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Abstract

Most recent improvements in NLP come from
changes to the neural network architectures
modeling the text input. Yet, state-of-the-
art models often rely on simple approaches
to model the label space, e.g. bigram Con-
ditional Random Fields (CRFs) in sequence
tagging. More expressive graphical models
are rarely used due to their prohibitive com-
putational cost. In this work, we present an
approach for efficiently training and decod-
ing hybrids of graphical models and neural
networks based on Gibbs sampling. Our ap-
proach is the natural adaptation of SampleR-
ank (Wick et al., 2011) to neural models, and
is widely applicable to tasks beyond sequence
tagging. We apply our approach to named
entity recognition and present a neural skip-
chain CRF model, for which exact inference
is impractical. The skip-chain model improves
over a strong baseline on three languages from
CoNLL-02/03. We obtain new state-of-the-art
results on Dutch. 1

1 Introduction

Complex probabilistic graphical models were
widely adopted for NLP tasks before the prevalence
of deep learning (e.g. the skip-chain CRF of Finkel
et al. (2005) and Sutton and Mccallum (2004) for
NER). Although modern neural architectures are
able to learn much better feature representations
(e.g. the contextualized word representations of
Peters et al. (2018), Devlin et al. (2018), and Ak-
bik et al. (2019)) than the hand-crafted features
used classically in graphical model’s log-linear po-
tentials, these advances in feature learning do not
negate the need for modeling the output label space.

Consider two contrasting approaches to struc-
tured prediction: transition-based models and

1The code is available at https://github.com/
GaoSida/Neural-SampleRank.

graphical models. Transition-based models (e.g.
the sequence-to-sequence models of Sutskever et al.
(2014)) have enjoyed recent success thanks to their
ability to have unbounded memory of past tran-
sitions when predicting subsequent ones; yet be-
cause no conditional independence assumptions are
made, inference is typically restricted to (heuris-
tic) greedy search and its variants. By contrast,
graphical models make strong conditional indepen-
dence assumptions, but enjoy a wealth of inference
algorithms, both exact and approximate, as a re-
sult. Moreover, graphical models readily admit the
incorporation of domain knowledge about interac-
tions between the output variables. In this paper,
we focus on this latter approach to modeling.

Specifically, we explore conditional random
fields (CRFs) (Lafferty et al., 2001) with neural po-
tential functions. Prior state-of-the-art approaches
utilizing such models (e.g. CRF-LSTMs) for se-
quence tagging tasks like named entity recognition
(NER) have focused on simple linear-chain CRFs,
which only model bi-gram dependencies of adja-
cent labels (Lample et al., 2016; Peters et al., 2017),
and the exact inference can be done in polynomial
time with dynamic programming. By contrast, we
are motivated by CRFs that do not admit exact
inference.

We propose Neural SampleRank, a novel al-
gorithm that is computationally efficient for ap-
proximate inference and training of complex CRFs
(where exact inference is impractical) with neural
factors. The main inspiration of our work is Sam-
pleRank (Wick et al., 2011; Zhang et al., 2014), a
training algorithm for complex graphical models
based on Gibbs sampling, that has been shown to
work well with linear factors. We extend SampleR-
ank to work with neural scoring factors. Neural
SampleRank enables us to use CRFs that are far
more expressive than the linear-chain structures
seen in NER models. The loss does not require full

https://github.com/GaoSida/Neural-SampleRank
https://github.com/GaoSida/Neural-SampleRank
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inference to compute the gradient in training, which
makes it more computationally efficient. Compar-
ing with message-passing based algorithms like
loopy belief propagation (LBP), Neural SampleR-
ank is conceptually simpler and easier to imple-
ment with modern deep learning tools like PyTorch
(Paszke et al., 2019). We empirically evaluate Neu-
ral SampleRank on the CoNLL-02 and CoNLL-03
NER task on English, German and Dutch (Tjong
Kim Sang, 2002; Tjong Kim Sang and De Meulder,
2003). We show that for linear-chain BiLSTM-
CRF model (Lample et al., 2016), training with
Neural SampleRank achieves competitive F1 score
compared with MLE and exact inference. With
a new neural skip-chain CRF model trained with
Neural SampleRank, we achieve higher F1 on En-
glish and German than all existing models that do
not use contextualized word embeddings or exter-
nal labeled data. With contextualized word embed-
dings, our skip-chain model obtains new state-of-
the-art results on Dutch.

2 Related Work

Various approaches have been taken in NLP to com-
bine graphical models and neural architectures. For
sequence tagging tasks like NER, it is common to
use a linear-chain CRF model (Huang et al., 2015;
Lample et al., 2016), for which exact inference can
be done in polynomial time with forward-backward.
Malaviya et al. (2018) adopt a factorized CRF to
model the output space of morphological tagging,
and the exact inference is tractable with belief prop-
agation. Ganea and Hofmann (2017) propose a
fully connected binary CRF to model mention se-
quence for entity linking task, and they use loopy
belief propagation for approximate inference.

