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Abstract
Span identification (in short, span ID) tasks
such as chunking, NER, or code-switching de-
tection, ask models to identify and classify rel-
evant spans in a text. Despite being a staple of
NLP, and sharing a common structure, there is
little insight on how these tasks’ properties in-
fluence their difficulty, and thus little guidance
on what model families work well on span ID
tasks, and why. We analyze span ID tasks via
performance prediction, estimating how well
neural architectures do on different tasks.

Our contributions are: (a) we identify key
properties of span ID tasks that can inform
performance prediction; (b) we carry out a
large-scale experiment on English data, build-
ing a model to predict performance for un-
seen span ID tasks that can support architec-
ture choices; (c), we investigate the parame-
ters of the meta model, yielding new insights
on how model and task properties interact to
affect span ID performance. We find, e.g.,
that span frequency is especially important for
LSTMs, and that CRFs help when spans are
infrequent and boundaries non-distinctive.

1 Introduction

Span identification is a family of analysis tasks
that make up a substantial portion of applied NLP.
Span identification (or short, span ID) tasks have in
common that they identify and classify contiguous
spans of tokens within a running text. Examples
are named entity recognition (Nadeau and Sekine,
2007), chunking (Tjong Kim Sang and Buchholz,
2000), entity extraction (Etzioni et al., 2005), quo-
tation detection (Pareti, 2016), keyphrase detection
(Augenstein et al., 2017), or code switching (Prat-
apa et al., 2018). In terms of complexity, span ID
tasks form a middle ground between simpler anal-
ysis tasks that predict labels for single linguistic
units (such as lemmatization (Porter, 1980) or sen-
timent polarity classification (Liu, 2012)) and more

complex analysis tasks such as relation extraction,
which combines span ID with relation identifica-
tion (Zelenko et al., 2002; Adel et al., 2018).

Due to the rapid development of deep learning,
an abundance of model architectures is available for
the implementation of span ID tasks. These include
isolated token classification models (Berger et al.,
1996; Chieu and Ng, 2003), probabilistic models
such as hidden Markov models (Rabiner, 1989),
maximum entropy Markov models (McCallum
et al., 2000), and conditional random fields (Laf-
ferty et al., 2001), recurrent neural networks such as
LSTMs (Hochreiter and Schmidhuber, 1997), and
transformers such as BERT (Devlin et al., 2019).

Though we have some understanding what each
of these models can and cannot learn, there is, to
our knowledge, little work on systematically under-
standing how different span ID tasks compare: are
there model architectures that work well generally?
Can we identify properties of span ID tasks that can
help us select suitable model architectures on a task-
by-task basis? Answers to these questions could
narrow the scope of architecture search for these
tasks, and could help with comparisons between
existing methods and more recent developments.

In this work, we address these questions by ap-
plying meta-learning to span identification (Vi-
lalta and Drissi, 2002; Vanschoren, 2018). Meta-
learning means “systematically observing how
different machine learning approaches perform
[. . . ] to learn new tasks much faster” (Vanschoren,
2018), with examples such as architecture search
(Elsken et al., 2019) and hyperparameter optimiza-
tion (Bergstra and Bengio, 2012). Our specific ap-
proach is to apply performance prediction for span
ID tasks, using both task properties and model ar-
chitectures as features, in order to obtain a better
understanding of the differences among span ID
tasks.

Concretely, we collect a set of English span ID
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tasks, quantify key properties of the tasks (such
as how distinct the spans are from their context,
and how clearly their boundaries are marked) and
formulate hypotheses linking properties to perfor-
mance (Section 2). Next, we describe relevant
neural model architectures for span ID (Section 3).
We then train a linear regressor as a meta-model
to predict span ID performance based on model
features and task metrics in an unseen-task setting
(Section 4). We find the best of these architec-
tures perform at or close to the state of the art, and
their success can be relatively well predicted by the
meta-model (Section 5). Finally, we carry out a de-
tailed analysis of the regression model’s parameters
(Section 6), gaining insight into the relationship be-
tween span ID tasks and different neural model
architectures. For example, we establish that spans
that are not very distinct from their context are
consistently difficult to identify, but that CRFs are
specifically helpful for this class of span ID tasks.

2 Datasets, Span Types, and Hypotheses

We work with five widely used English span ID
datasets. All of them have non-overlapping spans
from a closed set of span types. In the following,
we discuss (properties of) span types, assuming
that each span type maps onto one span ID task.

2.1 Datasets
Quotation Detection: PARC and RIQUA. The
Penn Attribution Relation Corpus (PARC) version
3.0 (Pareti, 2016) and the Rich Quotation Attribu-
tion Corpus (RIQUA, Papay and Padó, 2020) are
two datasets for quotation detection: models must
identify direct and indirect quotation spans in text,
which can be useful for social network construc-
tion (Elson et al., 2010) and coreference resolution
(Almeida et al., 2014). The corpora cover articles
from the Penn Treebank (PARC) and 19th century
English novels (RIQUA), respectively. Within each
text, quotations are identified, along with each quo-
tation’s speaker (or source), and its cue (an intro-
ducing word, usually a verb like “said”). We model
detection of quotations as well as cues. As speaker
and addressee identification are relation extraction
tasks, we exclude these span types.

