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Abstract

We describe a fully unsupervised cross-lingual
transfer approach for part-of-speech (POS)
tagging under a truly low resource scenario.
We assume access to parallel translations be-
tween the target language and one or more
source languages for which POS taggers are
available. We use the Bible as parallel data
in our experiments: small size, out-of-domain
and covering many diverse languages. Our
approach innovates in three ways: 1) a ro-
bust approach of selecting training instances
via cross-lingual annotation projection that ex-
ploits best practices of unsupervised type and
token constraints, word-alignment confidence
and density of projected POS, 2) a Bi-LSTM
architecture that uses contextualized word em-
beddings, affix embeddings and hierarchical
Brown clusters, and 3) an evaluation on 12 di-
verse languages in terms of language family
and morphological typology. In spite of the
use of limited and out-of-domain parallel data,
our experiments demonstrate significant im-
provements in accuracy over previous work. In
addition, we show that using multi-source in-
formation, either via projection or output com-
bination, improves the performance for most
target languages.

1 Introduction

Majority of world’s languages do not have anno-
tated datasets even for the most simple NLP tasks
such as part-of-speech (POS) tagging. However, ef-
forts in documenting low-resource languages often
contain translations, usually of religious text, into
other high-resource languages. One such parallel
corpus is the Bible (Mayer and Cysouw, 2014):
484 languages have a complete Bible translation,
while 2551 have a part of the Bible translated. Our
goal is to learn POS taggers for a diverse set of
target languages in a truly low-resource scenario,
where only a limited and possibly out-of-domain
set of translations into one or more high-resource

languages is available (e.g., the Bible), together
with supervised POS taggers for the high-resource
source language(s).

Unsupervised cross-lingual POS tagging via an-
notation projection has a long research history
(Yarowsky et al., 2001; Fossum and Abney, 2005;
Das and Petrov, 2011; Duong et al., 2013; Agić
et al., 2015, 2016; Buys and Botha, 2016). In con-
trast to our work, these approaches either use large
and/or in-domain parallel data or rely on a large
number of source languages for projection. How-
ever, since projection could suffer from bad transla-
tion, alignment mistakes or wrong assumptions, a
key consideration for all these approaches is how to
obtain high-quality training instances for the target
language (i.e., sentences with accurate POS tags
projected from the source-language(s)). Coupling
token and type constraints (Das and Petrov, 2011;
Täckström et al., 2013; Buys and Botha, 2016),
word-alignment confidence (Duong et al., 2013),
multi-source projection (Agić et al., 2016) and
coverage (percentage of tokens covered by multi-
source projection) (Plank and Agić, 2018) have
shown to lead to training instances of better qual-
ity. However, only one or two of these have been
usually employed.

Our first contribution is a robust approach for
selecting training instances via cross-lingual an-
notation projection that exploits and expands all
these best practices: coupling type and token con-
straints obtained in an unsupervised way, word-
alignment confidence together with the density of
the projected POS, and (optionally) multi-source
projection (Sub-section 2.1).

Our second contribution is a BiLSTM (Hochre-
iter and Schmidhuber, 1997) neural architecture
that uses pre-trained contextualized word embed-
dings, affix embeddings and hierarchical Brown
clusters (Brown et al., 1992). As contextualized
embeddings, we show gains by exploiting the mul-
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tilingual XML-R model (Conneau et al., 2019),
while affix embeddings are particularly useful for
morphologically-rich languages, and word clus-
ters have been shown to be useful for non-neural
POS tagging (Kupiec, 1992; Täckström et al., 2013;
Owoputi et al., 2012). Moreover, in addition to the
single-source setups, we propose an approach that
utilizes multiple source languages by combining
the outputs of single-source taggers via weighted
voting at the token level (Sub-section 2.2).

Our third contribution is an extensive experimen-
tal setup, with 12 diverse target languages in terms
of language family and morphological typology
and six high-resource source languages (Section 3).
While projecting from a single source language can
be efficient, we show that using multiple sources,
either via projection or output combination, fur-
ther improves the tagging accuracy for most target
languages. Our experiments, using limited and out-
of-domain parallel data, demonstrate significant
improvements over previous work (both unsuper-
vised and semi-supervised), even when comparing
our single-source setups to other multi-source ones.
We also investigate how much gold data is needed
to develop supervised taggers comparable to our
best unsupervised models. In addition, we show
that cross-lingual annotation projection generalizes
across languages of different typologies better than
the zero-shot model-transfer approach by Pires et al.
(2019). Finally, our tagging scripts and models are
made publicly available 1.

