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Abstract

The deep inside-outside recursive autoencoder
(DIORA; Drozdov et al. 2019a) is a self-
supervised neural model that learns to induce
syntactic tree structures for input sentences
without access to labeled training data. In
this paper, we discover that while DIORA ex-
haustively encodes all possible binary trees of
a sentence with a soft dynamic program, its
vector averaging approach is locally greedy
and cannot recover from errors when comput-
ing the highest scoring parse tree in bottom-up
chart parsing. To fix this issue, we introduce
S-DIORA, an improved variant of DIORA
that encodes a single tree rather than a softly-
weighted mixture of trees by employing a hard
argmax operation and a beam at each cell in
the chart. Our experiments show that through
fine-tuning a pre-trained DIORA with our new
algorithm, we improve the state of the art in
unsupervised constituency parsing on the En-
glish WSJ Penn Treebank by 2.2� 6% F1,
depending on the data used for fine-tuning.

1 Introduction

Syntactic parse trees are valuable intermediate fea-
tures for many NLP pipelines (He et al., 2018;
Strubell et al., 2018), as a soft constraint (Rush
and Collins, 2012), a hard constraint (Lee et al.,
2019b), or in multi-task learning with syntactic
scaffolds (Swayamdipta et al., 2018). Syntac-
tic inductive bias can also improve generalization
of deep learning models (Kuncoro et al., 2020).
These results have motivated researchers to pur-
sue unsupervised parsing, with the hope of train-
ing syntax-dependent models on large amounts
of data without annotation (Klein and Manning,
2002; Bod, 2006; Ponvert et al., 2011; Shen et al.,
2019; Kim et al., 2019, inter alia).

Of these models, we focus on the deep inside-
outside recursive autoencoder (DIORA; Drozdov
et al. 2019a). DIORA encodes sentences in a
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Figure 1: DIORA (top row) is sensitive to locally non-
optimal decisions. By assigning a low weight to a po-
tentially important subtree when recursively computing
the vector for a target tree, it is difficult or impossible to
recover and the important subtree is washed out (repre-
sented in light gray). Our method, S-DIORA (bottom
row) can recover from errors, and the desired tree ends
up at the top of the beam in the right-most column.

procedure resembling the inside-outside algorithm
(Baker, 1979), which allows it to induce syntactic
tree structures for input sentences without access
to labeled training data, and achieves near state-
of-the-art results on unsupervised constituency
parsing. DIORA resembles pre-trained language
models, such as ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2019), in that it is trained
with a self-supervised blank-filling objective on
large amounts of unlabeled data.

DIORA is a strong unsupervised parser in spite
of its locally greedy nature. DIORA works by en-
coding all subtrees covering a particular span as
separate vectors, and then computing a weighted
average of these vectors — DIORA uses this av-
eraged vector later in the dynamic program to rep-
resent the entire forest of trees covering a span.
DIORA computes a score for each subtree; intu-
itively, a subtree’s score affects how strongly it is
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represented in the averaged vector. The represen-
tations are computed recursively, and when a tree
that looks locally not important is given a weak
score, as shown in Figure 1, it will be washed out.
This weakness in local decision making is similar
to the label bias problem (Lafferty et al., 2001) in
sequence prediction.

In this paper, we extend DIORA so that it can
easily recover from local errors (§3). We replace
the weight assignment used for vector averaging
with a sparse operator equivalent to a one-hot
argmax function, ensuring that each representa-
tion accurately encodes a single tree (hence, we
call our method S-DIORA). In S-DIORA, it is not
possible for a subtree to be washed out, although it
is still possible to make an error by ignoring a po-
tentially important subtree. Fortunately, this can
be alleviated by adding a beam to each cell of the
chart, allowing multiple subtrees over any span to
be considered. The key benefit of our modifica-
tion is that error recovery is easily possible, where
previously the vector serves as a bottleneck that
makes error recovery difficult or impossible.

We initialize an instance of S-DIORA using
the previously released DIORA model, then fine-
tune before evaluating on the target domain, con-
stituency parse trees from the English WSJ Tree-
bank (PTB, Marcus et al. 1993). In one experi-
mental setting, we assume no access to the evalua-
tion domain and use a subset of DIORA’s training
data, a concatenation of the SNLI (Bowman et al.,
2015) and Multi-NLI (Williams et al., 2018b) cor-
pora (hereinafter NLI). In the other setting, we
assume access to raw text in the target domain,
parse tree labels excluded. In both cases, we see
S-DIORA improves on the original DIORA per-
formance by at least 4 F1, and training on the PTB
raw text leads to more than 3 F1 over the previous
state of the art in constituency parsing.

In summary, the main contributions in this paper
are: (a) An extension to DIORA called S-DIORA
that allows for easy recovery from local errors;
(b) New results in unsupervised constituency pars-
ing, improving over the previous state of the art
by 2.2� 6% F1 depending on the data used for
fine-tuning; and (c) Thorough error analysis of the
parse tree output revealing useful insights of why
S-DIORA improves over baselines, for example,
capturing marginally less prepositional phrases in
the parse tree output yet making half the PP-
attachment errors.

2 DIORA (Drozdov et al., 2019a)

Drozdov et al. (2019a) introduced DIORA, an un-
supervised model that learns to ‘reconstruct the in-
put by discovering and exploiting syntactic reg-
ularities of the text.’ It operates much like a
masked language model or denoising autoencoder
— first it encodes all-but-one of the words from
the input sentence as a vector representation, then
it decodes from this vector the missing word.
DIORA encodes the sentence in the shape of a
constituency tree, yet the model is trained using
raw text only and without access to tree anno-
tations. The ‘ground truth’ tree is unknown, so
all valid trees are considered simultaneously us-
ing an efficient dynamic program with soft vector
weighting.