Chunking: CoNLL’00. Chunking (shallow
parsing) is an important preprocessing step in a
number of NLP applications. We use the cor-
pus from the 2000 CoNLL shared task on chunk-
ing (CoNLL’00) (Tjong Kim Sang and Buchholz,

Task Dataset freq len SD BD

Quotation PARC 16480 7.89 1.34 1.43
Quotation RIQUA 4026 9.84 1.46 1.57
Chunking CoNLL’00 37168 1.55 1.26 0.64
NER ChemDNer 6110 1.62 3.08 0.96
NER OntoNotes 16861 1.63 3.36 1.00

Table 1: Span type metrics (values averaged over all
span types in each corpus, weighted by span type fre-
quency, computed on training sets). SD = span distinc-
tiveness, BD = boundary distinctiveness. Values for
individual span types can be found in Table 7 in the
Appendix.

2000). Like PARC, this corpus consists of a sub-
set of the PTB. This dataset is labeled with non-
overlapping chunks of eleven phrase types. In our
study, we consider the seven phrase types with
>100 instances in the training partition: ‘ADJP’,
‘ADVP’, ‘NP’, ‘PP’, ‘PRT’, ‘SBAR’, and ‘VP’.

NER: OntoNotes and ChemDNer. For recogni-
tion and classification of proper names, we use the
NER layer of OntoNotes Corpus v5.0 (Weischedel
et al., 2013) and Biocreative’s ChemDNer corpus
v1.0 (Krallinger et al., 2015). OntoNotes, a gen-
eral language NER corpus, is our largest dataset,
with over 2.2 million tokens. The NER layer com-
prises 18 span types, both typical entity types such
as ‘Person’ and ‘Organization’ as well as numeri-
cal value types such as ‘Date’ and ‘Quantity’. We
use all span types. ChemDNer is a NER corpus
specific to chemical and drug names, comprising
titles and abstracts from 10000 PubMed articles. It
labels names of chemicals and drugs and assigns
them to eight classes, corresponding to chemical
name nomenclatures. We use seven span types:
‘Abbreviation’, ‘Family’, ‘Formula’, ‘Identifier’,
‘Systematic’, ‘Trivial’, and ‘Multiple’. We exclude
the class ‘No class’ as infrequent (<100 instances).

2.2 Span Type Properties and Hypotheses
While quotation detection, chunking, and named
entity recognition are all span ID tasks, they vary
quite widely in their properties. As mentioned in
the introduction, we know of little work on quanti-
fying the similarities and differences of span types,
and thus, span ID tasks.

We now present four metrics which we pro-
pose to capture the relevant characteristics of span
types, and make concrete our hypotheses regarding
their effect on model performance. Table 1 reports



4883

frequency-weighted averages for each metric on
each dataset. See Table 7 in the Appendix for all
span-type-specific values.

Frequency is the number of spans for a span
type in the dataset’s training corpus. It is well es-
tablished that the performance of a machine learn-
ing model benefits from higher amounts of train-
ing data (Halevy et al., 2009). Thus, we expect
this property to be positively correlated with per-
formance. However, some architectural choices,
such as the use of transfer learning, are purported
to reduce the data requirements of machine learn-
ing models (Pan and Yang, 2009), so we expect a
smaller correlation for architectures which incorpo-
rate transfer learning.

Span length is the geometric mean of spans’
lengths, in tokens. Scheible et al. (2016) note that
traditional CRF models perform poorly at the iden-
tification of long spans due to the strict Markov
assumption they make (Lafferty et al., 2001). Thus,
we expect architectures which rely on such assump-
tions and which have no way to model long dis-
tance dependencies to perform poorly on span types
with a high average span length, while LSTMs or
transformers should do better on long spans (Khan-
delwal et al., 2018; Vaswani et al., 2017).

Span distinctiveness is a measure of how dis-
tinctive the text that comprises spans is compared to
the overall text of the corpus. Formally, we define
it as the KL divergence DKL(Pspan||P ), where P
is the unigram word distribution of the corpus, and
Pspan is the unigram distribution of tokens within
a span. A high span distinctiveness indicates that
different words are used inside spans compared to
the rest of the text, while a low span distinctiveness
indicates that the word distribution is similar inside
and outside of spans.

We expect this property to be positively corre-
lated with model performance. Furthermore, we
hypothesize that span types with a high span dis-
tinctiveness should be able to rely more heavily on
local features, as each token carries strong informa-
tion about span membership, while low span dis-
tinctiveness calls for sequence information. Conse-
quently, we expect that architectures incorporating
sequence models such as CRFs, LSTMs, and trans-
formers should perform better at low-distinctive
span types.

Boundary distinctiveness is a measure of how
distinctive the starts and ends of spans are. We
formalize this in terms of a KL-divergence as well,

namely as DKL(Pboundary||P ) between the unigram
word distribution (P ) and the distribution of bound-
ary tokens (Pboundary), where boundary tokens are
those which occur immediately before the start of a
span, or immediately after the end of a span. A high
boundary distinctiveness indicates that the start and
end points of spans are easy to spot, while low
distinctiveness indicates smooth transitions.

We expect boundary distinctiveness to be posi-
tively correlated with model performance, based
on studies that obtained improvements from specif-
ically modeling the transition between span and
context (Todorovic et al., 2008; Scheible et al.,
2016). As sequence information is required to
utilize boundary information, high boundary dis-
tinctiveness should improve performance more for
LSTMs, CRFs, or transformers.

Task Profiles. As Table 1 shows, the metrics
we propose appear to capture the task structure
of the datasets well: quotation corpora have long
spans with low span distinctiveness (anything can
be said) but high boundary distinctiveness (punc-
tuation, cues). Chunking has notably low bound-
ary distinctiveness, due to the syntactic nature of
the span types, and NER spans show high distinc-
tiveness (semantic classes) but are short and have
somewhat indistinct boundaries as well.

3 Model Architectures

For span identification, we use the BIO framework
(Ramshaw and Marcus, 1999), framing span identi-
fication as a sequence labeling task. As each span
type has its own B and I labels, and there is one O
label, a dataset with n span types leads to a 2n+1-
label classification problem for each token.

