages and perform well with limited data (Kann
et al., 2017b; Sharma et al., 2018; Makarov and
Clematide, 2018; Wu and Cotterell, 2019; Kann
et al., 2020a; Wu et al., 2020). These are the most
relevant approaches for our work, since we expect
IGT2P to aid documentation of low-resource lan-
guages. Accordingly, we use the systems by Wu
and Cotterell (2019) and Wu et al. (2020) in our
experiments.

Work on paradigm completion – or the paradigm
cell filling problem (PCFP; Ackerman et al., 2009)
– includes Malouf (2016), who trained recurrent
neural networks for it, and applied them success-
fully to Irish, Maltese, and Khaling, among other
languages. Silfverberg and Hulden (2018) also
trained neural networks for the task. Kann et al.
(2017a) differed from other approaches in that they
encoded multiple inflected forms of a lemma to
provide complementary information for the genera-
tion of unknown forms of the same lemma. Finally,
Cotterell et al. (2017b) introduced neural graphi-
cal models which completed paradigms based on
principal parts. The unsupervised version of the
paradigm completion task (Jin et al., 2020) has
been the subject of a recent shared task (Kann et al.,
2020b), with the conclusion that it is exremely chal-
lenging for current state-of-the-art systems. Here,
we propose to, instead of generating paradigms
from raw text, generate them from IGT, a resource
available for many under-studied languages.

4 To POS Tag or Not to POS Tag

In addition to the lemma and the morphological
features of the target form, part-of-speech (POS)
tags are by default a part of the input to neural
morphological reinflection systems. POS tags are
assumed to carry valuable information, since, for

example, morphemes that are otherwise identical
(e.g. “seat”) may use one set of inflectional mor-
phemes as nouns (e.g. “many seats”) and another
as verbs (“be seated”).

Since POS tags are typically annotated at a later
stage than morpheme boundaries and glosses, IGTs
often do not contain POS tags for all words. This
makes large parts of the IGT unusable for state-
of-the-art reinflection systems if POS tags are as-
sumed necessary. However, the assumption that
POS tags improve morphological generation per-
formance has never been empirically verified for re-
cent state-of-the-art systems. We hypothesize that,
in fact, POS tags might not be necessary, since they
might be implicitly defined by either the morpho-
logical features or the input word form. Thus, we
ask the following research question: Are POS tags
a necessary or beneficial input to a morphological
reinflection system?

4.1 Experimental Setup

To answer this question, we train morphological re-
inflection systems twice on 10 languages that have
been released for the CoNLL-SIGMORPHON
2018 shared task (Cotterell et al., 2018), once with
and once without POS tags as input. In order to
obtain generalizable results, our selected languages
belong to different families and are typologically
diverse with regards to morphology, as shown in Ta-
ble 3.3 We kept the original training/validation/test
splits, and experiment on the three training set
sizes: 10,000, 1000, and 100 examples for the high,
medium, and low setting, respectively.

4.2 Models

We experiment with two state-of-the-art neural
models for morphology learning: the transformer
model for character-level transduction (Wu et al.,
2020) and the LSTM sequence-to-sequence model
with exact hard monotonic attention for character-

3The language family and morphological typology for
each language is on the UniMorph official website (https:
//unimorph.github.io).

https://unimorph.github.io
https://unimorph.github.io
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transformer model (%) Exact hard mono model (%)
Language POS high ∆ medium ∆ low ∆ high ∆ medium ∆ low ∆

Adyghe N, ADJ 0.0 -0.3 1.7 0.2 -0.3 -0.5
Arabic N, V, ADJ -0.1 0.0 -0.5 -0.5 1.2 0.0
Basque V -0.2 0.0 -2.8 -0.3 2.1 -0.4
Finnish N, V, ADJ 0.6 -0.5 0.2 -0.7 4.4 0.0
German N, V 0.6 -0.6 -1.6 -0.1 0.0 -0.7
Persian V 0.0 -1.5 -0.2 -0.3 -0.9 1.2
Russian N, V, ADJ 0.1 1.3 -0.4 0.0 -0.6 -0.9
Spanish N, V -0.1 0.9 0.7 1.0 4.2 -0.3
Swahili N, V, ADJ 0.0 0.0 0.0 0.0 3 1.0
Turkish N, V, ADJ -0.2 0.0 1.5 0.2 3.2 -0.1