Here is a sketch for how this approach works.
Consider the hypothetical sentence with tokens:
x0x1x2x3. Although the ‘ground truth’ tree is un-
known, one valid tree is ⌧ = ((x0(x1x2))x3). For
each span of token xi:j DIORA computes an in-
side vector hin

i,j , summarizing the information in
that span. Additionally, DIORA computes an out-
side vector hout

i,j representing the tokens not in xi:j .
Assume that x2 is the target token to predict, then
for the parse tree ⌧ the token x1 is in the inside
context for x2 because x1 is the immediate sibling
of x2 in the subtree capturing both tokens. The to-
kens x0 and x3 are not captured in this subtree and
are considered to be in the outside context of x2.
DIORA represents the inside context as hin

1,1 and
the outside context as hout

1,2 to compute hout
2,2,k. The

k in the subscript indicates that this is only one
of many possible valid trees for the hypothetical
sentence. DIORA assigns a weight to each valid
tree s2,2,k where higher weight values indicate the
tree is more helpful for predicting the target to-
ken. The vector used to predict the target token
is a weighted summation of all the tree represen-
tations hout

2,2 =
P

k q2,2,kh
out
2,2,k where qi,j,k is a

weight DIORA assigns to each subtree.

The rest of this section covers in more techni-
cal detail how to recursively compute the inside
and outside vectors and weights for DIORA. The
recursive computation is done efficiently using a
chart data structure and dynamic program simi-
lar to the inside-outside algorithm (Baker, 1979).
Part of this computation involves a softly weighted
summation, which is an efficient way to encode all
valid trees, yet has some downsides (§2.3).
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n � 1k + 1kj + 1jii � 10ki jk + 1
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Figure 2: In the inside pass (left) DIORA composes
two neighboring vectors. In the outside pass (right)
DIORA computes the values for a target span (i, j) re-
cursively from its sibling inside span (j+1, k) and out-
side spans (0, i � 1) and (k + 1, n � 1). The sibling
span on the outside pass can appear to the left of the
target span, in which case the indexing is adjusted.

2.1 Scoring and Composition

To fill the chart, DIORA learns to compose vec-
tors using a multi-layer neural network (referred
to as MLP), and to score vectors using a bi-linear
function. In this section, we describe the chart-
filling procedure from Drozdov et al. (2019a) us-
ing the indexing scheme as demonstrated by Fig-
ure 2. The exact equations used to fill the inside
chart are:

hin
i,j,k = MLPin(hin

i,k;h
in
k+1,j)

s
in
i,j,k = (hin

i,k)
>
Whin

k+1,j + s
in
i,k + s

in
k+1,j

In the inside chart, when i = j the scalars s
in

equal 0, the matrix W is learned, and the vectors
hin are equal to the embedding of the token for the
i-th position in the sentence x.

The equations for filling the outside chart are:

hout
i,j,k =

(
MLPout(hin

j+1,k;h
out
i,k ), if k > j

MLPout(hin
k,i�1;h

out
k,j ), else

s
out
i,j,k =

8
>>>><

>>>>:

(hin
j+1,k)

>
Uhout

i,k + s
in
j+1,k, if k > j

+ s
out
i,k

(hin
k,i�1)

>
Uhout

k,j + s
in
k,i�1, else

+ s
out
k,j

In the outside chart, when i = 0 and j = |S|�1
the scalars s

out equal 0, the matrix U is learned,
and the vector hout is learned independent of the
sentence (analogous to the initial hidden state in a
recurrent neural network).

For a given span (i, j) there may be multiple
valid split points or parent-sibling contexts. If
each was considered separately, this would lead

to a combinatorial explosion of paths to explore.
Instead, DIORA averages the scalars and vectors
that share the same (i, j) values. This is identical
for the outside or inside pass, taking the following
form:

qi,j,k =
si,j,kP
k0 si,j,k0

hi,j =
X

k

qi,j,khi,j,k

si,j =
X

k

qi,j,ksi,j,k

2.2 Learning

DIORA is trained end to end via word prediction.
The bottom-most vectors in the outside chart rep-
resent the entire sentence x except for a single to-
ken. By predicting this missing token xi from the
outside vector hout

i,i , we may update the model’s
parameters without any parse tree labels.1 The
training objective for a single sentence is:

Jrec = � 1

|x|
X

i2|x|

logP (xi|{x}�i) (1)

2.3 Parse Tree Inference

Although DIORA is not trained with any parse
tree annotations, its chart filling procedure can
be used to extract binary unlabeled parse trees.
First, fill the inside chart following §2.1. After-
wards, use the CKY algorithm to find ŷ the max-
imal scoring tree where the score for a tree y is
S(y) =

P
(i,j,k)2y s

in
i,j,k. This approach demon-

strated impressive results for unsupervised con-
stituency parsing (Drozdov et al., 2019a).

To understand better the effectiveness decoding
parse trees with DIORA, we train DIORA for su-
pervised parsing using a binarized version of the
‘ground truth’ parse trees from the English Penn
Treebank (Marcus et al., 1993). The training pro-
cedure is done by optimizing the structured SVM
loss:

J
sup
tree = max(0, S(ŷ)� S(y) + 1),

where S(ŷ) is the score of the maximal tree and
S(y) is the score of the ‘ground truth’.