Other approaches have been proposed to adopt
expressive graphical models while keeping the in-
ference computationally feasible, but have not been
applied to deep neural networks. Steinhardt and
Liang (2015) propose to select non-local contexts
while keeping the model feasible for exact infer-
ence. Finkel et al. (2005) use Gibbs Sampling with
simulated annealing for fast approximate inference
for models with non-local factors. Sutton and Mc-
callum (2004) propose a skip-chain CRF for NER
learned with loopy belief propagation. SampleR-
ank (Wick et al., 2011; Zhang et al., 2014) pro-
pose a new training objective targeted for sampling-
based inference which is efficient both in terms of
computation cost and task performance. In prior

work, Gibbs sampling has been used with deep
neural networks for Bayesian posterior inference
(Shi et al., 2017; Tran et al., 2016), and sampling
from conditional sequence models (Lin and Eisner,
2018). Gibbs sampling was only widely applied
to discriminative models before the prevalence of
deep learning, and restricted to generative models
when used with neural models (Das et al., 2015;
Nguyen et al., 2015; Xun et al., 2017). To the best
of knowledge, we are the first to use Gibbs sam-
pling to obtain point estimation for neural network
graphical model hybrids, for the task of structured
prediction.

State-of-the-art approaches for NER all use a
simple linear-chain CRF model to model the label
space. Neural architectures to learn a better rep-
resentation of the text input include bi-directional
LSTM (Huang et al., 2015; Lample et al., 2016),
GRU (Yang et al., 2017) and character CNN (Yang
et al., 2017; Peters et al., 2017). A major recent
step in the field is contextualized word embedding
like ELMo (Peters et al., 2018) , BERT (Devlin
et al., 2018) and the character-based Flair (Akbik
et al., 2019). However, none of these approaches
model longer range context dependencies in the
document, limited by the linear-chain structure of
the CRF.

3 Neural SampleRank

3.1 CRF with Neural Factors
We use x to denote an input sentence and y ∈ Y(x)
to denote a structured output for the sentence. Y(x)
is the valid output space for input x. We denote
the ground truth output as y∗. The neural CRF
can be interpreted as a factor graph that defines the
following conditional distribution:

p(y|x; Θ) =
exp(s(x, y; Θ))∑

y′∈Y(x) exp(s(x, y′; Θ))
(1)

where s(x, y; Θ) is a differentiable scoring function
parameterized by Θ, given by a factor graph with
arbitrary structure and factors defined with neural
networks. The goal of inference is to find the output
ŷ with the highest conditional probability defined
in Eq. 1, or equivalently with highest score:

ŷ = arg max
y∈Y(x)

s(x, y; Θ) (2)

For many NLP tasks the size of the output space
Y(x) grows exponentially as the length of x in-
creases, which makes computation of the partition
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function (i.e. the denominator in Eq. 1) and finding
the maximum over Y(x) (i.e. Eq. 2) hard combi-
natorial problems. However, with Gibbs sampling,
we are able to avoid computing the partition func-
tion altogether and make finding an (approximate)
maximum feasible in practice.

To avoid repetitive computation for the neural
networks, we decompose the scoring function s as:

s(x, y; Θ) = s
(
x, y, f(x; θN ); θG

)
(3)

where we break down the learnable parameters as
Θ = {θN , θG}, where θN parameterizes the neural
network f that constructs a representation of the
input, and θG parameterizes the CRF that captures
dependencies in the output label space. The neural
function f(x; θN ) is usually expensive to compute
but only depends on the input x. On the other
hand, after f is evaluated, the score s(x, y, f ; θG)
is usually very cheap to compute (e.g. look-ups in
a factor table). We will leverage these properties to
improve computational efficiency.

3.2 Decoding with Gibbs Sampling
To decode a neural CRF model, we find the output
that maximizes the scoring function (as shown in
Eq. 2) by sampling from the conditional distribu-
tion defined in Eq. 1 with Markov Chain Monte
Carlo (MCMC). However, finding maximum by
sampling from the original distribution is ineffi-
cient, and a common practice (Finkel et al., 2005)
is to instead sample from this distribution:

p(y|x; Θ, T ) ∝ exp
(

1
T s(x, y; Θ)

)
(4)

where we introduce a temperature T ≤ 1 to
sharpen the distribution around the region with
highest probability density (a smaller T will lead
to a sharper peak). In practice we typically design
an annealing schedule to gradually decrease T , so
that we allow more exploration in the beginning of
the Markov Chain, and gradually converge to the
region with the highest probability density.