2 Approach

Our goal is to induce a neural POS tagger for a
target language of interest without any direct su-
pervision. Instead, we rely on parallel translations
between the target and one or more source lan-
guages for which POS taggers are accessible. This
section describes our approach: 1) cross-lingual an-
notation projection via word alignments to prepare
the training instances of the target language, and 2)
neural POS tagging for the target language.

2.1 Cross-Lingual Projection via Word
Alignments

Given sentence-aligned parallel data, we align the
text of the source and target sides at the word level
using GIZA++ (Och and Ney, 2003), while sen-
tences of more than 80 tokens are eliminated. We
construct bidirectional word alignments, by only

1https://github.com/rnd2110/unsupervised-cross-lingual-
POS-tagging

considering the intersecting source-to-target and
target-to-source alignments, and exclude the align-
ment points where the average of the alignment
probabilities in the two directions is below some
threshold α.

Tagging of Source Languages. Since cross-
lingual projection requires a common POS tagset
for all languages, we use the universal POS tagset
of the Universal Dependencies (UD) project 2,
which consists of 17 universal POS tags. We rely
on off-the-shelf taggers to tag the source text prior
to projecting the annotations as described next.

POS Projection using Token and Type Con-
straints. To project the POS tags from the source
to the target language, we use token and type con-
straints based on the mapping induced by the word-
level alignments. The idea of using both token and
type constraints was first introduced by Täckström
et al. (2013). Type constraints define the set of
POS tags a word type can receive. In a semi-
supervised leaning setup, type constraints can be
obtained from an annotated corpus (Banko and
Moore, 2004) or from a resource that serves as a
POS lookup such as the Wiktionary 3 (Li et al.,
2012; Täckström et al., 2013). For the extraction
of type constraints in an unsupervised fashion, we
follow the approach of (Buys and Botha, 2016),
where we define a tag distribution for each word
type on the target side by accumulating the counts
of the different POS tags of the source-side tokens
that align with the target-side tokens of that word
type. The POS tags whose probability is equal
to or greater than some threshold β constitute the
type constraints of the underlying word type. As
token constraint, every aligned token on the target
side gets assigned the POS tag of its corresponding
source-side token.

We combine both token and type constraints
in a slightly different way than Täckström et al.
(2013) and Buys and Botha (2016). If a token is
not aligned, or its token constraint does not exist in
the underlying type constraints, the token becomes
unconstrained (i.e., receives a NULL tag). Other-
wise, the token constraint is applied. Those applied
token constraints represent the projected tags.

In contrast to the previous work, we do not use
the type constraints to impose restrictions when
training the model as they restrict the performance
of our neural architecture.

2https://universaldependencies.org/
3https://wiktionary.org/
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Multilingual Projection. In addition to project-
ing the POS tags from one language to another,
we experiment with a multilingual setup in which
we follow Agić et al. (2016) by projecting the
tags from multiple source languages prior to train-
ing the model (Multiproj). The intuition is that
the projection from a single source might suffer
from inaccurate translation or wrong induced align-
ments. Moreover, the POS tags of two correctly
aligned sentences might differ because of language-
dependent specifications. Such problems can be re-
solved by inducing the tags from multiple sources.

For each target token T , we assign the projected
tag that receives the maximum voting, weighted by
the alignment confidence for each source.

tag(T ) = argmaxtag
∑

i,s p(ls|T )× P (tagi,s|T )

where p(ls|T ) is in {0, 1} to represent whether
target token T is assigned a tag under the projection
from language ls, while P (tagi,s|T ) is the proba-
bility of the alignment resulting in the assignment
of tagi to target token T when projecting from
language ls.

Selection of Training Instances. Prior to
training a POS tagger using the projected tags
as labels, we score the target sentences based on
their “annotation” quality and exclude the ones
whose scores are below a threshold γ. We define
sentence score as the harmonic mean of density
dS and alignment confidence aS , where dS is the
percentage of tokens with projected tags, and aS is
the average alignment probability of those tokens.

Score(S) = 2×(dS×aS)
(dS+aS)

Filtering out sentences of low density and align-
ment confidence is crucial for training the model.
While choosing the sentences with top alignment
scores has proved successful in previous research
(Duong et al., 2013), we add the density factor as
our Bi-LSTM model benefits from longer contigu-
ous labeled sequences.