1Since the outside vector is used for word prediction,
tricks associated with the inside-outside algorithm using only
backpropagation of the inside-pass (Eisner, 2016) are not ob-
viously applicable, if at all.
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We use the off-the-shelf parser from Kitaev and
Klein (2018) as a baseline and the results are
shown in Table 1. Although DIORA is strong in
unsupervised parsing, the supervised parsing re-
sults are not as competitive with the baseline as
we had expected, and lead us to consider deeply
why this might be the case.

We posit the low performance in supervised
parsing is due to DIORA’s inability to effectively
recover from local errors. Predicting trees in
DIORA is exact — you are guaranteed to find
the highest scoring tree given the scalar values as-
sociated with each span, but there is a weakness
when assigning the scalar values. Specifically,
the scalar values are assigned using local infor-
mation, and may assign a low weight to a subtree
which, when given more information, deserves to
be given higher weight. Said plainly, this might
occur when the sentence has structural ambigu-
ity that requires context to resolve. For instance,
the clause ‘We saw the dog with my phone,’ has a
more likely parse tree depending on the context.2,3

In the next section we present our extension to
DIORA that addresses this downside.

n  20 n  40

Model Binary N-ary Binary N-ary

Kitaev and Klein (2018) 87.5 84.0 85.9 83.6
DIORA 86.0 73.9 81.7 69.1
S-DIORA 89.9 77.5 84.8 73.2

Table 1: Supervised parsing results on the validation set
of PTB using parsing F1 with binarized trees. DIORA
does not do well because of its inherent weakness, and
the best setting from S-DIORA (Table 2) is superior.

3 S-DIORA: Single Tree Encoding

We improve DIORA by making it more robust
to local errors. DIORA is sensitive to errors be-
cause its vector averaging approach makes it diffi-
cult or impossible to recover when important sub-
trees have been washed out. The first modification
we present prevents trees from being washed out
by replacing the weights q with a sparse opera-
tor q0 equivalent to a one-hot argmax. This effec-
tively replaces vector averaging with selection of
the highest scoring subtree for each span.

2In this particular example, we assume the rest of the sen-
tence serves as sufficient context rather than unavailable in-
formation (i.e. world knowledge).

3Two valid parses for this clause are: ‘(We (saw the dog)
(with my phone))’ and ‘(We (saw (the dog (with my phone)))).’

q
0
i,j,k = argmax

k0
[si,j,k0 ][k]

hi,j =
X

k

q
0
i,j,khi,j,k

si,j =
X

k

q
0
i,j,ksi,j,k

This change alone is not sufficient. If using only
a single highest-scoring tree, S-DIORA would re-
main as vulnerable, or more so, to local errors
that are inevitable when using the context-free ap-
proach of the inside-outside algorithm. Instead,
at each cell in the chart we record up to � val-
ues corresponding to the highest scoring subtrees.
We refer to � as beam-size, and our experiments
demonstrate that using a beam-size of 2 already
gives a great improvement in results, although any
size of � can be used at test time regardless what
was used during training.

In the popular K-means algorithm, each point
minimizes its distance to only one centroid. Us-
ing this as motivation, we train S-DIORA s.t. each
sentence is only drawn towards one tree. We im-
plement this change using a variant of the struc-
tured SVM loss:

J
unsup
tree (x) = min(0, S(y1)� S(y0) + 1),

where S(yi) is the score for the i-th tree repre-
sented on the beam and S(y) =

P
(i,j,k)2y s

in
i,j,k.

S-DIORA trains with this loss in addition to the re-
construction loss (the original DIORA objective):

JS-DIORA = Jrec + J
unsup
tree

A natural question to ask is whether S-DIORA
is difficult to train given argmax is relatively
non-smooth. To help train S-DIORA, we em-
ployed different tricks. During our unsupervised
parsing experiments, we used gumbel-top-k (Kool
et al., 2019) for q0 to ensure the model would suf-
ficiently explore multiple parse trees. We also
added regularization via mixout (Lee et al., 2019a)
or L2 regularization for the initial parameters so
that the model would not diverge drastically from
its initialization and suffer catastrophic forgetting.
Empirically, we found that none of these addi-
tions were necessary, and that fine-tuning with the
JS-DIORA objective was sufficient. One possible
explanation for why this is so is that training with
� > 1 already lets S-DIORA explore multiple
subtrees for each span during training.



4836

4 Experiments and Results

The model and approach in this paper are moti-
vated mainly by wash out in DIORA with respect
to its vector averaging. In this section we experi-
mentally test the following hypotheses:

• There are often multiple valid parse trees for
a clause (in other words, phrases can have
structural ambiguity), therefore we expect
that S-DIORA with a beam should be more
effective at supervised parsing than DIORA.

• Word prediction benefits from parsing sen-
tences with their most likely constituency
tree, therefore S-DIORA, which is trained via
word prediction, should be more effective at
unsupervised parsing than DIORA because it
can recover from local errors.

• Parsers are sensitive to their training domain.
Although we expect training with S-DIORA
to be helpful for unsupervised parsing, we ex-
pect an even bigger benefit when training on
the same domain as used for evaluation.

4.1 Preliminaries: Constituency Parsing

We measure the performance of our changes via
unsupervised and supervised parsing on the test set
of the WSJ Penn Treebank (Marcus et al., 1993).4

All models (S-DIORA and baselines) output unla-
beled binary trees5 and are evaluated via sentence
level F1 (S-F1).

• True Positives (TP) are the spans in both parse trees
(inferred and ground truth).

• False Positives (FP) are spans predicted but not in the
ground truth.

• False Negatives (FN) are spans in the ground truth but
not the predicted tree.