The decoding algorithm is shown in Alg. 1. We
conduct decoding with Gibbs sampling, where the
proposal distribution q is the conditional distribu-
tion of one variable (or a subset of variables) in yt

conditioned on all other variables according to p
(defined in Eq. 4).

When decoding with MCMC, the output y may
be stuck at a local maxima due to the annealing
process, and for each run of MCMC we may end
up in a different local maxima. Therefore, we run

Algorithm 1: Decoding with Gibbs Sampling.
Input: x, Θ = {θN , θG}
Output: ŷ

1 Initialize temperature T ;
2 z ← f(x; θN );
3 Randomly initialize output y0;
4 for t = 0, . . . ,M − 1 do
5 yt+1 ← q(·|x, yt, z, θG, T );
6 if s(x, yt+1, z; θG) > s(x, ŷ, z; θG) then
7 ŷ ← yt+1

8 T ← anneal(T );

MCMC decoding for multiple times, then conduct a
majority vote for each label. This simple ensemble
approach is able to reduce the variance of MCMC
decoding and improve prediction accuracy.

3.3 Training with Neural SampleRank

The training algorithm of Neural SampleRank is
largely inspired by the SampleRank algorithm pro-
posed by Wick et al. (2011). We adopt a max-
margin loss to train the neural CRF scoring func-
tion, so that the score of a favorable output is higher
than an unfavorable output by a margin. Assume
ω(y) is a metric to measure the quality of a tag se-
quence y according to the ground truth y∗ (e.g. F1
score, or negative Hamming distance). If ω(y) >
ω(y′) then y is considered to have higher quality,
and the ground truth y∗ = arg maxy∈Y ω(y). Then
the margin ∆ω(yi, yj) is defined as:

∆ω(yi, yj) = ω(y+)− ω(y−) (5)

where y+ = arg maxy∈{yi,yj} ω(y) and y− =
arg miny∈{yi,yj} ω(y), thus ∆ω(yi, yj) ≥ 0.

The SampleRank loss is incurred by a pair of
outputs yi, yj when ∆ω(yi, yj) > 0, defined as:

`(yi, yj) = [∆ω(yi, yj)−(
s(y+, x; θ)− s(y−, x; θ)

)
]+

(6)

The training procedure for Neural SampleRank
is shown in Alg. 2. The loss `(·, ·) is defined in
Eq. 6, and q(·) is the proposal distribution for Gibbs
sampling.

Computing the loss for Neural SampleRank
does not require running full inference of the CRF
model, and is instead accumulated over M Gibbs
sampling steps. There are two types of loss terms:
pairwise loss `(yt, yt−1), which is the max-margin
loss computed with two consecutive samples yt−1
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Algorithm 2: Neural SampleRank Training.
Input: D = {(x1, y

∗
1), . . . , (xn, y

∗
n)}

Output: Θ = {θN , θG}
1 Initialize Θ = {θN , θG} ;
2 while not converged do
3 foreach xi, y∗i ∈D do
4 loss total← 0;
5 z ← f(xi; θN ) ;
6 y0 ← random initialize(y∗i );
7 for t = 1, . . . ,M do
8 yt ← q(·|xi, yt−1, z, θG) ;
9 if ∆ω(yt, yt−1) > 0 then

10 loss total += `(yt, yt−1);
11 if ∆ω(yt, y∗i ) > 0 then
12 loss total += `(yt, y∗i );
13 Θ← update(Θ,∇Θloss total) ;

and yt; and gold loss `(yt, y∗i ), which is computed
with the ground truth output y∗i and a sample yt.
Intuitively, while gold loss helps the model to rank
ground truth higher than all incorrect outputs, the
pairwise loss ensures the model can correctly rank
between two similar outputs. This property is help-
ful during the sampling based decoding: the pre-
dicted output is able to take ”guided” steps to grad-
ually move to better quality outputs, even though
the initial output might be far from ground truth.

During training, for each example, the initial
sample y0 is taken from random initialize(·) in
Alg. 2, which randomly copies from the ground
truth output y∗. We first uniformly randomly sam-
ple a probability u between 0 and 1, then for each
label value y0[j], we copy from y∗[j] with prob-
ability u, and take random value with probability
1−u. This is to simulate different stages of MCMC
decoding, in which the samples converge to a high
probability density region, i.e. get closer and closer
to ground truth.

In Alg. 2, the model is only updated after sam-
pling (not during), and we reinitialize the sam-
ple after each model update, therefore we are not
breaking detailed balance and the sampler is still
proper MCMC. However, since full inference is not
needed for training, the Markov Chains in Alg. 2
only have a small number of samples, and do not
necessarily converge.

3.4 Comparison with Linear SampleRank

Comparing with the SampleRank algorithm pro-
posed in previous work (Wick et al., 2011; Zhang

et al., 2014), Neural SampleRank uses the same
pairwise training objective defined on two consecu-
tive examples on the Markov chain. Unlike Wick
et al. (2011), we also adopt the gold loss term de-
fined on the ground truth and one sample as done in
Zhang et al. (2014), which has empirically shown
to be important for model performance.