2.2 Neural POS Tagging

The architecture of our POS tagger is a bidirec-
tional long short-term memory (BiLSTM) neural-
network model (Hochreiter and Schmidhuber,
1997). BiLSTMs have been widely used for POS
tagging (Huang et al., 2015; Wang et al., 2015;
Plank et al., 2016; Ma and Hovy, 2016; Cotterell
and Heigold, 2017) and other sequence-labeling

tasks. The input to our BiLSTM model is a la-
beled sentence where the word representation is
the concatenation of word and sub-word informa-
tion, namely pre-trained and randomly initialized
word embeddings, affix embeddings and word clus-
ters. Figure 1 shows the complete structure of our
neural architecture. 4.

Word and Affix Embeddings We use two types
of word-embedding features: pre-trained contextu-
alized embeddings (PT) and randomly initialized
embeddings (RI). For the pre-trained contextual-
ized embeddings, we use the final layer of the mul-
tilingual XLM-RoBERTa model, XLM-R (Conneau
et al., 2019) 5 XLM-R is a transformer-based multi-
lingual masked language model that is pre-trained
on texts of 100 languages, and its performance is
competitive with strong monolingual models when
tested on a variety of NLP tasks. It also shows bet-
ter performance than multilingual BERT, mBERT
(Devlin et al., 2019), particularly for low-resource
languages. We use the average of the embedding
vectors of the first and last sub-tokens of each word
to represent its pre-trained embeddings.

It is worth noting that when using our architec-
ture for a target language that is not present in the
XLM-R model, one can consider training a custom
XLM transformer-based model 6 given the availabil-
ity of monolingual data and suitable computational
resources, and thus our architecture is not limited
to the languages available in the XLM-R model.

The randomly initialized embeddings are learned
as part of training the model. Coupling both the ran-
domly initialized embeddings and the pre-trained
ones is essential when the domain of the training
data is different from the one of the pre-trained em-
beddings, which is the case in our learning setup,
where we use the Bible data for training, while the
XLM-R model is trained on text from Wikipedia 7

and a CommonCrawl corpus (See Conneau et al.
(2019) for more details).

In addition to word embeddings, we use ran-
domly initialized prefix and suffix n-gram character
embeddings, where n is in {1, 2, 3, 4}, as the use
of affix information has proved effective in POS
tagging (Ratnaparkhi, 1996; Martins and Kreutzer,

4We also experimented with BiLSTM+CRF, but the CRF
layer did not improve the model, which is in line with previous
research (Yang et al., 2018; Plank and Agić, 2018).

5We get better results when using the XLM-R embeddings
as features as opposed to performing fine tuning, where the
latter is more suitable to sentence-level predictions.

6https://github.com/facebookresearch/XLM
7https://wikipedia.org
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Figure 1: The architecture of our BiLSTM neural-network model. PT = pre-trained, RI = randomly initialized.

2017).

Word Clusters. The use of word clusters for
POS tagging was first proposed by Kupiec (1992)
in a supervised tagging setup, and has then proved
efficient for unsupervised learning (Täckström
et al., 2013; Buys and Botha, 2016). In this work,
we follow Owoputi et al. (2012) by utilizing hi-
erarchical Brown clustering (Brown et al., 1992),
which is an HMM-based clustering of a binary
merging criterion based on the logarithmic prob-
ability of a context under a class-based language
model, where the objectives is to reduce the loss in
adjusted mutual information (AMI).

The output of hierarchical Brown clustering is a
binary tree of n leaf nodes that represent n word
clusters, where each word in the vocabulary be-
longs to a single leaf cluster. Leaf clusters are re-
cursively grouped into parent ones (interior nodes)
until a super cluster of the entire vocabulary is
reached (the root).

We produce hierarchical brown clusters for each
target language by applying Percy Liang’s imple-
mentation of Brown clustering 8 (Liang, 2005)
on monolingual text that is a combination of the
Wikipedia and Bible texts of the target language.

For each word, we use the main cluster (the bi-
nary representation of the corresponding leaf node)
and all of its ancestors (the prefixes of the binary
representation) as features. This allows us to use
the hierarchical clustering information and thus
avoid the commitment to a specific granularity
level, where high-level clusters may be insufficient,
while the lower ones may represent over-clustering.