• Sentence F1 = 1
|X|

P
x2X

2⇥TP(x)
2⇥TP(x)+FP(x)+FN(x)

Following previous work, we consider only
non-trivial spans (covering 2 or more words, and
ignoring spans covering the entire sentence). For
pre-processing we remove punctuation.

4We evaluate all models using the eval script from Kim
et al. (2019). We noticed a small bug in the eval script where
some spans covering the entire sentence were not being ig-
nored. This lead to a very small change in the numbers, but
for this reason, our numbers for baselines may appear slightly
different from previous work.

5Although models output binary trees, the ground truth
has n-ary trees. This establishes an upper bound on the high-
est possible F1 since each model has an unavoidable penalty
to precision.

4.2 Supervised Parsing

For supervised constituency parsing we use the
off-the-shelf parser from Kitaev and Klein (2018)
as a baseline to compare against DIORA and S-
DIORA. For training we use the parse trees from
training split of PTB and evaluate using the valida-
tion data. We binarize the ground truth using the
Stanford parser (Manning et al., 2014) and train
for 10 epochs. Results against the binary trees
and original n-ary (ingoring labels in both cases) is
shown in Table 1. Both DIORA and S-DIORA are
trained from random initialization using the struc-
tured SVM loss from Kitaev and Klein (2018).

We see that DIORA is not competitive with the
Kitaev and Klein (2018) parser, and attribute this
to wash out and its inability to recover from errors.

For S-DIORA we train and evaluate with � 2
{1, 2, 3, 4} and results are shown in Table 2. We
see, unsurprisingly, that regardless of the beam-
size at training, when � = 1 at test time the per-
formance is worse than DIORA. This is because
even though S-DIORA does not suffer from wash
out, when the beam is too small it can not recover
from errors. As the beam-size increases, so does
performance, surpassing DIORA by 3 F1 in the
best case (� = 3 for training; � = 4 at test time).

n  20 n  40

� 1 2 3 4 1 2 3 4

1 84.6 87.8 88 88.2 77.7 81.5 82.3 82.6
2 85.1 88.8 89.4 89.7 78.6 83 83.9 84.4
3 85.7 88.9 89.7 89.9 79.4 83.3 84.5 84.8

4 84.7 88.7 89.3 89.5 78.4 82.8 83.8 84.2

Table 2: Supervised parsing results on the validation set
of PTB using binarized trees for S-DIORA. The grid
represents parsing F1 with different values of � at train
time (rows) and test time (columns). The model is not
effective when � at test time is 1 because it can not
recover from errors. Increasing � for both training and
test test time is helpful, with the best performance for
�train = 3 and �test = 4. Beam search benefits short
sentences (length n  20) and long ones (n  40).

4.3 Unsupervised Parsing

We explored two settings in unsupervised parsing.
In the first, the zero-shot case, we assume no ac-
cess to the evaluation domain. Instead, we sample
a subset from the NLI data used to train DIORA
and use this to fine-tune S-DIORA. The subset in-
cludes the same number of sentences as the train-
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ing data from PTB and the same sentence length
distribution. The results are shown in Table 3 with
the model name S-DIORANLI . This model does
substantially better than the original DIORA (and
improvement of more than 5 F1) and is even com-
petitive with the state-of-the-art model C-PCFG
(Kim et al., 2019).

In the other experimental setting we assume
access to raw text in the target domain is avail-
able but annotations are not. We fine-tune us-
ing the training data from PTB (about 40k sen-
tences) and results are shown in Table 3 with the
model name S-DIORAPTB . This improves upon
S-DIORAPTB by a full 2 F1 points and is also
substantially better than the previous state of the
art by 3.5 F1.

S-DIORA sees a large improvement in WSJ-10.
These sentences are length 10 or less and previ-
ously DIORA was on-par with ON-LSTM (Shen
et al., 2019). When we bucket F1 by sentence
length, we see that S-DIORA improves not only
short sentences but on all sentence lengths.

To determine whether fine-tuning is necessary,
we initialize S-DIORA from DIORA and evaluate
it immediately. In this setting DIORANone per-
forms 5 F1 less than DIORA, confirming the im-
portance of fine-tuning.

To further determine if the extra training data
was the main factor in the improved performance,
we train DIORA with the an equivalent amount of
data and see no improvement. This is not surpris-
ing given that the pre-trained DIORA was trained
initially until convergence on relatively more data.

WSJ

Model F1max F1µ F1n10

ON-LSTM (Shen et al., 2019) 50.21 48.1† 61.02
C-PCFG (Kim et al., 2019) 60.32 55.2† 68.82
DIORA (Drozdov et al., 2019a) 56.75 - 60.55
S-DIORANone (Ours) 51.56 - 59.36
S-DIORANLI (Ours) 61.68 54.8 70.41
S-DIORAPTB (Ours) 63.96 57.6 71.80

Table 3: Unsupervised parsing results. We evaluate
each model on the full PTB test set using the evalua-
tion script provided by Kim et al. (2019). The average
across random seeds is F1µ6and the best model’s F1 is
reported as F1max. We take the best model and also
evaluate it on sentences of length of 10 or less and re-
port the value in F1n10. Values with a † are copied
from Kim et al. (2019). We only had access to a single
DIORA model so no F1µ is reported.

4.4 Training and Implementation Details

When applicable, we use the MLP with ‘softmax
loss’ model checkpoint provided by Drozdov et al.
(2019a). S-DIORA makes an impactful change to
DIORA, but its parameters are exactly the same,
making it easy to load a pretrained DIORA model
for S-DIORA. Our implementation of S-DIORA,
checkpoints of best models, training scripts, and
all parsing output are available online.7 Additional
training details are covered in the Appendix A.1.