Table 3: SIGMORPHON languages, their inflected parts of speech used to test the helpfulness of POS tags to
neural reinflection tasks, and the difference in accuracy (%) between using and not using POS for the transformer
model and the LSTM seq2seq model with exact hard monotonic attention in different training data size settings.
Negative scores means that removing POS tags decreased performance.

level transduction (Wu and Cotterell, 2019).4

4.3 Results

Table 3 illustrates the performance difference when
including and not including POS tags for all three
training data sizes. The largest difference is a de-
crease of 4.4 percentage points when POS tags are
removed for Finnish at the medium setting using
hard monotonic attention. The average difference is
about 0.2 percentage points. We therefore conclude
that a lack of POS tags does not make a significant
difference in the reinflection task.

5 IGT2P

5.1 Language data

We used IGTs that were primarily transcribed from
naturally-occurring oral speech in low-resource
and endangered languages. They represent a wide
range of projects, which is reflected in the size and
quality of the data. The amount of usable data
(i.e. glossed words) ranges from approximately
90,000 tokens in Arapaho to about 5,000 in Ma-
nipuri. The five languages (see Table 4) are spoken
by communities across five continents. They repre-
sent different language families and morphological
complexity, though all are agglutinating to some
degree. Other than the IGT, there is very limited
resources for these languages.

4It is theoretically possible that the other baselines can out-
perform these models once we limit our experiments to words
with POS information. However, based on our preliminary
experiments using POS tags, this seems unlikely.

Language ISO Family Tokens

Arapaho arp Algonquian 90k
Lezgi lez Nakh-Daghestanian 18.7k
Manipuri mni Tibeto-Burman 5k
Natügu ntu Austronesian 14k
Tsez ddo Nakh-Daghestanian 53k

Table 4: Languages with IGT used in this experiment,
their ISO 639-3 identifying codes, and the approxi-
mate number of tokens in the database that are interlin-
earized (i.e. segmented into morphemes and glossed).

5.2 Issues specific to IGT

The most notable issue with IGT is the “noise”. An
inevitable cause is the dynamic nature of ongoing
linguistic analysis. As the linguist gains a better
understanding of the language’s structure by doing
interlinearization, early decisions about morpheme
shapes and glosses differ from later ones. Another
cause is that limited budget and time means IGT
are often only partially completed. Another source
of noise comes when the project is focused on an-
notating one particular phenomenon. For example,
frequently only one morphosyntactic feature in Ma-
nipuri was glossed in each word, meaning different
inflected forms looked like they had the same mor-
phosyntactic features. Another source of noise is
imprecision introduced by human errors or choices
made for convenience to speed tedious annotation.
One example of imprecision is glossing different
stem morphemes with the same English word. For
example, Lezgi has several copula verbs which can
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Figure 2: Lezgi paradigms were automatically constructed from IGT (left columns) and have typos or incorrect
paradigms clusters. Experts filtered or corrected these issues, resulting in “clean” paradigms (middle). These can
be compared with the published description (right column) which includes historic forms that are rarely used today.

be narrowly translated as ‘be in’, ‘be at’, etc., but
most were merely glossed as ‘be’. So all copula
verbs were initially grouped into one paradigm.
A similar situation happened with Arapaho: nu-
ances of meaning were not often distinguished in
the glosses; thus, different verb stems are glossed
simply as ‘give’, when, in reality they should be
divided into ‘hand to someone’ in one case, ‘give as
a present’ in another case, and ‘give ceremonially,
as an honor’ in third case.

Another issue is that IGT annotators do not usu-
ally differentiate between different types of mor-
phemes. Thus, we do not always distinguish be-
tween them. Derivational and inflectional mor-
phemes were only differentiated where we were
able to easily identify and eliminate derivational
glosses. For example, in Arapaho we were able
to group derived stems into separate paradigms be-
cause they were glossed distinctly. Also, clitics are
often not distinguished from affixes. This means
that the morphological patterns that the models
learn are not always, strictly speaking, inflectional
paradigms, but it does mean that the models learn
all attested forms related one lemma.