8https://github.com/percyliang/brown-cluster

Custom Softmax Activation. We use softmax
activation on top of the BiLSTM encoding layer
for the computation of the final output. However,
since some words have NULL tags as a result of
missing alignments or non-intersecting token and
type constraints (Sub-section 2.1), we set the value
of the output neuron corresponding to the NULL
tag to−∞ so that it does not contribute to the calcu-
lation of the softmax probabilities and thus prohibit
the model from decoding NULL. Moreover, we
mask the words with NULL tags when computing
the cross-entropy network loss.

Multilingual Decoding. In addition to the
Mulproj setup presented in Sub-section 2.1, we
conduct another multilingual setup where we
combine the outputs of the single-source taggers
through weighted maximum voting at the token
level (Mulout). The weight of a language pair,
w(ls, lt), is measured as a softmax function
whose input vector is the average sentence-level
alignment probabilities when aligning the source
language ls to the underlying target language lt.

tag(T ) = argmaxtag
∑

i,sw(ls, lt)× P (tagi,s|T )

Where P (tagi,s|T ) is in {0, 1} to represent
whether target token T is assigned tagi by the
model trained on the projection from language ls.

3 Experiments and Evaluation

3.1 Languages and Data
We run our experiments on six source languages
and 12 target ones 9 for a total of 72 languages pairs.

9Although the majority of our target languages are high-
resource, we use them in a simulated low-resource scenario.
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We choose six widely-spoken source languages as
the assumption is that for a low-resource language,
a parallel text is highly likely to involve one of them.
These languages are English (Indo-European (IE),
Germanic), Spanish (IE, Romance), French (IE,
Romance), German (IE, Germanic), Russian (IE,
Slavic) and Arabic (Afro-Asiatic, Semitic). On the
other side, we choose 12 diverse target languages
in terms of language family and morphological ty-
pology: Afrikaans (IE, Germanic), Amharic (Afro-
Asiatic, Semitic), Basque (language isolate), Bul-
garian (IE, Slavic), Finnish (Uralic, Finnic), Hindi
(IE, Hindi), Indonesian (Austronesian, Malayo-
Sumbawan), Lithuanian (IE, Baltic), Persian (IE,
Iranian), Portuguese (IE, Romance), Telugu (Dra-
vidian, South Central) and Turkish (Turkic, South-
western).

We use the multilingual parallel Bible corpus 10

(Christodouloupoulos and Steedman, 2015) as the
source of our parallel data, where we perform the
alignment on the verse and word levels. The Bible
text is available in full for our source and target
languages except Basque, where only the new tes-
tament is available.

We use Stanza 11 (Qi et al., 2020) to tag the
source-side text of the source languages except for
Arabic, for which we apply MADAMIRA (Pasha
et al., 2014) for performance gain. However, since
MADAMIRA was trained on PTB tags and was not
designed to follow the UD guidelines, we mapped
the Arabic PTB tags into their UD cognates and
manually corrected the analyses of the most fre-
quent 2,500 Arabic POS and lemma pairs by select-
ing the most likely analysis for each.

We evaluate our models in terms of POS accu-
racy on the test sets of the Universal Dependencies,
UD v2.5 (Zeman et al., 2019) 12. We also report
our results on older versions in order to compare to
the state-of-the-art systems, whenever needed.

3.2 Experimental Settings

The alignment and projection thresholds as well
as the hyperparameters of the model are manually
tuned on Bulgarian, Basque, Finnish and Indone-
sian when projecting from English using the UD
development sets. We set the alignment threshold
α to 0.1 and the threshold γ for the selection of

10http://christos-c.com/bible/
11https://github.com/stanfordnlp/stanza
12Evaluation Corpora: Afrikaans-AfriBooms, Amharic-

ATT, Basque-BDT, Bulgarian-BTB, Finnish-TDT, Hindi-
HDTB, Indonesian-GSD, Lithuanian-ALKSNIS, Persian-
Seraji, Portuguese-Bosque, Telugu-MTG and Turkish-IMST

training instances to 0.5. The POS type distribution
threshold β is set to 0.3 as this has proved effec-
tive by Banko and Moore (2004) and Buys and
Botha (2016). Table 1 lists the number of training
sentences per target language based on the tuned
thresholds.