5 Discussion and Analysis

In this section we examine the parse tree output of
the models in our experimental setup with more
fine-grained detail than parsing F1. Given the
prevalence of pre-trained language models in NLP
tasks, we also include in our analysis recent re-
sults using transformers for unsupervised parsing.
In addition, we present a new baseline demonstrat-
ing that pretrained language models are better at
unsupervised parsing than previously known.

5.1 Linguistic Error Analysis

Parsing F1 is useful to quickly compare perfor-
mance between parsers, and previous work in un-
supervised parsing often also report segment recall
to give a sense of which phrases are most often
captured in the output. To provide an even more
thorough treatment of linguistic errors we add la-
bels to the parse trees using the parser from Ki-
taev and Klein (2018) and then run the Berkeley
parser analyzer (Kummerfeld et al., 2012). This
latter tool classifies mistakes for each predicted
tree by the type of phrases (or patterns like coordi-
nation) involved in the error, allowing analysis of
the types of errors being made by a model. In Ta-
ble 4 we show the parsing F1, segment recall, and
error counts as determined by the analyzer.

By segment recall, we see that C-PCFG outper-
forms DIORA in segment recall for NP and PP,
explaining its high S-F1. The linguistic analysis
tells a slightly different story — C-PCFG makes
less errors associated with NP internal structure
and clause attachment, but substantially more er-
rors associated with PP attachment.

7https://github.com/iesl/s-diora
7S-DIORA F1µ is reported across 5 random seeds with

the same hyperparameters. S-DIORANone is evaluated after
initialization, so F1µ = F1max. Since we use early stopping
it is not possible for the best model to be worse than initializa-
tion, hence S-DIORA performance is strictly � performance
of S-DIORANone.

https://github.com/iesl/s-diora
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Model � S-F1 SBAR NP VP PP ADJP ADVP Mod. NP-I NP-A PP-A VP-A Clause Coord.

ELMo - 42.3 40.3% 50.7% 43.7% 45.9% 57.0% 74.0% 826 1416 211 1943 21 1239 124
XLNet�=0 - 40.8 35.3% 57.1% 28.1% 37.4% 53.0% 58.0% 974 1348 221 1935 14 1423 103

XLNet�=1.5 - 48.0 60.9% 52.8% 51.7% 56.2% 51.4% 68.3% 673 1347 182 1748 50 1375 117

DIORA - 56.9 68.1% 74.2% 61.4% 55.1% 54.7% 74.4% 634 784 237 1356 47 928 165
C-PCFG - 61.2 62.1% 82.0% 53.5% 69.7% 54.0% 62.6% 655 753 253 1997 42 858 166

S-DIORANone 1 50.6 55.5% 67.4% 48.2% 48.0% 54.7% 64.1% 837 931 281 1629 44 939 174
S-DIORANLI 1 59.7 55.4% 73.5% 72.9% 59.9% 46.0% 53.1% 642 952 293 1076 76 704 180
S-DIORAPTB 1 61.9 56.8% 76.3% 76.4% 65.9% 43.9% 60.7% 537 922 281 930 84 933 187

S-DIORANone 3 51.6 59.4% 67.4% 51.5% 48.4% 57.5% 61.1% 803 945 252 1432 46 910 164
S-DIORANLI 3 61.3 58.0% 75.2% 76.5% 61.2% 50.9% 56.9% 585 920 292 910 76 753 177
S-DIORAPTB 3 63.3 59.2% 78.0% 78.9% 67.1% 49.1% 59.9% 487 917 265 861 91 954 186

Table 4: To better understand the difference between models, displayed above are the segment recall on the WSJ
validation set separated by phrase type (the left columns). For a more informative look at linguistic phenomenon,
we use the Berkeley parser analyzer (Kummerfeld et al., 2012) and display error counts (the right columns). Since
the unsupervised parsing models do not provide labels, we use high performing supervised constituency parser
(Kitaev and Klein, 2018) to label the trees. � is beam size. The frequency of each label in the validation set is
ADJP=428, ADVP=262, NP=10350, PP=3877, SBAR=1091, VP=5407. The error types are: Modifier Attach-
ment (Mod.), NP Internal Structure (NP-I), NP Attachment (NP-A), PP Attachment (PP-A), Clause Attachment
(Clause), and Coordination (Coord).

5.2 Unsupervised Parsing with Large

Pre-trained LMs

We introduce a new unsupervised parsing baseline
using ELMo (Peters et al., 2018), so that we may
compare S-DIORA with large pre-trained LMs, a
class of models that have recently proven very ef-
fective across NLP tasks. To extract a parse tree
from ELMo, we first compute vector similarity be-
tween phrase embeddings in the output, then use
these scalar values as input to the CKY algorithm.8

Compared to ELMo we see that S-DIORA cap-
tures less ADVP phrases yet also makes less NP-I
errors. Although S-DIORA has a strong affinity
for VP phrases ELMo makes less VP-A errors.

For further comparison we include the best
models from Kim et al. (2020). We see that
XLNet�=0 is the worst of all models in S-F1 and
VP segment recall, but also has the fewest VP-A
errors. This suggests that errors related to seg-
ment recall are likely folded into a different cat-
egory such as PP attachment. The right-skewed
model XLNet�=1.5 substantially improves over
XLNet�=0 in SBAR recall and is comparable in
this category with S-DIORA.