5.3 Approach

As a first step, partial inflectional paradigms were
automatically extracted from the IGT. Words were
organized into paradigms based on the gloss of the
stem morpheme. Then, these stem glosses were
removed, leaving only the affix glosses which serve
as morphosyntactic feature tags.

Step 1: Preprocessing paradigms. The auto-
matically extracted paradigms were preprocessed
in two ways. The resulting data is publicly avail-
able.5 In the first preprocessing method, a language
domain expert was asked to “clean” the automat-
ically extracted paradigms. Example results are
in shown Figure 2. Experts reorganized words
into correct inflectional paradigms, for example,
by regrouping Lezgi copula verbs. They also com-
pleted missing morphosyntatic information; for ex-
ample, adding PL (plural) or SG (singular) where
the nouns were otherwise glossed identically. Fi-
nally, they removed any words that are not inflected
in the language. This usually included words that
are morphologically derived from another part of
speech but not inflected. For example, an affix
might derive an adverb from a noun root, and if
the adverbializing affix was glossed, then the word
form would have been extracted automatically, re-
sulting in more noise since it displays derivational
morphology and no inflectional morphology. Ex-
perts were asked to spend no more than six hours
on the cleaning task.

For the second preprocessing method, the auto-
matically extracted paradigms were surveyed by
a non-expert. Since non-experts could not be ex-
pected to identify and correct most issues, they
simply removed obvious mistakes such as glosses
of stem morphemes that were misidentified as af-
fix glosses and word forms with obviously incom-
plete glosses or ambiguous glosses (due to identi-

5https://github.com/LINGuistLIU/IGT

https://github.com/LINGuistLIU/IGT
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Language paradigms single-entry total words train validation test unannotated

arp clean 16,857 10,857 56,644 283,714
14,151 14,150 6,877

arp noisy 14,389 8,855 56,922 435,430

ddo clean 982 330 7,221 35,773
2,173 2,172 9,408

ddo noisy 945 295 7,315 36,875

lez clean 301 202 543 539
88 88 3,054

lez noisy 298 188 588 1,254

mni clean 479 126 2,860 9,917
853 852 2,593

mni noisy 428 165 2,192 15,958

ntu clean 316 123 1,654 5,774
473 472 1,661

ntu noisy 365 167 1,646 7,886

Table 5: Data sizes for noisy extracted paradigms and paradigms cleaned by experts. The columns show the total
number of inflectional paradigms extracted from the IGT, the number of paradigms with only a single word entry,
the number of three-tuples (source, target, features) in the train/validation/test sets before adding unannotated
forms and finally the number of additional unannotated/uninflected word forms.

cal glosses on one or more word forms). For some
languages, this cleaning-by-removal made these
paradigms smaller than the “cleaned” dataset.

Step 2: Preparing reinflection data. The typ-
ical morphological reinflection data is in tuple
format of (source form, target form,
target features). We convert the paradigm
data into this format in preparation for reinflection.
Table 5 presents the data sizes.

For each language, we prepare the validation
and test sets by using the the expert-cleaned data
language in the following way: If the paradigm
has more than one form, pick a random form as
the source form and select the remaining forms
in the paradigm with a probability of 0.3 to be
“unknown”, i.e. to be predicted from the first form.
Half of the “unknown” data transformed in this way
is used for validation and the other half for testing.
The validation and test sets for each language is
shared across all the experiments we conduct for
that language.

To prepare the training data from the noisy and
clean paradigms, we first map each form in the
data to itself and add them to the training data.
Paradigms with a single entry have only self-to-self
mapping. If a paradigm has more than one form, all
possible pairs of forms in a paradigm are generated
and added to the training data, excluding those that
are part of testing or validation set, i.e. “unknown”.