Language Number of Training Sentences

One-Source Average Mulproj

Afrikaans 23,800 30,900
Amharic 10,000 26,700

Basque 7,200 7,900
Bulgarian 21,600 30,400

Finnish 24,000 30,900
Hindi 16,100 30,900

Indonesian 9,600 28,900
Lithuanian 25,700 31,100

Persian 17,500 30,900
Portuguese 26,800 31,100

Telugu 10,100 30,000
Turkish 16,000 30,100

Table 1: Number of training sentences per language
(rounded to the nearest 100)

Our BiLSTM networks are one layer deep with
128 nodes, while the size of all the randomly initial-
ized word and affix embeddings is 64, and the num-
ber of Brown clusters is set to 128. We use Adam
for optimization (Kingma and Ba, 2014) with a
learning rate of 0.0001 and a learning decay rate of
0.1 at each epoch for a total of 12 epochs. To avoid
overfitting, we apply L2 regularization and two
dropout layers, before and after the BiLSTM en-
coder, with a dropout rate of 0.7. The training rate
is approximately 2,500 sentences per hour when
utilizing a single 2.00 GHz CPU.

3.3 Results

Table 2 reports the accuracy of our POS taggers
for all 72 language pairs, in addition to the two
multi-source setups Mulout and Mulproj , based
on the average of three runs. As upper bound, we
report the state-of-the-art supervised results when
training on the UD training sets 13 using Stanza 14

(Qi et al., 2020).
There is a noticeable variance in the performance

of the different taggers. However, languages of
the same families transfer best across each other.
For instance, English and German transfer best to
Afrikaans (IE, Germanic), while Spanish yields the
best results for Portuguese (IE, Romance), and Rus-
sian is the best source for Bulgarian (IE, Slavic).

13One exception is Amharic; only a test set is available.
14https://stanfordnlp.github.io/stanza/performance.html
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Source for Unsupervised Learning Upper-Bound
SupervisedTarget English Spanish French German Russian Arabic Mulout Mulproj

Afrikaans 86.9 83.1 83.9 84.1 76.4 66.1 83.3 89.3* 97.6
Amharic 75.3 74.6 73.9 75.2 73.3 73.7 77.7 79.3* –

Basque 67.3 64.6 65.8 66.7 61.7 55.7 66.6 67.1 96.2
Bulgarian 85.6 83.2 83.7 80.7 87.2 72.5 86.9 88.2* 98.7

Finnish 82.8 80.9 80.0 82.0 78.6 67.2 82.1 83.4* 97.0
Hindi 73.9 72.3 72.6 60.9 66.9 61.5 74.1 72.8 97.6

Indonesian 84.1 83.5 82.9 81.2 82.4 71.3 84.4 83.0 93.7
Lithuanian 80.9 78.2 79.0 78.7 83.3 70.5 81.5 82.5 93.4

Persian 77.2 78.1 76.1 76.5 78.1 70.6 79.0* 77.3 97.3
Portuguese 86.1 88.7 86.6 81.2 79.5 69.5 88.6 87.8 97.0

Telugu 80.0 72.3 73.7 75.6 72.7 65.1 75.6 77.1 92.9
Turkish 74.3 72.7 74.7 72.8 72.0 67.6 74.9 74.6 94.2

Average 79.5 77.7 77.7 76.3 76.0 67.6 79.5 80.2* 96.0

Table 2: POS tagging results (accuracy) when evaluating on the test sets of UD v2.5. The best unsupervised result
for each target language is in bold, while statistically significant multilingual improvements are marked by *. The
last column reports the supervised performance by Stanza

One exception is the case of transferring from Ara-
bic to Amharic (Afro-Asiatic, Semitic). One pos-
sible reason is that the Arabic analyzer does not
follow the UD guidelines (Sub-section 2.1), which
also affects the performance of all the taggers that
use Arabic as the source.

Since English is the most vital language, where
its morphological-annotation guidelines were the
basis for those of other languages, transferring from
English yields the best performance for seven target
languages. On the target side, the Basque taggers
suffer from the lowest performance since the par-
allel data is only available for the New Testament
of the Bible, along with the fact that Basque is a
language isolate, which is challenging for cross-
lingual transfer learning.

Multi-Source Performance. As expected, the
multi-source setups achieve the best on-average
results and the best tagging performance for eight
target languages. In addition,Mulproj outperforms
Muloutput in seven occasions, which highlights
the importance of producing projected tags of high
quality prior to training the taggers. As shown in
Table 1, Mulproj results in a significant increase
in the number of training sentences, which, along
with the quality of the projected tags, gives the best
overall performance.