Interestingly, although increasing the size of �
8To compute phrase embeddings, we follow the procedure

from (Kitaev and Klein, 2018) which concatenates the for-
ward and backward LSTM vectors at the beginning and end
of each phrase. To compute vector similarity we follow the
procedure in Kobayashi et al. (2019) which uses ELMo sen-
tence embeddings for RST parsing — rather than document
level parsing, our work pertains to sentence level parsing.

in S-DIORA results in a near monotonic improve-
ment in all categories (with some minor excep-
tions), S-DIORA shows a very different error pro-
file when compared to pre-trained LMs, despite
having a better S-F1. For instance, the pre-trained
LMs make fewer coordinations errors, and per-
form better with adverbial phrases (ADVP), than
any version of S-DIORA. In future work, it may be
useful to understand why parser performance does
not increase monotonically. Perhaps this is an ar-
tifact of the current state of unsupervised parsing
research and will change once parsers improve be-
yond some threshold.

5.3 The Benefit of Error Recovery

5.3.1 DIORA versus S-DIORA

It is not sufficient to initialize S-DIORA from
DIORA without fine-tuning. DIORANone does
worse than DIORA in nearly every category. Fur-
thermore, the biggest benefit is gained when using
S-DIORA with � > 1, otherwise error recovery is
not possible (see Figure 3).

DIORA is trained on NLI and it is not surprising
it incurs so many errors in coordination and clause
attachment, which are frequently observed in do-
main mis-match (Kummerfeld et al., 2012). We
used the same checkpoint for finetuning with the
original formulation of DIORA — any improve-
ments would be from exposure to more training
data. When using NLI for finetuning, across 5
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The vote was a test of the government 's resolve to proceed with a restructuring program

Figure 3: In this example, a beam-size of 1 is not
sufficient for S-DIORA to improve upon DIORA —
error recovery is only achieved with larger �. The
trees from top to bottom are from PTB, DIORA, then
S-DIORAPTB with � = 1, 3. Although larger � can
lead to more errors in certain situations (specifically
clausal attachment), here they decrease.

random seeds there was no improvement over the
pre-trained model. This is not surprising given
the original models were trained until convergence
with relatively large amounts of training data.

Training on NLI provides S-DIORA with a sub-
stantial advantage in segment recall for VP and PP.
S-DIORA does much worse in capturing the low
frequency ADVP category. This does not incur
much penalty in S-F1 but is reflected in NP-I.9

5.3.2 Effects of Beam Size

Performance improves across the board as we in-
crease beam size �, and S-DIORAPTB improves
over DIORA suggesting that single tree encoding
already provided some benefit (recall that we fine-
tuned DIORA on both NLI and PTB with no im-
provements in unsupervised parsing). Most bene-
fit is achieved using � = 3, although in some cases
it helps to increase it further (see Figure 5). In-
creasing the beam also helps with different classes
of errors. In Figure 4 we see the benefit in sen-
tences with tricky coordination.

5.4 Labeled Parsing

We evaluate the labeled trees from §5.1, and the
best performing S-DIORA model achieves 80.7

9The NP-I category covers missed gold phrases within
large noun phrases. In general, much of NP structure in
PTB is not annotated, and in future work it is worth using
the data provided by Vadas and Curran (2011) to investigate
NP structure, as determined by unsupervised parsers, more
thoroughly.

The exchanges and the Securities and Exchange Commission agree on conditions for halting or staying

The exchanges and the Securities and Exchange Commission agree on conditions for halting or staying

The exchanges and the Securities and Exchange Commission agree on conditions for halting or staying

He was punched and kicked by one player and the other broke his jaw

He was punched and kicked by one player and the other broke his jaw

He was punched and kicked by one player and the other broke his jaw

Figure 4: Two sentences where beam-search helps with
ambiguous coordination structures, correctly nesting
noun phrases (top) and getting better coordination of
verb phrases (bottom). The displayed parse tree out-
put, top to bottom, are from PTB, then S-DIORAPTB

with � = 1, 3 respectively.

labeled parsing F1 on the validation data (72.3
recall, 91.2 precision, and 11.7 complete match)
when evaluated this way. This suggests that unsu-
pervised parsers are closer to supervised parsers
than previously realized, and although deciding
which phrases are in the tree is the harder task
(Klein and Manning, 2002), it may be worth pur-
suing unsupervised labeling10 for more informa-
tive error analysis (Bisk and Hockenmaier, 2015).

6 Related Work

Avoiding errors by using rich feature models.

The nature of unsupervised parsing is that good
performance is a result of strong inductive bias,
explaining why DIORA and S-DIORA are so ef-
fective, yet their context-free approach to chart
parsing is also the cause of local errors. S-DIORA
employees a beam at each cell to recover from
local errors, but this would be less helpful if er-
rors were less frequent. Top performing super-

10Typically unsupervised constituency parsing is purely
evaluated by its structure, although recent work from Droz-
dov et al. (2019b) shows that a simple approach to induce
labels with DIORA can be done by clustering the inside and
outside phrase vectors.
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Figure 5: As the beam-size increases, S-DIORA’s out-
put tends to match the ground truth more closely. The
displayed output, top to bottom, are from PTB, then
S-DIORAPTB with � = 1, 3, 5 respectively.

vised parsers do not need error recovery because
they use models with rich features and model each
span score independently (Cross and Huang, 2016;
Stern et al., 2017; Kitaev and Klein, 2018; Mrini
et al., 2019). Previous research has attempted to
achieve the “best of both worlds” by distilling a
strong model for supervised parsing via an unsu-
pervised model’s output (Le and Zuidema, 2015).