We investigate a set of sequence labeling mod-
els, ranging from baselines to state-of-the-art ar-
chitectures. We group our models by common
components, and build complex models through
combination of simpler models. Except for the
models using BERT, all architectures assume one
300-dimensional GloVe embedding (Pennington
et al., 2014) per token as input.

Baseline. As a baseline model, we use a simple
token-level classifier. This architecture labels each
token using a softmax classifier without access to
sequence information (neither at the label level nor
at the feature level).

CRF. This model uses a linear-chain conditional
random field (CRF) to predict token label se-
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quences (Lafferty et al., 2001). It can access neigh-
boring labels in the sequence of predictions.

LSTM and LSTM+CRF. These architectures
incorporate Bi-directional LSTMs (biLSTMs)
(Hochreiter and Schmidhuber, 1997; Schuster and
Paliwal, 1997) as components. The simplest archi-
tecture, LSTM, passes the inputs through a 2-layer
biLSTM network, and then predicts token labels
using a softmax layer. The LSTM+CRF architec-
ture combines the biLSTM network with a CRF
layer, training all weights simultaneously. These
models can learn to combine sequential input and
labeling information.

BERT and BERT+CRF. These architectures in-
clude the pre-trained BERT language model (De-
vlin et al., 2019) as a component. The simplest
architecture in this category, BERT, comprises a
pre-trained BERT encoder and a softmax output
layer, which is trained while the BERT encoder
is fine-tuned. BERT+CRF combines a BERT en-
coder with a linear-chain CRF output layer, which
directly uses BERT’s output embeddings as inputs.
In this architecture, the CRF layer is first trained to
convergence while BERT’s weights are held con-
stant, and then both models are jointly fine-tuned
to convergence. As BERT uses WordPiece tok-
enization (Wu et al., 2016), the input must be re-
tokenized for BERT architectures.

BERT+LSTM+CRF. This architecture com-
bines all components previously mentioned. It first
uses a pre-trained BERT encoder to generate a se-
quence of contextualized embeddings. These em-
beddings are projected to 300 dimensions using a
linear layer, yielding a sequence of vectors, which
are then used as input for a LSTM+CRF network.
As with BERT+CRF, we first train the non-BERT
parameters to convergence while holding BERT’s
parameters fixed, and subsequently fine-tune all
parameters jointly.

Handcrafted Features. Some studies have
shown marked increases in performance by adding
hand-crafted features (e.g. Shimaoka et al., 2017).
We develop such features for our tasks and treat
these to be an additional architecture component.
For architectures with this component, a bag of
features is extracted for each token (the exact fea-
tures used for each dataset are enumerated in Table
5 in the Appendix). For each feature, we learn a
300-dimensional feature embedding which is av-

eraged with the GloVe or BERT embedding to ob-
tain a token embedding. Handcrafted features can
be used with the Baseline, LSTM, LSTM+CRF,
and BERT+LSTM+CRF architectures. BERT and
BERT+CRF cannot utilize manual features, as they
have no way of accepting token embeddings as
input.

4 Meta-learning Model

Recall that our meta-learning model is a model for
predicting the performance of the model architec-
tures from Section 3 when applied to span identifi-
cation tasks from Section 2. We model this task of
performance prediction as linear regression, a well
established framework for the statistical analysis
of language data (Baayen, 2008). The predictors
are task properties, model architecture properties,
and their interactions, and the dependent variable
is (scaled) F1 score.

While a linear model is not powerful enough to
capture the full range of interactions, its weights
are immediately interpretable, it can be trained on
limited amounts of data, and it does not overfit
easily (see Section 5.1). All three properties make
it a reasonable choice for meta-learning.

Predictors and Interactions. As predictors for
our performance prediction task, we use the span
type properties described above, and a number of
binary model properties. For the span type proper-
ties [freq] and [span length], we use the logarithms
of these values as predictors. The two distinctive-
ness properties are already logarithms, and so we
used them as-is. For model properties, we used four
binary predicates: The presence of handcrafted fea-
tures, of a CRF output layer, of a bi-LSTM layer,
and of a BERT layer.

In addition to main effects of properties of mod-
els and corpora on performance (does a CRF layer
help?), we are also interested in interactions of
these properties (does a CRF layer help in particu-
lar for longer spans?). As such interactions are not
captured automatically in a linear regression model,
we encode them as predictors. We include interac-
tions between span type and model properties, as
well as among model properties.

All predictors (including interactions) are stan-
dardized so as to have a mean of zero and standard
deviation of one.

Scaling the Predicted Performance Instead of
directly predicting the F1 score, we instead make
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our predictions in a logarithmic space, which
eases the linearity requirements of linear regres-
sion. We cannot directly use the logit function
to transform F1 scores into F ′ = logit

(
F1
100

)
since the presence of zeros in our F1 scores
makes this process ill-defined. Instead, we
opted for a “padded” logit transformation F ′ =
logit

(
(1− α) · F1

100 + α · 100−F1
100

)
with a hyperpa-

rameter α ∈ [0, 0.5). This rescales the argument of
the logit function from [0, 1] to the smaller interval
[α, 1−α], avoiding the zero problem of a bare logit.
Through cross-validation (cf. Section 5.1), we set
α = 0.2. We use the inverse of this transformation
to scale the output of our prediction as an F1 score,
clamping the result to [0, 100].

5 Experiment

5.1 Experimental Procedure

Our meta learning experiment comprises two steps:
Span ID model training, and meta model training.