Step 3: Reinflection models and experimental
setup. We experiment with two state-of-the-art

models for morphological reinflection, the trans-
former model for character-level transduction (Wu
et al., 2020) and the LSTM sequence-to-sequence
model with exact hard monotonic attention for
character-level transduction (Wu and Cotterell,
2019). For all the models, we used the implemen-
tation of the SIGMORPHON 2020 shared task 0
baseline (Vylomova et al., 2020),6 and our hyperpa-
rameters are the same as the shared task baseline.

After paradigms are extracted and preprocessed,
we conduct two experiments to generate “unknown”
inflected forms. We then expand those experiments
by two data augmentation techniques. First, we
add all unannotated/uninflected words from the
IGT data to the training data. When tokens that
were either unannotated or uninflected are added,
they are self-mapped as the source and target forms
(as we do with single-entry paradigms), and their
morphosyntactic features are annotated with a spe-
cial tag: XXXX. Second, we augment the training
data by generating 10,000 artificial instances with
the implementation in the SIGMORPHON 2020
shared task 0 baseline of the data hallucination
method proposed by (Anastasopoulos and Neu-
big, 2019). Finally, we combine both additions.
These augmentations are intended to overcome data
scarcity.

All models and techniques were tested on the
same held-out set chosen randomly from multi-

6https://github.com/shijie-wu/
neural-transducer/tree/
f1c89f490293f6a89380090bf4d6573f4bfca76f

https://github.com/shijie-wu/neural-transducer/tree/f1c89f490293f6a89380090bf4d6573f4bfca76f
https://github.com/shijie-wu/neural-transducer/tree/f1c89f490293f6a89380090bf4d6573f4bfca76f
https://github.com/shijie-wu/neural-transducer/tree/f1c89f490293f6a89380090bf4d6573f4bfca76f
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entry paradigms in each language.

5.4 Results

We compared results when training on the noisy
paradigms and on the expertly cleaned paradigms
and found that the limited involvement of experts
always improved results. We also found the trans-
former outperformed the LSTM with hard mono-
tonic attention on cleaned data in all instances and
on noisy data overall. When comparing results
from augmenting the data by artificial and unin-
flected/unannotated tokens, we find varied results.
The results are displayed in Table 6.

There is no clear correlation between accuracy
and the total number of annotated tokens or train-
ing paradigms (see Tables 4 and 5). Tsez and Ara-
paho [arp] achieved over 60% accuracy and these
languages do have more training data (35K and
283K triples, respectively) than the others (less
than 10K). However, even though Arapaho has
considerably more training data, its accuracy is
lower than Tsez. A slight correlation between ac-
curacy and amount of multi-entry paradigms does
exist. Languages with a higher proportion of multi-
entry paradigms tend to have better results. Fewer
single-entry paradigms may indicate more com-
plete paradigm information.

Any correlation between results and linguistic
factors such as language family or morphological
type is uncertain because of the limited number
of testing languages. Tsez [ddo] gave best results
overall. This could be due to its limited allomor-
phy and very regular inflection which may explain
why its relative Lezgi [lez] perform better than
languages with more data. Arapaho’s poorer per-
formance could be due to its polysynthetic mor-
phology (Cowell and Moss, 2008) which is more
complex than the fairly straightforward agglutina-
tion in Tsez (Job, 1994) and Lezgi (Haspelmath,
1993). The models do seem less sensitive in rec-
ognizing the word structure in Arapaho. When the
front part of a stem is incidentally the same as a
common inflection affix, the stem is often gener-
ated incorrectly.

The factor that seems most clearly correlated
with accuracy is the consistency and thorough-
ness of IGT annotations. The Arapaho, Tsez, and
Natügu [ntu] corpora were noticeably more com-
plete (i.e. most morphemes were glossed) and pol-
ished. This probably explains why Tsez not only
had the best results but also showed the smallest

improvements after cleaning. Interestingly, aug-
mentation techniques also helped these languages
the least (only artificial data augmentation helped
Tsez slightly). It seems, therefore, that results are
highest and data augmentation is most helpful when
original manual annotations are least consistent or
complete.