These approaches are closely related to fast and

accurate parsing. More accurate models tend to
use richer features that are more expensive to com-
pute, influencing researchers to find efficient tech-
niques to offset the loss in speed (Vieira and Eis-
ner, 2017). In this paper, we use the most simple
approach to learn to parse with the capability to
recover from local errors by maintaining a beam
of size � at each cell in the chart. S-DIORA is of-
ten faster and discovers better trees than DIORA,
but there are other methods for extracting lists
of best or plausible parses (Resnik, 1992; Roark
and Johnson, 1999; Charniak and Johnson, 2005;
Huang and Chiang, 2005; Bouchard-côté et al.,
2009) that might further improve performance.

Sparse structured inference. Various work
has explored sparse alternatives to soft-weighting.
Sparsemax (Martins and Astudillo, 2016) is a de-
terministic sparse alternative to the softmax, and
Gumbel-Softmax (Jang et al., 2017) uses the cat-
egorical reparameterization trick to sample a dis-
crete value during training. Both have attractive
properties but alone would not be sufficient for
overcoming local errors in S-DIORA. Nonethe-
less, these options would be worth exploring for

unsupervised parsing when training with more
data or when the ground truth parse trees are
very different than the ones in S-DIORA’s out-
put frontier after initialization. Other work has
explored methods for differentiable structured in-
ference (Niculae et al., 2018; Mensch and Blon-
del, 2018; Corro and Titov, 2019a,b), which may
also be suitable. It’s worth noting that PCFGs
are not graphical models (Liang et al., 2009), and
marginal inference is often not tractable,11 which
is why these approximate methods may be helpful.

Grammar induction. There is a rich research
history in grammar induction and unsupervised
parsing (Fu and Booth, 1975; Angluin, 1980; Car-
roll and Charniak, 1992). We cover notable work
not already mentioned in Appendix A.2.

7 Conclusion

We introduce S-DIORA, an extension to DIORA
that enables for easy recovery from local errors
and is not subject to wash out from vector aver-
aging. Our experiments in supervised parsing ver-
ify S-DIORA improves upon the representational
power of DIORA. Unsupervised fine-tuning with
S-DIORA leads to new impressive results in un-
supervised constituency parsing, improving upon
the previous state of the art by 2.2� 6% F1, de-
pending on the data used.
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André F. T. Martins and Ramón Fernández Astudillo.
2016. From softmax to sparsemax: A sparse model
of attention and multi-label classification. In ICML.

David McAllester, Michael Collins, and Fernando
Pereira. 2008. Case-factor diagrams for structured
probabilistic modeling. Journal of Computer and
System Sciences.

Arthur Mensch and Mathieu Blondel. 2018. Differen-
tiable dynamic programming for structured predic-
tion and attention. In International Conference on
Machine Learning (ICML).

Anhad Mohananey, Katharina Kann, and Samuel R.
Bowman. 2020. Self-training for unsupervised pars-
ing with prpn. In IWPT.

Khalil Mrini, Franck Dernoncourt, Trung Bui, Wal-
ter Chang, and Ndapa Nakashole. 2019. Re-
thinking self-attention: An interpretable self-
attentive encoder-decoder parser. arXiv preprint
arXiv:1911.03875.

Tahira Naseem and Regina Barzilay. 2011. Using se-
mantic cues to learn syntax. In AAAI.

Tahira Naseem, Harr Chen, Regina Barzilay, and Mark
Johnson. 2010. Using universal linguistic knowl-
edge to guide grammar induction. In Proceedings of
the 2010 Conference on Empirical Methods in Nat-
ural Language Processing.
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A Appendices

A.1 Training Details

All key details for training and evaluating our
method, S-DIORA, are described in the main text.
In this Appendix section we repeat those details
and provide an organized reference to aid repro-
ducibility.

A.1.1 Supervised Parsing Loss and Training

In supervised parsing, we assume access to binary
non-projective constituency trees y for each sen-
tence x. Predicting a tree ŷ with DIORA can be
done using the CKY method described in Drozdov
et al. (2019a). Similarly, backtracking the various
max operations from the inside-pass in S-DIORA
can be used to decode ŷ.12 The conditional prob-
ability of a tree given a sentence is proportional
to the sum of scalar values for each span and split
(i, j, k) in the tree, depicted in Eq. 2.

P (y|x) / S(y) =
X

(i,j,k)2y

s
in
i,j,k (2)

To train DIORA or S-DIORA to predict the
most likely tree for an input sentence, we use the
structured SVM loss employed by multiple other
work in supervised parsing (Stern et al., 2017; Ki-
taev and Klein, 2018) with a margin of 1 and do
not use loss augment inference, depicted in Eq. 3.

J
sup
tree = max(0, S(ŷ)� S(y) + 1) (3)

In our experiments, we train DIORA and S-
DIORA on the training from PTB (roughly 40k
sentences). Both models are trained from random
initialization and using the same hyperparameters.
Early stopping is done by evaluating against the
validation data each epoch. S-DIORA is trained
with different beam-size � = {1, 2, 3, 4}.

This paper is primarily concerned with unsuper-
vised parsing, and we only explored one hyperpa-
rameter setting as supervised parsing is used pri-
marily to verify the benefit of beam search in S-
DIORA and its improvement over DIORA. Those
hyperparameters are listed here:

12Each value save on the beam in S-DIORA represents a
unique tree — duplicate trees can not appear on the beam.

Learning Rate (⌘): 2�3

Model Dimension: 400

Max Training Length: 20

Batch Size: 32

Max Epochs: 10

Optimization Algorithm: Adam
Hardware: 1x1080ti
Training Time: O(12h)

For both supervised and unsupervised training,
each batch is restricted to sentences of uniform
length.