Step 1: Span ID model training. We train and
subsequently evaluate each model architecture on
each dataset five times, using different random ini-
tializations. With 12 model architectures and 5
datasets under consideration, this procedure yields
12× 5× 5 = 300 individual experiments.

For each dataset, we use the established train/test
partition. Since RIQUA does not come with such
a partition, we use cross-validation, partitioning
the dataset by its six authors and holding out one
author per cross-validation step.

We use early stopping for regularization, stop-
ping training once (micro-averaged) performance
on a validation set reaches its maximum. To pre-
vent overfitting, all models utilize feature dropout
– during training, each feature in a token’s bag of
input features is dropped with a probability of 50%.
At evaluation time, all features are used.

Step 2: Meta learning model training. This
step involves training our performance prediction
model on the F1 scores obtained from the first
step. For each architecture-span-type pair of the
12 model architectures and 36 span types, we al-
ready obtained 5 F1 scores. This yields a total of
12× 36× 5 = 2160 input-output pairs to train our
performance prediction model.

We investigate both L1 and L2 regularization in
an elastic net setting (Zou and Hastie, 2005) but
consistently find best cross-validation performance

with no regularization whatsoever. Thus, we use
ordinary least squares regression.

To ensure that our performance predictions gen-
eralize, we use a cross-validation setup when gener-
ating model predictions. To generate performance
predictions for a particular span type, we train our
meta-model on data from all other span types, hold-
ing out the span type for which we want a predic-
tion. We repeat this for all 36 span types, holding
out a different span type each time, in order to
collect performance predictions for each span type.

5.2 Span Identification Results
Step 1 yields 5 evaluation F1 scores for each
architecture–span-type pair. This section summa-
rizes the main findings. Detailed average scores for
each pair are reported in Table 8 in the Appendix.

Table 2 lists the micro-averaged performance of
each model architecture on each dataset. Unsurpris-
ingly, BERT+Feat+LSTM+CRF, the model with
the most components, performs best on three of
the five datasets. This provides strong evidence
that this architecture can perform well across many
tasks. However, note that architecture’s dominance
is somewhat overstated by only looking at average
dataset results. Our analysis permits us to look
more closely at results for individual span types,
where we find that BERT+Feat+LSTM+CRF per-
forms best on 16 of the 36 total span types,
BERT+CRF on 7 span types, Feat+LSTM+CRF on
7 span types, and BERT+LSTM+CRF on 6 span
types. Thus, ‘bespoke’ modeling of span types can
evidently improve results.

Even though our architectures are task-agnostic,
and not tuned to particular tasks or datasets,
our best architectures still perform quite com-
petitively. For instance, on CoNLL’00, our
BERT+Feat+LSTM+CRF model comes within
0.12 F1 points of the best published model’s F1

score of 97.62 (Akbik et al., 2018). For PARC, ex-
isting literature does not report micro-averaged F1

scores, but instead focuses only on F1 scores for
content span detection. In this case, we find that
our BERT+Feat+LSTM+CRF model beats the ex-
isting state of the art on this span type, achieving
an F1 score of 78.1, compared to the score of 75
reported in Scheible et al. (2016).

5.3 Meta-learning Results
The result of Step 2 is our performance prediction
model. Table 3 shows both mean absolute error
(MAE), which is directly interpretable as the mean
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BL
Feat
BL CRF

Feat
CRF LSTM

Feat
LSTM

LSTM
CRF

Feat
LSTM

CRF BERT
BERT

CRF

BERT
LSTM

CRF

BERT
Feat

LSTM
CRF

PARC 34.8 31.4 46.6 57.9 64.8 76.9 76.0 81.8 78.7 81.4 82.4 82.5
RIQUA 21.7 14.5 19.7 14.4 67.5 76.7 79.6 81.7 79.8 82.5 82.1 82.3
CoNLL’00 55.9 60.0 79.7 87.1 87.7 92.3 90.0 93.5 96.3 96.5 96.6 96.6
OntoNotes 39.0 27.4 61.2 67.7 58.8 65.1 76.4 84.7 85.9 86.8 86.5 87.5
ChemDNer 49.8 19.6 56.9 58.5 57.0 45.7 71.2 75.1 83.3 84.7 84.9 84.8

Table 2: Average architecture results on datasets. BL=Baseline, Feat=Hand-crafted features. For each dataset, we
micro-average performance over all span types, and average these micro-averages across five trials. For compara-
bility with existing work, we include all span types in these micro-averages, even those which we exclude from
our performance prediction. Full performance results for each span type can be found in Table 8.

MAE r2

Full model 11.38 0.73
No interactions 14.00 0.61
Only architecture predictors 18.88 0.37
Only task predictors 20.87 0.22
Empty model 23.78 N/A

Table 3: Evaluation of performance prediction models

difference between predicted and actual F1 score
for each data point, and r2, which provides the
amount of variance accounted for by the model.
The full performance prediction model, including
both span type and model architecture features, ac-
counts for 73% of the variance, with an MAE of
about 11. We see this as an acceptable model fit.
To validate the usefulness of the predictor groups
and interaction terms, we carry out ablation ex-
periments wherein these are excluded, including a
model with no interaction terms, a model with only
span type-predictors, a model with only architec-
ture predictors, and an empty model, which only
predicts the average of all F1 scores. The reduced
models do better than the empty model,1 but show
marked increases in MAE and corresponding drops
in r2 compared to the full model. While the useful-
ness of the architecture predictors is expected, this
also constitutes strong evidence for the usefulness
of the span type predictors we have proposed in
Section 2.