Per-Tag accuracy. Table 3 reports the accuracy
of nouns, verbs and adjectives for each target lan-
guage in theMulproj setup. The accuracy of adjec-
tives is the lowest across all target languages. The
only exception is Persian, where the performance
of verbs is lower than that of nouns and adjectives,
and it is the lowest among all target languages. In

contrast, the accuracy on nouns is the highest on av-
erage and across nine languages, where it exceeds
90% in Afrikaans, Bulgarian and Portuguese, while
verbs achieve the highest accuracy in Amharic, In-
donesian and Telugu. Each of the three tags is
ranked second to the lowest in Basque, an isolate
with the least available data.

Languages NOUN VERB ADJ

Afrikaans 91.5 85.0 83.6
Amharic 78.1 81.1 43.6

Basque 70.1 61.0 24.9
Bulgarian 92.5 87.8 71.0

Finnish 84.7 79.7 63.1
Hindi 75.2 63.6 53.5

Indonesian 80.2 84.3 56.0
Lithuanian 88.7 86.0 56.2

Persian 85.4 49.0 54.9
Portuguese 92.2 89.0 76.6

Telugu 68.0 80.5 15.0
Turkish 77.2 80.5 44.2

Average 82.0 77.3 53.6

Table 3: Accuracies of nouns, verbs and adjectives for
each target language in the Mulproj setup

Ablation Experiments. We conduct two abla-
tion experiments: 1) no XLM-R embeddings (i.e.,
the target language is not present in the XLM-R
model, and no computational resources are avail-
able to train one), denoted by No XLM, and 2) no
XML-R embeddings and no word clusters (i.e., no
monolingual data is available for the target lan-
guage), denoted by No Mono.

When testing the No XLM and No Mono setups
on all 72 language pairs 15, the average accuracy

15We double the learning rate as the complexity decreases.
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Figure 2: The best performance of each target language in three settings: full system (black), No XLM (dark gray)
and No Mono (light gray)

decreases by absolute 2.2% and 5.1%, respectively.
However, when projecting from multiple sources
in the Mulproj setup, this is reduced to only 1.8%
and 4.1%, respectively.

Figure 2 reports the best performance for each
target language in three setups: no ablation (full
system), No XLM and No Mono. The impact of
eliminating the XLM embeddings is most notice-
able in Telugu, while it is negligible in Lithua-
nian, with absolute reduction of 5.8% and 0.6%
in POS accuracy, respectively. On the other hand,
Hindi benefits most from word clustering, where
the No Mono performance is 4.9% below that of
No XLM.

The performance drop in the No Mono setup
highlights the importance of monolingual data,
which is key to the competitive performance of our
taggers, especially when compared to other sys-
tems that utilize linguistic resources. However, the
performance of the system in the absence of only
the XLM-R embeddings decreases by a small per-
cent, which provides a relatively good compromise
when one lacks adequate computational resources.

3.4 Comparison w.r.t. State-of-the-Art

Next, we show that our system outperforms the
state-of-the-art unsupervised and semi-supervised
cross-lingual POS taggers, where the robust selec-
tion of training instances and the rich word repre-
sentation in the neural architecture are more effi-
cient than using larger and/or domain-appropriate
parallel data, some labeled data or off-the-shelf
resources encapsulating linguistic knowledge.

We first compare our models to two state-of-the-
art systems that perform fully unsupervised cross-
lingual POS tagging via annotation projection:
AGIC (Agić et al., 2016) and BUYS (Buys and

Botha, 2016). AGIC is a multilingual annotation-
projection system that is the basis of our Mulproj
setup and uses a TnT POS tagger (Brants, 2000)
for training. BUYS is a neural model that is based
on the Wsabie algorithm (Weston et al., 2011) and
utilizes morphological tags projected via coupling
token and type constraints.

We report the performance of our system versus
AGIC and BUYS on the test sets of UD v1.2 in
Table 4. Our taggers outperform both AGIC and
BUYS on all the common language pairs with error
reduction of 49.1% and 9.0%, respectively, despite
the use of smaller and out-of-domain parallel data
and only six source languages in the multi-source
setup. In contrast, AGIC has the advantage of uti-
lizing 21 source languages for projection, while
BUYS uses large-size parallel data, taken from Eu-
roparl 16, that is up to 2M tokens whose domain is
similar to the one of the UD test sets.