The key difference between Neural SampleRank
and the SampleRank algorithm for CRFs with lin-
ear factors is the optimization algorithm. Wick et al.
(2011) frames the optimization problem as a saddle
point optimization problem and solves it with a
stochastic approximation saddle point (SASP) al-
gorithm. On the other hand, Zhang et al. (2014)
frames the learning objective as a constrained op-
timization problem, and solves it with the MIRA
algorithm (Crammer and Singer, 2003). Both algo-
rithms rely on the fact that the scoring factors are
linear functions, to derive a closed form update for
each iteration in training, so neither optimization
algorithm works with neural scoring factors. In
Neural SampleRank, we reframe the optimization
objective as a structured hinge loss (Eq. 6) without
constraints, so that we are able to train the neural
scoring factors with back-propagation based gradi-
ent updates.

3.5 Computational Efficiency

After the decomposition of scoring function in
Eq. 3, we take a two-step approach to evaluate the
scoring function. As shown in Alg. 1 and Alg. 2, for
each input x, we first compute its neural represen-
tation z = f(x; θN ) before we take any samples.
Once the sampling starts, only the output y could
change, leaving z, the neural representation of x,
unchanged. Therefore, when we take new samples,
we only need to recompute the scoring function
defined by the non-neural factors of the CRF (pa-
rameterized by θG). In this way, for each input x,
we only need to evaluate the expensive deep neural
networks once, and for each additional sample we
only need to evaluate the cheap non-neural factors.

In pairwise SampleRank loss `(yt, yt−1), the
two consecutive Gibbs samples usually only differ
in a small subset of the variables in the CRF. We
can leverage this fact to sparsify the computation
of the score difference between yt and yt−1 (Eq. 6)
and its gradient w.r.t the factor scores, by only con-
sidering the factors in the CRF that involve the
small label subset that has been re-sampled (Wick
et al., 2011). This sparse property makes Neural
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Figure 1: Neural skip-chain CRF. The BiLSTM (shown in blue) computes a vector representation for each input
token. These vectors are fed into transition (green) and skip-chain (red) MLPs (i.e. feed-forward layers). The
outputs of these neural scoring functions are used to compute unary, transition, and skip-chain factors (black
squares). The factors provide a score for each assignment of their neighboring variables (white circles).

SampleRank efficient for complex CRFs when the
degree of each node is bounded by a small constant.
CRFs can usually satisfy this sparsity condition
as they introduce inductive bias by making (con-
ditional) independence assumptions. On the other
hand, the gold loss `(yt, y∗) may require evaluating
the full CRF as the sample yt could be far from the
ground truth y∗. However, as training progresses,
yt will get sufficiently close to y∗ with fewer and
fewer samples, resulting in fewer number of factors
that need re-evaluation, thus lead to a speed-up for
gold loss computation.

4 Neural Skip-Chain CRF for NER

4.1 Base Model
The base model we adopt for NER is a BiLSTM-
CRF (Lample et al., 2016), which adopts a multi-
layer BiLSTM to learn a representation of the text
input, then use a linear-chain CRF to model the
dependencies in the output label space. For token
inputs of BiLSTM, we use either concatenation
of pretrained word embedding and character-CNN
word embedding, or contextualized word embed-
ding.

The linear-chain CRF scoring function is:

s(y, x; Θ) =
∑

1≤i≤d

Ψi(yi, x; Θ)+

∑
1≤i≤d−1

Ψi,i+1(yi, yi+1, x; Θ)
(7)

where d is the length of the text input. The
model consists of emission factors Ψi(yi, x; Θ)

for each token label yi, and transition factors
Ψi,i+1(yi, yi+1, x; Θ) for each pair of adjacent to-
ken labels (i.e. a bi-gram).

The hidden states of the token BiLSTM are
treated as a context-aware representation for each
token, and are used to parameterize the emission
factors in the linear chain CRF. In previous works,
the transition factors are learnable scalars shared
across all bi-grams, and they do not have any depen-
dencies on the context. In our model, we modify
the transition factors to be context dependent: we
use feed-forward layers to compute the transition
factors with the BiLSTM hidden states of the two
tokens in the bi-gram. The parameters of the feed-
forward layers are shared among all bi-grams.

4.2 Skip-Chain CRF

Besides bi-gram level label dependencies modeled
by the transition factors in linear-chain CRF, we
introduce longer range factors that model global
dependencies in a sequence tagging task. The de-
sign of global factors may be different for each
task in order to model the task-specific dependency
patterns. In this section we present one approach to
design global factors for NER. The resulting neural
skip-chain CRF is depicted in Figure 1.