Figure 1 shows a scatterplot of predicted and
actual F1 scores. Our meta learning model gen-
erally predicts high performances better than low
performances. The largest cluster of errors occurs

1For the empty model, r2 is undefined because the variance
of the predictions is zero.
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Figure 1: Scatterplot of actual vs. predicted F1 scores
for all 36 span types × 12 model architectures

for experiments with an actual F1 score of exactly
zero, arguably an uninteresting case. Thus, we be-
lieve that the overall MAE underestimates rather
than overestimates the quality of the performance
prediction for practical purposes.

6 Analysis

We now investigate the linear regression coeffi-
cients of our performance prediction model to as-
sess our hypotheses from Section 2. To obtain a
single model to analyze, we retrain our regression
model on all data points, with no cross-validation.

Table 4 shows the resulting coefficients. Using
Bonferroni correction at α = 0.05, we consider a
coefficient significant if p<0.002. Non-significant
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coefficients are shown in parentheses. Due to the
scaling of F1 scores performed as described in
section 4, the coefficients cannot be directly in-
terpreted in terms of linear change on the F1 scale.
However, as we standardized all predictors, we can
compare coefficients with one another. Coefficients
with a greater magnitude have larger effects on F1

score, with positive values indicating an increase,
and negative values a decrease.

When analyzing these coefficients, one must con-
sider main effects and interactions together. E.g.,
the main effect coefficient for LSTMs is negative,
which seems to imply that adding an LSTM will
hurt performance. However, the LSTM × [freq]
and LSTM × [boundary distinctness] interactions
are both strongly positive, so LSTMs should help
on frequent span types with high boundary distinc-
tiveness. Our main observations are the following:

Frequency helps, length hurts. The main ef-
fects of our span type predictors show mostly an ex-
pected pattern. Frequency has a strong positive ef-
fect (frequent span types are easier to learn), while
length has an even stronger negative effect (long
span types are difficult). More distinct boundaries
help performance as well. More surprising is the
negative sign of the span distinctiveness predictor,
which would mean that more distinct spans are
more difficult to recognize. However, this might
be due to the negative correlation between span
distinctiveness and frequency (r = −0.46 in stan-
dardized predictors) – less frequent spans are, by
virtue of their rarity, more distinctive.

BERT is good for performance, especially with
few examples. The presence of a BERT compo-
nent is the highest-impact positive predictor for
model performance, with a positive coefficient of
1. This finding is not entirely surprising, given the
recent popularity of BERT-based models for span
identification problems (Li et al., 2020; Hu et al.,
2019). Furthermore, the strong negative value of
the (BERT × [freq]) predictor shows that BERT’s
benefits are strongest when there are few training
examples, validating our hypothesis about transfer
learning. BERT is also robust: largely independent
of span or boundary distinctiveness effects.

LSTMs require a lot of data. While the main
effect of LSTMs is negative, this effect is again
modulated by the high positive coefficient of the
(LSTM × [freq]) interaction. This means that their

Model predictors

Handcrafted (−0.11)
CRF 0.50
LSTM −0.35
BERT 1.00

Span type predictors

freq 0.40
length −0.49
span distinct. −0.22
boundary distinct. 0.16

Model–span type interactions

Handcrafted ×

freq (0.05)
length (−0.04)
span distinct. (−0.09)
boundary distinct. (0.09)

CRF ×

freq −0.33
length 0.19
span distinct. 0.34
boundary distinct. −0.30

LSTM ×

freq 0.47
length 0.08
span distinct. (−0.09)
boundary distinct. 0.22

BERT ×

freq −0.43
length 0.13
span distinct. (0.04)
boundary distinct. (−0.05)

Model–model interactions

Handcrafted ×
CRF 0.10
LSTM 0.05
BERT −0.05

CRF × LSTM (−0.05)
BERT −0.24

LSTM × BERT −0.17

Table 4: Regression coefficients from performance pre-
diction model. Coefficients not statistically significant
at p < 0.002 (as per Bonferroni correction) in paren-
theses.

performance is highly dependent on the amount of
training data. Also, LSTMs lead to improvements
for long span types and those with distinct bound-
aries – properties that LSTMs arguably can pick up
well but that other models struggle with.
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CRFs help. After BERT, the presence of a CRF
shows the second-most positive main effect on
model performance. Given the strong correlation
between adjacent tags in a BIO label sequence,
it makes sense that a model capable of enforcing
correlations in its output sequence would perform
well. CRFs can also exploit span distinctiveness
well, presumably by the same mechanism. Surpris-
ingly, CRFs show reduced effectiveness for highly
frequent spans with distinct boundaries. We believe
that this pattern is best considered as a relative state-
ment: for frequent, well-separated span types CRFs
gain less than other model types.

Handcrafted features do not matter much.
We find neither a significant main effect of hand-
crafted features, nor any significant interactions
with span type predictors. Interactions with model
predictors are significant, but rather small. While
a detailed analysis of architecture-wise F1-scores
does show that some architectures, such as pure
CRFs, do seem to benefit more from hand-crafted
features (see Table 8 in the Appendix), this effect
diminishes considerably when model components
are mixed.

Combining model components shows diminish-
ing returns. All interactions between LSTM,
CRF, and BERT are negative. This demonstrates
an overlap in these components’ utility. Thus, a
simple “maximal” combination does not always
perform best, as Table 2 confirms.

7 Related Work

Meta-learning and performance prediction are
umbrella terms which comprise a variety of ap-
proaches and formalisms in the literature. We fo-
cus on the literature most relevant to our work and
discuss the relationship.