Target Source AGIC Our System

Bulgarian Multilingual 70.0 85.6
Finnish Multilingual 69.6 81.2

Hindi Multilingual 50.5 72.9
Indonesian Multilingual 75.5 84.8

Persian Multilingual 33.7 76.7
Portuguese Multilingual 84.2 88.7

Target Source BUYS Our System

Bulgarian English 81.8 83.3
Finnish English 77.1 80.4

Portuguese English 84.3 84.6
Portuguese Spanish 88.0 89.1

Table 4: Comparison to AGIC and BUYS

Next, we compare our system to two semi-
supervised cross-lingual POS tagging systems:
CTRL (Cotterell and Heigold, 2017) and DsDs

16http://www.statmt.org/europarl/
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(Plank and Agić, 2018). CTRL is a character-level
RNN tagger that jointly learns the morphological
tags of a high-resource language and the target one,
where it has two experimental setups that utilize
100 and 1000 manually annotated target tokens,
denoted by D100 and D1000, respectively. DsDs
is a BiLSTM tagger that follows the annotation-
projection approach by Agić et al. (2016) and uti-
lizes the Polyglot embeddings (Al-Rfou’ et al.,
2013) and lexical information from the Wiktionary.

Table 5 reports the performance of our system
versus CTRL on the test sets of UD v2, and versus
DsDs on the development sets of UD v2.1 using
the 12 universal tags of Petrov et al. (2012) (only
Basque is evaluated on the test set). Our system
outperforms CTRL except in the D1000 setup of
Portuguese, where our results are still comparable.
Our system also outperforms DsDs when evaluated
on four language pairs out of six, with an overall
error reduction of 43.7%.

Target Source CTRL Our System

Bulgarian Russian-D100 68.8 87.2
Bulgarian Russian-D1000 83.1 87.2

Portuguese Spanish-D100 81.8 88.7
Portuguese Spanish-D1000 88.9 88.7

Target Source DsDs Our System

Basque Multilingual 62.7 76.5
Bulgarian Multilingual 89.7 89.3

Finnish Multilingual 82.4 85.6
Hindi Multilingual 66.2 84.0

Persian Multilingual 43.8 80.6
Portuguese Multilingual 92.2 92.2

Table 5: Comparison to CTRL and DsDs

3.5 Annotation Projection vs. Supervision
The comparison to the upper-bound supervised
results in Table 2 shows that the unsupervised
Afrikaans, Indonesian and Portuguese taggers suc-
cessfully predict at least 90% of the correct deci-
sions made by their corresponding supervised ones.
The impact of such small gaps could be tolerable
when utilizing the taggers as part of downstream
tasks, and thus the trade-off between developing
an unsupervised tagger versus an expensive super-
vised one (if possible) should be considered.

Next, for each target language, except Amharic,
we estimate the amount of manual annotations
needed to develop a supervised tagger that approx-
imates the performance of the unsupervised one.
We do so by iteratively training 17 and evaluating

17We use the UD training data and the same parameters of
the unsupervised setting but for 100 epochs instead of 12.

POS taggers in increments of 100 words until the
target performance is reached. We list the results in
Table 6 with respect to the best unsupervised results
in Table 2. On average, it is required to annotate
3,773 words to develop an equivalent supervised
tagger, where the training sizes range from 1,200
words, for Basque and Telugu, to 9,000 words, for
Lithuanian.

Languages Annotation Size POS Acc.

Afrikaans 5,700 89.3
Basque 1,200 67.3

Bulgarian 2,400 88.2
Finnish 5,600 83.4

Hindi 1,800 74.1
Indonesian 2,900 84.4
Lithuanian 9,000 83.3

Persian 2,200 79.0
Portuguese 6,900 88.7

Telugu 1,200 80.0
Turkish 2,600 74.9

Average 3,773 81.2

Table 6: Training sizes of equivalent supervised taggers

3.6 Annotation Projection vs. Model
Transfer

One approach of zero-shot cross-lingual POS tag-
ging is to apply a tagging model trained for a
related language. Pires et al. (2019) investigate
zero-shot model transfer by fine-tuning the multilin-
gual BERT language model, mBERT (Devlin et al.,
2019), for the POS tagging of some language and
applying the fine-tuned model to another. While
the approach does not require any translation or an-
notations on the source side, the pre-trained models
do not generalize well across languages of different
typologies.