As might be expected with limited data, errors
were most common with irregular or rare forms.
For example, the best performing model incor-
rectly inflected many Lezgi pronouns which have
an inflection pattern identical to nouns except for
a unpredictable change in the stem vowel. Per-
haps related to this, the model also misidentified
some epenthetic vowels in several Lezgi nouns.
Another interesting pattern involved unique Nakh-
Daghestanian (Tsez and Lezgi) case-stacking,
where nominal affixes concatenate, rather than sub-
stitute each other, to form several peripheral cases
such as SUPERELATIVE or POSTDIRECTIVE. The
more common affixes in the concatenation string
were often generated correctly but the less com-
mon concatenated affixes were not. Allomorphy
also causes difficulty. Models struggle generating
the right form when multiple forms are possible.
For example, in Arapaho the third person singular
inflection has variations (e.g. -oo, -o, or -’). On
the other hand, models learned regular inflectional
patterns well enough to correctly inflect forms even
where the expert had left misspellings of that form
in the clean data.

Finally, we clearly see expert cleaning improved
performance across the board (with two negligi-
ble exceptions for Tsez and Lezgi on the hard
monotonic attention model). Experts were asked to
spend no more than six hours and actually spent up
to seven but as little as two hours on each language.
This indicates that expert labor is well worth its
“cost”.

6 Conclusion

We proposed a new morphological generation task
called IGT2P, which aims to learn inflectional
paradigmatic patterns from interlinear gloss texts
(IGT) produced in linguistics fieldwork. We experi-
mented with neural models that have been used for
morphological reinflection and new preprocessing
steps as baselines for the task. Our experiments
show that IGT2P is a promising method for creat-
ing new morphological resources in a wide range
of low-resource languages.
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T +aug +uninfl +both mono +aug +uninfl +both

arp clean 62.08 61.39 61.58 60.78 15.93 15.75 15.58 15.94
arp noisy 57.77 57.64 58.04 57.51 14.51 14.64 14.52 14.69

ddo clean 65.38 66.53 65.19 65.42 59.9 60.87 59.53 60.64
ddo noisy 63.54 63.95 62.89 64.04 59.12 58.66 57.87 57.97

lez clean 46.59 32.95 46.59 48.86 32.95 35.23 31.82 31.82
lez noisy 35.23 29.55 32.95 27.27 30.68 28.41 20.45 31.82

mni clean 30.63 30.87 31.81 32.04 23.24 25.7 21.95 24.77
mni noisy 21.48 22.3 21.60 21.83 18.78 18.31 19.37 20.31

ntu clean 53.18 46.82 49.15 48.52 29.66 33.9 28.18 33.05
ntu noisy 36.86 45.55 45.34 45.76 31.99 33.69 31.78 30.93

Table 6: Accuracy percentages of reinflection task for transformer model (T) and the LSTM seq2seq model with
exact hard monotonic attention (mono) with/out artificial data augmention (+aug), unannotated/uninflected word
forms (+uninfl) and both together. Boldface indicates best result; italics indicate best result on noisy paradigms.

With sufficient IGT annotations, IGT2P obtains
reasonable performance from noisy data. We in-
vestigated the effect of manual cleaning on model
performance and showed that even very limited
cleaning effort (2-7 hours) drastically improves
results. The inherent noisiness in IGT and other
linguistic field data can be overcome with limited
input from domain experts. This is a significant
contribution considering the extensive effort—on
the order of months and years—to produce the cu-
rated structured data normally used to train NLP
models. In languages with the noisiest data perfor-
mance is improved even further by data augmenta-
tion techniques. Finally, since field data does not
often include POS annotation, we investigated the
usefulness of POS tags for morphological reinflec-
tion and find that, surprisingly and in contrast to
common assumptions, they are not beneficial to
recent state-of-the-art systems. This is a useful dis-
covery for researchers who wish to optimize their
inflection systems.

There is room for future improvement. Better
techniques for further cleaning might be useful
since accuracy seems to have close related to data
quality. However, at some point more cleaning will
return less improvement. Upper bounds could be
established by comparing results on languages with
gold standard inflection tables, although polysyn-
thetic languages like Arapaho would make this
difficult since their tables do not always include
noun incorporation. Better use of experts’ time
might involve identification of lemmata that could
be used to train a lemma-to-form model, rather

than the form-to-form mapping used here. Another
approach would be to compare improvements be-
tween manual-only cleaning and cleaning done by
a linguist working with someone who can write
scripts to automatically correct repeated patterns of
noise.