We adopt the same consistency assumption and
inductive bias proposed by Finkel et al. (2005) and
Sutton and Mccallum (2004): different occurrences
of the same token are likely to be labeled in the
same way (e.g. they could be recurring references
to the same named entity). However, this assump-
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tion is not always true, as the labels of a token
sequence are context dependent, so we introduce
factors to model this uncertainty. On top of the
linear-chain CRF, we introduce a skip-chain con-
nection between every pair of recurring capitalized
tokens in the same document—named entities are
usually capitalized. We denote the set of skip-chain
connections that satisfy these conditions as S, then
the scoring function for the skip-chain CRF is:

s(y, x; Θ) =
∑

1≤i≤d

Ψi(yi, x; Θ)+

∑
1≤i≤d−1

Ψi,i+1(yi, yi+1, x; Θ)+

∑
(i,j)∈S

Ψi,j(yi, yj , x; Θ)

(8)

A skip-chain factor scores all possible labels of
the token pair with feed forward layers on token
representations constructed by the token BiLSTM.
Although the skip-chain factors Ψi,j(yi, yj , x; Θ)
are still second order factors like the transition fac-
tors, the token labels yi, yj are usually not adjacent,
and in most cases are far apart in the document.
We can no longer use forward-backward for ex-
act inference. Instead, we use Gibbs sampling to
do efficient approximate inference for each docu-
ment. In our experiments, we employ block Gibbs
sampling for token pairs that have a skip-chain
connection, so that the model can better leverage
long-range context dependency.

5 Experiments

5.1 Dataset and Model Configuration
We evaluate Neural SampleRank for sequence
tagging models on CoNLL-02 Dutch (Tjong
Kim Sang, 2002), and CoNLL-03 English and Ger-
man NER datasets (Tjong Kim Sang and De Meul-
der, 2003). 2 Summary statistics of the training
set for each language is shown in Table 1. We
are unable to evaluate our skip-chain CRF model
on CoNLL-02 Spanish due to lack of labels for
document boundaries. We use the BIOES tagging

2Following Akbik et al. (2019), we use the 2006 re-
vised ground truth labels for German NER. Clarifications
from the author can be found at https://github.com/
flairNLP/flair/issues/1102. In our paper, we use
† to denote results for which we are not sure about the label ver-
sion, so they may or may not be comparable to our results. In
Appendix C, we discuss more about the label version change,
and show results of our models with the original 2003 ground
truth labels. In general, models trained and evaluated on the
2006 label set get higher F1 scores than the 2003 label set.
The magnitudes of improvements brought by our skip-chain
model are comparable on the two label set versions.

English German Dutch
#document 946 553 287
#sentence 14,987 12,705 15,806
#token 204,567 207,484 202,931
#skip-chain 29,309 31,683 44,309

Table 1: Training sets statistics of CoNLL-03 English
and German, and CoNLL-02 Dutch.

scheme, and report the F1 score in its standard
definition for NER.

For pretrained word embeddings, we use
GLoVE (Pennington et al., 2014) for English, and
Fasttext (Bojanowski et al., 2017) for German and
Dutch. For contextualized word embedding, we
use Flair (Akbik et al., 2019) in its recommended
settings for each language. For training, we use
negative Hamming distance for the metric in the
SampleRank loss and Adam optimizer (Kingma
and Ba, 2014). For Gibbs sampling, at training
time we take 10 cycles of samples for each update.
(We resample the full label sequence in each cycle.)
At decoding time, we set the initial temperature to
10, the annealing rate to 0.95 and take 120 cycles
of samples. We ensemble model predictions over 3
runs with majority vote. Additional hyperparame-
ter settings can be found in Appendix A.

Following the convention for NER tasks (Pe-
ters et al., 2017; Akbik et al., 2019), we train the
model using both training and development sets
when reporting test set results. For analysis, we
train the model with training set only and report
on development set. We use paired permutation
test (Yeh, 2000) for significance testing in result
comparisons.

5.2 NER Results

We present the NER results of our neural skip-
chain CRF model with Flair embedding in Table
2. The skip-chain CRF has context dependent tran-
sition and skip-chain factors, and is trained with
Neural SampleRank (NSR), while all other models
are trained with standard MLE. On English, we
are able to achieve comparable F1 scores as other
contextualized embedding models, yet unable to
match Akbik et al. (2019). When trained with Flair
embedding, our neural skip-chain CRF model does
not improve over baseline for English and German.
The F1 score difference between baseline and neu-
ral skip-chain CRF on German is not statistically
significant. Our skip-chain neural CRF model sig-

https://github.com/flairNLP/flair/issues/1102
https://github.com/flairNLP/flair/issues/1102
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Model Learning English F1 German F1 Dutch F1
ELMo (Peters et al., 2018) MLE 92.22 — —
BERT (Devlin et al., 2018) MLE 92.80 — —
Flair + BiLSTM-CRF (Akbik et al., 2019) MLE 93.18 88.27 90.44
Our baseline Flair + BiLSTM-CRF MLE 92.58 88.30 90.63
+ context transition + skip-chain CRF NSR 92.56 87.97 91.44*

Table 2: NER F1 score comparison on CoNLL-03 English and German, and CoNLL-02 Dutch dataset, with
contextualized embeddings. Bold indicates the highest score, “*” indicates statistical significance compared with
baseline.