Performance Prediction for Trained Models.
In NLP, a number of studies investigate predicting
the performance of models that have been trained
previously on novel input. An example is Chen
(2009) which develops a general method to predict
the performance of a family of language models.
Similar ideas have been applied more recently to
machine translation (Bojar et al., 2017), and au-
tomatic speech recognition (Elloumi et al., 2018),
among others. While these approaches share our
goal of performance prediction, they predict perfor-
mance for the same task and model on new data,
while we generalize across tasks and architectures.

Thus, these approaches are better suited to esti-
mating confidence at prediction time, while our
meta-learning approach can predict a model’s per-
formance before it is trained.

AutoML. Automated machine learning, or Au-
toML, aims at automating various aspects of ma-
chine learning model creation, including hyper-
parameter selection, architecture search, and fea-
ture engineering (Yao et al., 2018; He et al., 2019)
While the task of performance prediction does not
directly fall within this research area, a model for
predicting performance is directly applicable to
architecture search. Within AutoML, the auto-
sklearn system (Feurer et al., 2015) takes an ap-
proach rather similar to ours, wherein they iden-
tify meta-features of datasets, and select appro-
priate model architectures based on those meta-
features. However, auto-sklearn does not predict
absolute performance as we do, but instead simply
selects good candidate architectures via a k-nearest-
neighbors approach in meta-feature space. Other
related approaches in AutoML use Bayesian opti-
mization, including the combined model selection
and hyperparameter optimization of Auto-WEKA
(Thornton et al., 2013) and the neural architecture
search of Auto-keras (Jin et al., 2019).

Model Interpretability. A number of works
have investigated how to analyze and explain the
decisions made by machine learning models. LIME
(Mishra et al., 2017) and Anchors (Ribeiro et al.,
2018) are examples of systems for explaining a
model’s decisions for specific training instances.
Other works seek to explain and summarize how
models perform across an entire dataset. This can
be achieved e.g. through comparison of architec-
ture performances, as in Nguyen and Guo (2007),
or through meta-modeling of trained models, as
was done in Weiss et al. (2018). Our present work
falls into this category, including both a comparison
of architectures across datasets and a meta-learning
task of model performance.

Meta-learning for One- and Few-shot Learning.
A recent trend is the application of meta-learning
to models for one- or few-shot learning. In this
setting, a meta-learning approach is used to train
models on many distinct tasks, such that they can
subsequently be rapidly fine-tuned to a particular
task (Finn et al., 2017; Santoro et al., 2016). While
such approaches use the same meta-learning frame-
work as we do, their task and methodology are
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substantially different. They focus on learning with
very few training examples, while we focus on op-
timizing performance with normally sized corpora.
Additionally, these models selectively train prese-
lected model architectures, while we are concerned
with comparisons between architectures.

Model and Corpus Comparisons in Survey Pa-
pers. In a broad sense, our goal of comparison be-
tween existing corpora and modeling approaches is
shared with many existing survey papers. Surveys
include quantitative comparisons of existing sys-
tems’ performances on common tasks, producing a
results matrix very similar to ours (Li et al., 2020;
Yadav and Bethard, 2018; Bostan and Klinger,
2018, i.a.). However, most of these surveys limit
themselves to collecting results across models and
datasets without performing a detailed quantitative
analysis of these results to identify recurring pat-
terns, as we do with our performance prediction
approach.

8 Conclusion

In this work, we considered the class of span iden-
tification tasks. This class contains a number of
widely used NLP tasks, but no comprehensive anal-
ysis beyond the level of individual tasks is available.
We took a meta-learning perspective, predicting
the performance of various architectures on vari-
ous span ID tasks in an unseen-task setup. Using
a number of ‘key metrics’ that we developed to
characterize the span ID tasks, a simple linear re-
gression model was able to do so at a reasonable
accuracy. Notably, even though BERT-based archi-
tectures expectedly perform very well, we find that
different variants are optimal for different tasks.
We explain such patterns by interpreting the param-
eters of the regression model, which yields insights
into how the properties of span ID tasks interact
with properties of neural model architectures. Such
patterns can be used for manual fine-grained model
selection, but our meta-learning model could also
be incorporated directly into AutoML systems.

Our current study could be extended in various
directions. First, the approach could apply the same
meta-learning approach to other classes of tasks be-
yond span ID. Second, a larger range of span type
metrics could presumably improve model fit, albeit
at the cost of interpretability. Third, we only predict
within-corpus performance, and corpus-level simi-
larity metrics could be added to make predictions
about performance in transfer learning.
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F. T. Martins. 2014. A joint model for quotation
attribution and coreference resolution. In Proceed-
ings of the 14th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 39–48, Gothenburg, Sweden. Association for
Computational Linguistics.

Isabelle Augenstein, Mrinal Das, Sebastian Riedel,
Lakshmi Vikraman, and Andrew McCallum. 2017.
SemEval 2017 task 10: ScienceIE - extracting
keyphrases and relations from scientific publica-
tions. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 546–555, Vancouver, Canada. Association for
Computational Linguistics.

R. H. Baayen. 2008. Analyzing Linguistic Data: A
Practical Introduction to Statistics using R. Cam-
bridge University Press.

Adam L. Berger, Stephen A. Della Pietra, and Vin-
cent J. Della Pietra. 1996. A maximum entropy
approach to natural language processing. Compu-
tational Linguistics, 22(1):39–71.

James Bergstra and Yoshua Bengio. 2012. Random
search for hyper-parameter optimization. J. Mach.
Learn. Res., 13:281–305.
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A Training Models

All code used for training span identifica-
tion and performance prediction models is
available for download at our project web-
site: https://www.ims.uni-stuttgart.
de/data/span-id-meta-learning. All
text logs generated during training of span iden-
tification models are included.