IGT2P also has implications for the documenta-
tion of endangered languages and addressing digi-
tal inequity of speakers of marginalized languages.
It could be integrated into linguists’ workflow in or-
der to improve the study of inflection and increase
IGT data. For example, the generated inflected
forms could be used for automated glossing of raw
text. IGT2P could speed the discovery and descrip-
tion of a language’s entire morphological structure.
An elicitation step with native speakers could be
added to strategically augment data. This would
integrate well with linguists’ workflow. IGT2P re-
sults could serve as to prompt speakers for forms
that are rare in natural speech. It might also be
integrated into linguistic software such as FLEx.
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Appendix

transformer model (%) Exact hard mono model (%)
High Medium Low High Medium Low

Language +pos -pos +pos -pos +pos -pos +pos -pos +pos -pos +pos -pos
Adyghe 99.9 99.9 93.1 93.4 43.2 41.5 99.9 99.7 91.4 91.7 32.5 33
Arabic 95 95.1 79.5 79.5 2 2.5 92.5 93 66.8 65.6 0 0
Basque 99 99.2 93.7 93.7 24.1 26.9 98.5 98.8 73.7 71.6 0.1 0.5
Finnish 95.7 95.1 78.9 79.4 0.3 0.1 93.1 93.8 58.6 54.2 0 0
German 91.1 90.5 73.3 73.9 3.8 5.4 90 90.1 71.2 71.2 2.9 3.6
Persian 100 100 93.2 94.7 12.1 12.3 99.7 100 87.4 88.3 2.8 1.6
Russian 93.3 93.2 80.9 79.6 2.2 2.6 92 92 68.7 69.3 0 0.9
Spanish 97.8 97.9 90.3 89.4 8 7.3 97.5 96.5 77.8 73.6 6.2 6.5
Swahili 100 100 94 94 35 35 100 100 88 85 3 2
Turkish 98.4 98.6 88.7 88.7 6.7 5.2 97.3 97.1 74.7 71.5 0 0.1

Table 7: Detailed Results for POS experiments. Morphological inflection accuracy (%) for languages using and
not using POS for the transformer model and the LSTM seq2seq model with exact hard monotonic attention in
different training data size settings. +pos is including POS in the feature descriptions and -pos is excluding POS
in the feature descriptions.

T +aug +uninfl +both mono +aug +uninfl +both

arp clean 10:55:55 11:46:45 14:55:17 9:51:25 2:02:02 2:15:51 3:00:02 2:14:14
arp noisy 6:36:37 6:18:37 10:16:38 6:42:19 2:42:41 2:46:29 4:03:22 3:14:27

ddo clean 1:54:09 1:57:28 3:57:43 3:58:00 0:09:56 0:10:42 0:18:54 0:15:04
ddo noisy 1:51:07 1:56:24 3:23:37 3:47:12 0:08:34 0:10:59 0:20:54 0:19:41

lez clean 0:29:05 0:37:26 1:03:58 1:02:38 0:00:20 0:01:53 0:02:02 0:04:21
lez noisy 0:32:02 0:37:22 0:56:55 0:59:00 0:00:29 0:01:40 0:01:52 0:02:27

mni clean 1:15:06 1:16:19 2:12:52 2:05:02 0:03:56 0:04:42 0:08:17 0:10:11
mni noisy 1:16:59 1:18:55 2:13:06 2:14:21 0:04:32 0:08:41 0:07:20 0:08:09

ntu clean 1:09:01 0:58:37 1:28:45 1:29:39 0:02:19 0:03:34 0:02:40 0:05:53
ntu noisy 1:00:25 1:01:40 1:36:53 1:38:05 0:02:22 0:03:59 0:03:08 0:05:09

Table 8: Details on Computing. Training time of our models. All models have been trained on an NVIDIA GP102
[TITAN Xp] GPU.