Model F1
CRF+linking (Luo et al., 2015) 91.20
BiLSTM-CRF (Lample et al., 2016) 90.94
BiGRU-CRF (Yang et al., 2016) 91.20
BiLSTM-CRF (Ma and Hovy, 2016) 91.21
Our baseline BiLSTM-CRF MLE 91.01
+ skip-chain NSR 91.19
+ context transition MLE 91.18
+ context transition + skip-chain NSR 91.68*

Table 3: NER F1 score comparison for English, with-
out contextualized word embeddings.

Model F1
BiLSTM-CRF (Lample et al., 2016) 78.76†

BiLSTM (Riedl and Padó, 2018) 82.99†

Our baseline BiLSTM-CRF MLE 83.55
+ context transition + skip-chain NSR 84.50*

Table 4: NER F1 score comparison for German, with-
out contextualized word embeddings.

nificantly improves the Flair model’s performance
on Dutch (p < 0.01), achieving new state-of-the-
art. According to Table 1, the Dutch dataset has
significantly longer documents compared with the
other languages, and significantly more skip-chain
connections, which could explain why the skip-
chain model performs exceptionally well on Dutch.

We further evaluate our neural skip-chain model
trained without contextualized word embedding on
English and German NER. As shown in Table 3
and Table 4, we are able to significantly improve
F1 over baseline on both languages (p < 0.05).
On English, we also present results when the con-
text dependent transition factors and skip-chain
factors are separately added to baseline. We show
that the context-dependent transition factors and
skip-chain factors can separately improve on NER
performance of the base model, and some synergy
exists between the two types of factors when used

together. Compared with previous approaches that
do not use contextualized word embedding or exter-
nal labeled data, our neural skip-chain CRF model
trained with Neural SampleRank achieves the high-
est F1 on both CoNLL-03 English and German.

5.3 Qualitative Analysis
For all analysis, we investigate the neural skip-
chain CRF model without Flair embedding for En-
glish, trained without development set. In Figure
2, we show an example of improvements on NER
brought by skip-chain factors, from a document in
the English development set. We look at two men-
tions of the English cricketer Peter Such: while the
first mention uses his full name, the second men-
tion only uses his last name. From the emission
factors, we can see that the local context for the
first mention is clear enough for the model to give
a high score to label it as a Person type. However,
since the last name “Such” is also a common stop-
word, the model confuses the second mention as
a non-entity context. The skip-chain factors are
especially helpful in this case, in which long-range
contexts can help with disambiguation. From the
skip-chain factor, we can see that when looking
at both contexts, the model is confident that both
mentions are referring to a Person type entity.

5.4 Ablation Study
To compare Neural SampleRank and MLE with
exact inference for training, we train the base
BiLSTM-CRF model with Neural SampleRank as
well. At evaluation time we still use Viterbi decod-
ing for a fair comparison of the training algorithm.
As shown in Table 5, the F1 score regressed after
switching from exact inference to approximate in-
ference with Neural SampleRank. However, the
performance is still comparable.

We conduct ablation study on the neural skip-
chain CRF model to see the effectiveness of each
component. Results reported in Table 5 are best of
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…Nasser Hussain and Peter Such gave 
them a firm grip on their match…

…that into a 37-run advantage but 
off-spinner Such had scuttled their…

… …

……

(a)

(b)

(c)

Figure 2: Scores from three factors: (a) unary factor of “Such” in top sentence, (b) unary factor of “Such” in
bottom sentence, (c) skip-chain factor connecting the two—column gives the top sentence tag, and row the bottom.

dev F1
base model (MLE) 94.89
w/ Neural SampleRank 94.50
best model (NSR) 95.22
w/o pairwise loss 89.79
w/o gold loss 95.02
w/o block sampling 94.96
w/o context transition 94.89

Table 5: Ablation results on the development set for En-
glish. Each row changes one component while keeping
all of the others.

5 training runs with different random seeds. The
mean and standard deviation for the base model
setting is 94.67± 0.12, while our best skip-chain
model setting is 94.96±0.16. This shows that Neu-
ral SampleRank does not bring much additional
variance in the training process. As for the vari-
ance in MCMC decoding, in Figure 3 we show how
various initial temperatures affect decoding results.
We can see that as long as the initial temperature
is high enough for exploration in the beginning,
and the temperature anneals sufficiently close to 0
in the end, the decoding achieves optimal perfor-
mance, with a lower standard deviation compared
with training variations.