A.1.2 Unsupervised Loss and Training

DIORA and S-DIORA are models especially ef-
fective for unsupervised parsing. In this setting
we assume no access to parse tree labels, only raw
text. The models are trained end-to-end by re-
constructing the input sentence from the outside
vectors. Reconstruction is defined as predicting
a word xi given its context {x}�i which are the
words in the rest of the sentence. Unlike Drozdov
et al. (2019a), we use a fixed vocabulary instead
of sampling, which includes the 10k most frequent
words from the training data.13 The objective for
a single sentence is depicted in Eq. 4.

Jrec = � 1

|x|
X

i2|x|

logP (xi|{x}�i) (4)

As mentioned in §3, we also train S-DIORA to
increase the confidence gap between its highest-
scoring tree on the beam and other trees. To ac-
complish this we use the same structured SVM
from supervised parsing, but instead of the ground
truth y, we include the highest-scoring tree on the
beam y0 and the second highest y1. This loss is
depicted in Eq. 5, and the total loss for S-DIORA
is simply the sum of the reconstruction and ‘tree’
losses (Eq. 6).

J
unsup
tree = max(0, S(y1)� S(y0) + 1) (5)

JS-DIORA = Jrec + J
unsup
tree (6)

For S-DIORANLI we train using a subset of
NLI.14 The subset is sampled once from NLI and

13The vocabulary is different between NLI and PTB.
14A concatenation of the training data from SNLI (Bow-

man et al., 2015) and Multi-NLI (Williams et al., 2018b).
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used across all experiments, and consists of the
same number of sentences as the training data
from PTB and also the same distribution of sen-
tence lengths. For S-DIORAPTB we use the train-
ing data from PTB. Early stopping is done by eval-
uating against the validation data each epoch. We
explore various hyperparameter settings, and for
S-DIORA we also train with different beam-sizes
�. S-DIORA is initialized from the MLP with
‘softmax loss’ DIORA checkpoint15 that was re-
leased by Drozdov et al. (2019a). The hyperpa-
rameters explored are listed below:

Learning Rate (⌘): 2�3
, 1�3

, 6�4
, 2�4

Model Dimension: 400

Beam-size (�): 2, 3

Max Training Length (n): 20, 30

Batch Size: 32

Max Epochs: 5

Optimization Algorithm: Adam
Hardware: 1x1080ti
Training Time: O(8h)

We ran each setting for 5 random seeds. The
best performing hyperparameter setting was cho-
sen using validation performance, and the best
performing setting (⌘,�, n) for S-DIORANLI and
S-DIORAPTB were (1�3

, 2, 30) and (2�3
, 2, 30)

respectively.

A.2 Other Work in Grammar Induction and

Unsupervised Parsing

There is a rich research history in grammar induc-
tion and unsupervised parsing. In the main text,
we cover the work most relevant to frame our sci-
entific questions and experimental results. Instead,
here, we mention loosely related work that would
be useful for further analysis and future research.
Furthermore, some of the mentioned work might
be in dependency parsing rather than constituency
parsing, or about measuring syntactic information
without parse trees.

15DIORA and S-DIORA have exactly the same parame-
ters, so one can be initialized easily from the other. The num-
ber of parameters is the same, but the runtime of S-DIORA is
slower by an order of �. Even so, a correctly implemented S-
DIORA should be as fast as DIORA or faster since the sparse
operator q0 can be leveraged to avoid computation when there
are many possible subtrees for a span.

A.2.1 Partial Semantic Information

We assume access to no text annotation, but of-
ten some might be available (Pereira and Schabes,
1992) and this can be leveraged to constrain in-
duced syntax in a useful way. Naseem and Barzi-
lay (2011) explore syntactic structure of seman-
tic relations, presenting an approach that encour-
ages structural consistency for each occurrence of
a specific semantic relation, but also allowing for
variation. DIORA and S-DIORA represent spans
as vectors, and a simple extension would be to en-
courage span vectors associated with the same se-
mantic relation to be similar through contrastive
estimation (Smith and Eisner, 2005a,b; Gimpel
and Bansal, 2014). Rather than encouraging simi-
larity within a relation, Shi et al. (2019) have suc-
cess encouraging similarity between an image and
constituents in its caption.

A.2.2 Multilingual Alignment

Syntactic phrase types do not necessarily trans-
late to the same type across languages (Koehn and
Knight, 2003), but can still leverage parallel text
to improve unsupervised constituency parsing as
a phrase in one language may have less uncertain
structure in another (Snyder et al., 2009).

A.2.3 Label Refinement

Similarities across languages can be used to create
fine-grained grammar rules that are helpful when
applied as soft constraints for grammar induction
since they serve as a prior to contradict patterns
seen in the data (Naseem et al., 2010). These
linguistic priors need not be derived from cross-
lingual data (Druck et al., 2009) — using a small
set of simple rules (e.g. a determiner followed by a
noun is a noun phrase) can be helpful for grammar
induction and can be derived from a few positive
examples of phrases (Haghighi and Klein, 2006).

A.2.4 Model Consistency

Williams et al. (2018a) measure self F1 in addi-
tion to parsing F1 and find the models that con-
sistently converge to the same grammar were also
the ones most different from ground truth, al-
though this was an extreme case as the pertinent
model made trivial predictions (nearly always left-
branching). Follow up work from Mohananey
et al. (2020) shows that self-training is helpful
for training PRPN (Shen et al., 2018) and parsing
F1 improves with self-agreement, with the biggest
benefit for longer sentences.