We compare our approach versus zero-shot
model transfer when transferring from English to
Japanese (different language families and morpho-
logical typologies). We utilize the Bible translation,
where we use mBERT instead of XLM-R and train
our model for only three epochs in order to repli-
cate the experimental settings by Pires et al. (2019).
As shown in Table 7, our approach achieves rela-
tive error reduction of 27.6% when evaluated on
the Japanese test set from the CoNLL 2017 shared
task (Zeman et al., 2017), This result suggests that
annotation projection is less sensitive to the relat-
edness between the source and target languages
(which is in line with the results in Table 2), and
thus can better generalize across languages of dif-
ferent typologies.
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Target Source PIRES Our System

Japanese English 49.4 65.4

Table 7: Comparison to Pires et al. (2019)

Table 8 reports the macro-average POS ac-
curacies when transferring between languages
depending on their typological features: Sub-
ject/Object/Verb order (SVO and SOV) and Ad-
jective/Noun order (AN and NA) 18. In the work of
Pires et al. (2019), the best performance is achieved
when transferring from a language with similar ty-
pological features. In contrast, our system is less
sensitive to typological similarities, where the per-
formance of transferring from SVO languages is
comparable to that of SOV sources, while both AN
and NA targets equally benefit from NA sources.
This could be explained since the typological fea-
tures of the source only contribute to the align-
ment and projection phases, while training the POS
model is fully conducted in the target space after
eliminating erroneous annotations.

PIRES SVO SOV

SVO 81.6 66.5
SOV 64.0 64.2

PIRES AN NA

AN 73.3 70.9
NA 75.1 79.6

Our System SVO SOV

SVO 82.5 72.4
SOV 81.3 71.3

Our System AN NA

AN 77.5 76.8
NA 74.3 74.4

Table 8: Macro-average POS accuracies when trans-
ferring between SVO/SOV languages and AN/NA lan-
guages. Rows = sources, columns = targets

4 Related Work

Unsupervised POS tagging through annotation
projection was first proposed by Yarowsky et al.
(2001), where they transferred POS tags from En-
glish to French and Chinese. The work was then
extended by Fossum and Abney (2005), where
they combined the outputs of single-source taggers
based on different source languages. The multi-
lingual setups were then further explored by Agić
et al. (2015) and Agić et al. (2016).

In efforts to increase the coverage of the pro-
jected data, Das and Petrov (2011) proposed graph-
based label propagation to expand the projected
tags on the target side, while Duong et al. (2013)

18Strictly speaking, the numbers are not comparable as the
languages are different. However, they provide insight into
how the two approaches perform across languages of different
typological features.

and Agić et al. (2015) applied self-training and re-
vision, where they performed the projection and
training in iterations. On another side, Täckström
et al. (2013) and Buys and Botha (2016) organized
the projection process through the use of token and
type constraints, which we adapt in our approach.

Semi-supervised setups have been explored by
either restricting the type constraints through the
use of a POS dictionary (Täckström et al., 2013) or
by adding additional signals in training, either by
using a POS dictionary (Kirov et al., 2018; Plank
and Agić, 2018) or by combining manual and pro-
jected annotations (Fang and Cohn, 2016). In con-
trast, our system is fully unsupervised, where we
show that the robust construction of the training
data can surpass the use of external resources.

While most prior work does tagging for several
target languages, and so is our work, some research
focuses on specific language pairs such as project-
ing from German to Hittite (Sukhareva et al., 2017)
and from Russian to Ukrainian (Huck et al., 2019).

5 Conclusion and Future Work

We presented a fully unsupervised cross-lingual
POS tagger that does annotation projection by uti-
lizing translation from one or more source lan-
guages into the target one. We showed that despite
the use of limited and out-of-domain parallel data,
our models outperform the state-of-the-art systems.
We also showed that the robust selection of training
instances and the rich word representation in our
neural architecture are more efficient than utilizing
some labeled data or external linguistic resources.

In the future, we plan to enhance the system
for handling morphologically complex languages
trough unsupervised morphological segmentation.
One approach is to perform the alignment and pro-
jection on the stem and morpheme levels. In ad-
dition, stem and morpheme information can be
utilized as additional signals in training.
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