From Table 5, We can see that among the two
types of SampleRank loss, the pairwise loss has a
much bigger impact on the F1 score than the gold
loss. This shows that the training signal introduced
by pairwise loss is necessary for efficient Gibbs
sampling. The pairwise loss pushes the model lo-

Figure 3: Decoding results with different initial temper-
ature ( mean and standard deviation over 10 runs).

Figure 4: Training speed (tokens per second) for the
first 30 epochs of one run.

cally to a better output structure even when it is far
from the gold output. Over time this should push
the model towards faster convergence. We also ob-
serve that block Gibbs sampling can improve the
performance of the skip-chain model, which effec-
tively leverages long-range context dependencies.

5.5 Training speed
As discussed in Section 3.5, the gold loss term
can be very dense at the beginning of training, but
will become sparse as we train the model and get
samples closer to the gold label. The increase in
training speed brought by this sparsity is shown in
Figure 4. While the first epoch runs at 1283 tokens
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(a) MCMC without annealing.

(b) MCMC decoding with annealing.

Figure 5: Entropy of samples against document length,
at different stages of MCMC, measured on 30-sample
ranges.

per second on average, the first 3 update steps runs
at 367 tokens per second. After 30 epochs, the
training speed stabilizes at 2,000 tokens per second.
As a comparison, the linear-chain model runs at
8,000 tokens per second for training with MLE.
See Appendix D for details about the profiling en-
vironment.

5.6 Mixing of MCMC

In order to evaluate the mixing of the Markov chain
defined by the neural skip-chain CRF, we measure
the entropy of samples for each document at differ-
ent stages of MCMC. Following Keith et al. (2018),
we approximate the probability of each sample (i.e.
tag sequence) with its frequency when calculating
the entropy, then plot this empirical entropy against
the length of document. We take 120 samples, by
collecting the sample at the end of each cycle (i.e.
resampling of the full tag sequence), then split the
120 samples into four 30-sample stages. In Fig-
ure 5, we compare the sample entropy of standard
MCMC (i.e. without annealing), and MCMC de-
coding with annealing. From Figure 5a, we observe
that the entropy distributions at different stages stay
roughly the same, which suggests that the Markov

chain is well-mixed, even after a small number of
samples. Figure 5b shows how annealing affects
sample mixing: Initially, the high temperature leads
to samples with high entropy and better exploration.
Then, annealing of the temperature drives down the
entropy, such that the chain gradually converges to
a high probability density region.

6 Conclusion

In this work, we have proposed Neural SampleR-
ank (NSR), an efficient algorithm for approximate
inference and training for CRF models with neu-
ral network factors. With a novel skip-chain CRF
model that models long range context dependen-
cies, NSR can significantly improve NER per-
formance over the linear-chain CRF on multiple
datasets. NSR is computationally efficient for ar-
bitrarily complex graphical models, thus applica-
ble to a wide range of structured prediction tasks.
Graphical models with task specific inductive bias
have been successful for tasks like NER, coref-
erence resolution, relation extraction, and parsing.
Our proposed method paves the way for new neural
graphical models to be designed for these tasks.
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Appendices

A Model Hyperparameters

For our base BiLSTM-CRF model, we use a two-
layer BiLSTM with hidden state dimension set to
200. For each token, we train a character CNN
with 25-dimensional dense character embedding
input and 100 filters with size 3, then concatenate
with pretrained word embeddings. For English
we use the 100 dimensional GLoVE embedding
(Pennington et al., 2014). For Dutch and German
we use the 300 dimensional Fasttext embedding
trained on Wikipedia (Bojanowski et al., 2017).
Alternatively, we use Flair embedding (Akbik et al.,
2019) in its recommended setup for each language
to represent tokens. The emission factors of the
CRF are computed by a feed-forward network with
a 200 dimensional hidden layer. The transition and
skip-chain factors use feed-forward networks with
a hidden layer of 500 dimensions, which takes the
concatenation, element-wise sum and maximum of
the token hidden states as input.

For training, we use negative Hamming distance
for the metric in the SampleRank loss. We use
Adam optimizer (Kingma and Ba, 2014) with 0.001
initial learning rate, and an annealing rate of 0.5
and patience of 3. We clip the gradients at 1.0,
and apply dropout to BiLSTM outputs and feed-
forward layers with 0.5 dropout rate. Each mini
batch contains 2 documents. For Gibbs sampling,
at training time we take 10 cycles of samples for
each update. (We resample the full label sequence
in each cycle.) At decoding time, we set the initial
temperature to 10, the annealing rate to 0.95 and
take 120 cycles of samples. We ensemble model
predictions over 3 runs with majority vote. Fol-
lowing the convention for NER tasks (Peters et al.,
2017; Akbik et al., 2019), we train the model using
both training and development sets when reporting
test set results. For analysis we train the model
with training set only and report on development
set. We use paired permutation test (Yeh, 2000) for
significance testing in result comparisons.