A.1 Hardware
All span identification models were trained using
GeForce GTX 1080 Ti GPUs. Training time varied
considerably across architectures – exact training
times for individual experiments are found in the
corresponding training logs.

The performance prediction model was trained
on a CPU in a few seconds.

A.2 Tokenization
For PARC, OntoNotes, and CoNLL’00, which in-
clude tokenization information, and we use the
datasets’ tokenizations directly For RIQUA, we
use spaCy (Honnibal and Montani, 2017) to word-
tokenize the text. We found that spaCy’s tokeniza-
tion performed particularly poorly for ChemDNer,
and so for this corpus we treated all sequences
of alphabetic characters as a token, all sequences
of numbers as a token, and all other characters
as single-character tokens. For ChemDNer, we
found that some spans within the corpus still did
not align with token boundaries. In these cases, we
excluded the spans entirely from the training data,
and treated them as an automatic false-negative for
evaluation purposes.

For models including a BERT component, to-
kens were sub-tokenized using word-piece tok-
enization (Wu et al., 2016) so as to be compatible
with BERT. The same bag of token features was
given to each word piece. Models predicted BIO se-
quences for these sub-tokens, and spans were only
evaluated as correct when their boundaries matched
exactly with the originally-tokenized corpus.

A.3 Hyperparameters
Due to the large number of experiments run, it was
infeasible to do a full grid-search for hyperparame-
ters for each architecture-dataset combination. As
such, we tried to pick reasonable values for hyper-
parameters, motivated by existing literature, prior
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PARC Token POS tag
Token lemma

Constituents containing token
Constituents starting at token
Constituents ending at token

RIQUA Token POS tag †
Token lemma †

Is token a quotation mark?
Is token a quotation mark?

Is token capitalized?
Is token all caps?

CoNLL’00 Token POS tag †

OntoNotes Token POS tag
Is token capitalized?

Is token all caps?
Character bi- and trigrams

Constituents containing token
Constituents starting at token
Constituents ending at token

ChemDNer Token POS tag †
Token lemma †

Is token capitalized?
Is token all caps?

Is token purely alphabetic?
Is token all digits?

Table 5: Hand-crafted features used. Entries marked
with a dagger† were predicted using spaCy (Honnibal
and Montani, 2017) – others were either manually an-
notated, or were exactly specified by the tokens’ sur-
face forms

research, and implementation defaults of existing
libraries. For BERT-based models, our choice of
pre-trained model – ‘bert-base-uncased’ as
provided by the HuggingFace Transformers library
(Wolf et al., 2019) – fixed some of these hyperpa-
rameters for us. Table 6 enumerates the hyperpa-
rameter values used for our architectures.

A.4 Optimizer and Training

All models were trained with the Adam optimizer
(Kingma and Ba, 2014). For BERT+CRF and
BERT+LSTM+CRF, we train the non-BERT pa-
rameters as a first training phase, and then fine-
tune all parameters jointly as a second training
phase. In these cases, Adam was re-initialized
between two training phases. For training all non-
BERT architectures, and for first training phase in
the BERT+CRF and BERT+LSTM+CRF architec-

Hyperparameter Value

Input dimensionality 300
LSTM units 300
Softmax output layer units 300
CRF units 300
LSTM layers 2
LSTM dropout probability 0.5
Learning rate (non-BERT) 1× 10−3

Learning rate (BERT) 2× 10−5

Table 6: Hyperparameter choices

tures, an initial learning rate of 0.001 was used.
For BERT, and for the second training phase in the
BERT+CRF and BERT+LSTM+CRF architectures,
an initial learning rate of 2× 10−5 was used.

A.5 Early Stopping
To guide early stopping, micro-averaged F1 scores
on the development set were computed after every
epoch. These were computed for all span types,
including those which were subsequently excluded
from our meta-model. For datasets which had no
dedicated development partition, a portion of the
training set was held out for this purpose. After
each epoch, model parameters were saved to disk
if the development-set F1 score exceeded the best
seen so far. An exponential moving average of
these F1 scores was kept, and training terminated
when an epoch’s F1 score fell below this aver-
age. For BERT+CRF and BERT+LSTM+CRF, this
same early stopping procedure was used for both
training phases. The training logs list development
set performance at each epoch for each experiment.

A.6 Features
Table 5 lists all manual features that were used in
models with the “Feat” component.

B Full Tables

Table 7 lists the span type properties of all span
types from all datasets. Table 8 shows average F1

score for each combination of span type and model
architecture.
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Dataset Span type Frequency Span length Span dist. Boundary dist.

ChemDNer

Abbreviation 4536 1.17 3.85 0.94
Family 4089 1.44 3.15 0.99
Formula 4445 1.98 2.50 0.99
Identifier 672 2.59 3.61 1.43
Multiple 202 6.49 2.10 1.60
Systematic 6654 2.17 2.14 0.98
Trivial 8832 1.15 3.64 0.86

CoNLL’00

ADJP 2060 1.22 3.13 1.22
ADVP 4227 1.07 3.02 0.74
NP 55048 1.89 0.48 0.65
PP 21281 1.01 2.08 0.59
PRT 556 1.00 4.59 2.20
SBAR 2207 1.02 3.68 1.26
VP 21467 1.39 1.60 0.50

OntoNotes

Cardinal 10901 1.20 3.45 0.90
Date 18791 1.87 2.62 0.88
Event 1009 2.65 3.15 1.32
Facility 1158 2.33 3.54 1.22
GPE 21938 1.16 3.66 0.81
Language 355 1.03 7.26 1.99
Law 459 2.92 3.16 1.69
Location 2160 1.69 4.14 1.10
Money 5217 2.61 3.87 1.41
NORP 9341 1.04 4.85 0.98
Ordinal 2195 1.00 5.99 1.39
Organization 24163 1.93 2.22 0.74
Percent 3802 2.30 4.35 1.50
Person 22035 1.51 3.54 1.24
Product 992 1.51 4.58 1.65
Quantity 1240 2.25 3.79 1.35
Time 1703 1.95 3.50 1.24
Work of art 1279 2.77 2.15 1.67

PARC
Content 17416 13.86 0.15 1.73
Cue 15424 1.16 2.69 1.09

RIQUA
Cue 2325 1.05 4.04 1.37
Quotation 4843 14.06 0.22 1.67

Table 7: A listing of all span types considered for each dataset, along with their frequency, geometric mean span
length, span distinctiveness, and boundary distinctiveness.
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C Content 0.0 1.6 15.5 40.0 50.3 70.4 69.1 77.2 71.7 76.6 77.8 78.1
Cue 68.0 64.9 69.1 68.5 77.1 83.3 82.2 86.3 84.4 85.8 86.7 86.4

R
IQ

U
A Cue 64.6 49.0 58.4 47.4 73.9 74.5 81.9 80.8 78.8 83.1 83.9 84.3

Quotation 0.0 0.0 5.6 6.0 76.5 90.2 89.0 92.3 90.3 90.6 90.0 90.2

C
oN

L
L’

00

ADJP 29.1 22.8 47.0 61.9 56.6 72.8 66.3 77.2 82.4 84.2 83.6 83.5
ADVP 51.8 58.0 66.9 74.0 70.4 76.0 76.8 81.2 85.3 86.2 86.4 86.3
NP 59.5 64.3 79.7 86.0 88.8 92.8 91.4 94.9 97.0 97.1 97.2 97.3
PP 57.5 56.6 90.4 94.5 94.4 96.5 96.0 97.4 98.5 98.6 98.6 98.6
PRT 40.9 41.0 64.3 63.0 66.4 68.7 73.8 75.1 84.3 83.3 84.6 84.6
SBAR 33.2 63.3 67.1 73.8 81.4 86.1 67.1 65.1 94.2 94.3 94.2 94.5
VP 49.3 56.6 74.8 89.2 84.8 92.7 88.6 94.4 96.6 96.6 96.5 96.7

O
nt

oN
ot

es

Cardinal 25.8 19.0 57.1 55.3 53.1 60.9 72.8 81.0 80.8 80.9 79.9 79.2
Date 38.6 29.0 65.6 69.0 63.1 68.3 79.5 84.3 85.5 85.9 85.9 85.7
Event 0.0 0.0 29.4 40.7 0.9 0.0 39.0 46.4 63.2 65.0 60.5 64.9
Facility 0.0 0.0 7.1 17.8 0.0 0.0 30.6 45.6 62.0 64.7 64.7 72.8
GPE 60.8 44.5 75.0 76.7 69.5 72.0 85.2 91.6 93.4 94.1 94.0 94.7
Language 0.0 0.0 29.0 33.2 0.0 0.0 47.5 40.5 72.0 76.5 71.6 70.8
Law 0.0 0.0 19.1 17.9 0.0 0.0 44.7 52.1 61.5 64.8 55.7 67.2
Location 11.4 0.0 38.6 42.1 19.4 9.0 54.2 67.1 65.8 67.1 66.8 70.8
Money 9.8 32.5 67.9 79.2 64.5 76.1 82.6 90.1 87.8 88.7 89.4 88.9
NORP 66.6 48.0 78.9 80.0 66.4 73.9 81.4 91.0 89.1 89.8 90.3 91.5
Ordinal 55.6 0.4 50.9 56.0 33.1 46.8 69.3 83.3 79.2 79.8 78.3 76.8
Organization 27.3 19.1 49.1 60.6 46.3 58.6 72.5 84.0 83.8 85.4 85.6 88.6
Percent 30.1 18.8 80.0 85.8 73.8 81.3 83.3 88.6 88.3 87.6 88.5 88.1
Person 25.9 15.3 52.6 71.8 64.7 70.1 79.4 87.6 92.8 93.7 93.3 93.6
Product 0.0 0.0 43.0 35.1 11.4 4.6 47.3 50.8 59.6 64.1 62.4 64.9
Quantity 0.0 0.0 38.0 49.8 25.9 0.0 64.5 68.0 67.0 66.7 59.2 60.6
Time 2.9 0.0 40.4 33.6 26.7 13.0 49.1 63.7 61.5 61.3 60.7 61.8
Work of art 0.0 0.0 6.0 7.3 0.5 17.3 29.3 57.2 55.2 59.0 57.0 62.4

C
he

m
D

N
er

Abbreviation 50.0 12.0 54.7 54.5 51.6 48.3 62.7 71.3 78.2 79.1 78.2 77.1
Family 47.4 3.8 57.9 56.6 53.7 13.8 64.5 68.8 77.6 78.6 78.9 79.1
Formula 31.4 10.8 46.3 53.8 48.2 47.4 72.4 76.3 76.9 80.2 81.3 81.8
Identifier 0.0 0.0 44.1 37.7 38.1 0.7 69.1 66.2 79.5 83.1 82.5 81.8
Multiple 0.0 0.0 5.1 3.0 0.0 0.0 35.5 53.4 57.8 64.6 65.6 69.0
Systematic 50.5 25.4 54.6 59.7 60.5 49.7 76.3 79.1 86.2 87.4 87.9 87.8
Trivial 61.3 30.2 66.6 65.0 65.0 52.6 75.0 77.9 90.2 91.0 91.2 91.1

Table 8: F1 scores for each model architecture on each span type. Each entry is averaged over five runs.