When training with both train and develop-
ment sets, the early stopping is determined by the
progress of learning rate annealing. The optimal
point of learning rate value is determined by our
experiments that only use train set for training.

B Evaluation Metrics

For all NER results we report the F1 score in its
standard definition for the task. To compute the
F1 scores, we directly reuse the perl script released
alongside the CoNLL-02/03 shared task 3 .

C CoNLL-03 German Results

For the CoNLL-03 German NER task, there seems
to be some discrepancy in the NLP community
about the version of ground truth labels being used.
Besides the original 2003 ground truth labels, a
revised set of labels was released in 2006, with
updated annotation guidelines that should lead to
higher label quality 4. The most prominent differ-
ence between the two label versions is MISC type
entity, where the 2006 version has significantly
fewer mentions than the 2003 version, as a result of
major changes in the annotation guideline. Statis-
tics of each entity type, in each of the training,
development and test sets, is shown in Table 6.

Among the models that we compare our meth-
ods against, only Akbik et al. (2019) made clarifica-
tions on the label version in an issue in their Github
repository for Flair embedding 5. We are not sure
about the label version used in Lample et al. (2016)
or Riedl and Padó (2018), thus their results may or
may not be comparable to ours. For our models we
report results on both label versions in Table 7. We
can see that the F1 scores are significantly lower
on 2003 labels than on 2006 labels. However, for
both versions of data, we get similar trends in the
results: while our neural skip-chain CRF model
trained with Neural SampleRank is not able to im-
prove over the Flair baseline, it brings statistically
significant improvements (p < 0.05) for models
trained without contextualized word embedding.

We note that our baseline Flair results on 2003
labels match the results reported by Flair users in
the Github issue (one user reported 83.22, another
reported 83.78). While we can not be certain about
the label version used in other works, we speculate
that Lample et al. (2016) used the 2003 label ver-
sion, while Riedl and Padó (2018) used the 2006
version. This speculation is made solely based on

3https://www.clips.uantwerpen.be/
conll2003/ner/

4Both versions of ground truth labels are avail-
able here https://www.clips.uantwerpen.be/
conll2003/ner/.

5https://github.com/flairNLP/flair/
issues/1102

https://www.clips.uantwerpen.be/conll2003/ner/
https://www.clips.uantwerpen.be/conll2003/ner/
https://www.clips.uantwerpen.be/conll2003/ner/
https://www.clips.uantwerpen.be/conll2003/ner/
https://github.com/flairNLP/flair/issues/1102
https://github.com/flairNLP/flair/issues/1102
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Dataset train testa (dev) testb (test)
Label Version 2003 2006 2003 2006 2003 2006
#PER 2,773 2,801 1,401 1,409 1,195 1,210
#LOC 4,363 4,273 1,181 1,216 1,035 1,051
#ORG 2,427 2,154 1,241 1,090 773 584
#MISC 2,228 780 1,010 216 670 206

Table 6: Number of entities of each type in the 2003 and 2006 version of ground truth labels for CoNLL-03
German.

Model
Contextualized

Embeddings
Learning Label Version F1

BiLSTM-CRF (Lample et al., 2016) MLE Unknown 78.76
BiLSTM (Riedl and Padó, 2018) MLE Unknown 82.99
Our baseline BiLSTM-CRF MLE 2003 78.90
+ context transition + skip-chain CRF NSR 2003 79.85*
Our baseline Flair + BiLSTM-CRF 3 MLE 2003 83.20
+ context transition + skip-chain CRF 3 NSR 2003 83.20
Flair + BiLSTM-CRF (Akbik et al., 2019) 3 MLE 2006 88.27
Our baseline BiLSTM-CRF MLE 2006 83.55
+ context transition + skip-chain CRF NSR 2006 84.50*
Our Flair + linear-chain CRF 3 MLE 2006 88.30
+ context transition + skip-chain CRF 3 NSR 2006 87.97

Table 7: NER F1 score comparisons on CoNLL-03 German dataset, between 2003 and 2006 ground truth label
versions. Bold indicates the highest score, “*” indicates statistical significance compared with baseline.

comparisons with our baseline results, as our model
settings are otherwise very similar to theirs.

D Profiling Configurations

Our model is implemented with PyTorch (Paszke
et al., 2019), and the Neural SampleRank loss is
implemented as a PyTorch C++ extension. The
profiling is run with an NVIDIA RTX 2080 Ti
GPU, and an Intel Core i9-9900K CPU (8 core 16
threads, 3.6 GHz).


