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Abstract

We present the Multilingual Amazon Reviews
Corpus (MARC), a large-scale collection of
Amazon reviews for multilingual text classi-
fication. The corpus contains reviews in En-
glish, Japanese, German, French, Spanish, and
Chinese, which were collected between 2015
and 2019. Each record in the dataset contains
the review text, the review title, the star rating,
an anonymized reviewer ID, an anonymized
product ID, and the coarse-grained product cat-
egory (e.g., ‘books’, ‘appliances’, etc.) The
corpus is balanced across the 5 possible star
ratings, so each rating constitutes 20% of the
reviews in each language. For each language,
there are 200,000, 5,000, and 5,000 reviews
in the training, development, and test sets, re-
spectively. We report baseline results for su-
pervised text classification and zero-shot cross-
lingual transfer learning by fine-tuning a mul-
tilingual BERT model on reviews data. We
propose the use of mean absolute error (MAE)
instead of classification accuracy for this task,
since MAE accounts for the ordinal nature of
the ratings.

1 Introduction

Text classification is one of the fundamental tasks
in natural language processing, and research in
this area has been accelerated by the abundance
of corpora across different domains (e.g., Twitter
sentiment (Pak and Paroubek, 2010), movie ratings
(Maas et al., 2011), textual entailment (Bowman
et al., 2015), restaurant reviews (Yelp Inc., 2019),
among many others).

The construction of multilingual classification
systems which handle inputs from different lan-
guages has been studied extensively in previous
work (e.g., Bel et al., 2003; De Melo and Siers-
dorfer, 2007). More recently, researchers have
observed ‘zero-shot’ cross-lingual behavior (Lu
et al., 2018; Artetxe and Schwenk, 2019) where

{
"review_id": "en_0000258",
"reviewer_id": "reviewer_en_0010355",
"product_id": "product_en_0000097",
"language": "en",
"stars": 5,
"review_title": "Salad Spinner",
"review_body": "Perfect for herbs and

leafy vegetables!",
"product_category": "kitchen"

}

Figure 1: A hypothetical review from our corpus.

classification performance in one language can
be transferred to the same task in another, with-
out target language supervision, as long as the
encoder was pretrained on a machine translation
task. In addition, contextual embeddings have
shown unexpected cross-lingual behavior in classi-
fication, NER, and dependency parsing tasks (Wu
and Dredze, 2019; Keung et al., 2019; Conneau
et al., 2019).

As with all other areas in NLP, progress in mul-
tilingual research relies on the availability of high-
quality data. However, large-scale multilingual text
classification datasets are surprisingly rare, and
existing multilingual datasets have some notable
deficiencies.

The proprietary Reuters RCV1 (Lewis et al.,
2004) and RCV2 (Reuters Ltd., 2005) corpora and
its derivatives like MLDoc (Schwenk and Li, 2018)
are relatively small; in RCV2, each language has
∼37,000 training examples on average, and the
smallest language only has 1,794 examples. RCV1
and 2 are not easily accessible; a researcher who
wishes to acquire the data would need to work with
an organization that has obtained legal approval
from Reuters Ltd.

The XNLI dataset (Conneau et al., 2018) was de-
signed for evaluating zero-shot cross-lingual trans-
fer and does not contain training data for non-
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En De Es Fr Ja Zh

Number of products 196,745 189,148 179,076 183,345 185,436 164,540
Number of reviewers 185,541 171,620 150,938 157,922 164,776 132,246
Average characters/review 178.8 207.9 151.3 159.4 101.4 51.0
Average characters/review title 24.2 21.8 19.2 19.1 9.5 7.6

Table 1: Training corpus statistics. We provide 200,000 reviews per language.

English languages.
The Yelp corpus (Yelp Inc., 2019) contains re-

views from international marketplaces, but the re-
views from each marketplace can be written in
multiple languages and the language identity is not
provided. Furthermore, the Yelp corpus itself is
refreshed from time to time, and previous versions
are not made available for download, which affects
the reproducibility of published results.

Several versions of the Amazon reviews cor-
pus exist today. Neither the version from Ni et al.
(2019) nor Amazon Inc. (2015) provide training,
development, and test splits, and neither version
focuses on the multilingual aspect of the reviews.
Prettenhofer and Stein (2010) provide Amazon re-
views in 4 languages (i.e., 2,000 training and test
reviews, along with a variable number of unlabeled
reviews), but the dataset is small by modern stan-
dards.

We address many of the above-mentioned lim-
itations by releasing a subset of Amazon reviews
specifically tailored for the task of multilingual text
classification:

• We provide 200,000 reviews in the training
set for each of the languages in the corpus.

• We apply language detection algorithms to
ensure reviews are associated with the correct
language with high probability.

• We distribute the corpus on AWS Open
Datasets for easy access by any research group
for non-commercial purposes.

• Unlike previous Amazon reviews datasets, we
split the data into clearly defined training, de-
velopment, and test sets.

The Multilingual Amazon Reviews Corpus
(MARC) can be found at https://registry.

opendata.aws/amazon-reviews-ml/. The
dataset description, code snippets, and li-
cense agreement can be retrieved at https:

//docs.opendata.aws/amazon-reviews-ml/

readme.html.

2 Data preparation

2.1 Inclusion Criteria

We gathered the reviews from the marketplaces
in the US, Japan, Germany, France, Spain, and
China for the English, Japanese, German, French,
Spanish, and Chinese languages, respectively. We
considered reviews that were submitted between
November 1, 2015 and November 1, 2019. Only
reviews with verified purchases were included.

We take no more than 20 reviews from the same
product, and no more than 20 reviews from the
same reviewer. Only products with at least 2 re-
views were included in the dataset. Reviews must
be at least 20 characters long.

2.2 Data Processing

The language of a review does not necessarily
match the language of its marketplace (e.g., reviews
from Amazon.de are primarily written in German,
but could also be written in English, etc.). For this
reason, we applied a language detection algorithm
(Bojanowski et al., 2017) to determine the language
of the review text. Only reviews written in the tar-
get language were retained. Based on a manual
review of 200 randomly selected reviews per lan-
guage, we observed 0, 0, 0, 0, 1, and 0 incorrectly
classified reviews for English, Japanese, German,
French, Spanish, and Chinese, respectively. At a
score threshold of 0.8, the language filter removed
4.9%, 0.2%, 1.2%, 2.4%, 3.8%, and 5.3% of the
English, Japanese, German, French, Spanish, and
Chinese candidate reviews, respectively.

We also applied a vocabulary-based filter on the
reviews. If a review contains a token that doesn’t
occur in at least 20 other reviews, then the review is
excluded from the dataset. We used Jieba1 for Chi-
nese and KyTea2 for Japanese word segmentation.
The segmenters were only used during the filtering
process, and the text provided in the dataset is not
segmented or tokenized.

1https://github.com/fxsjy/jieba
2http://www.phontron.com/kytea

https://registry.opendata.aws/amazon-reviews-ml/
https://registry.opendata.aws/amazon-reviews-ml/
https://docs.opendata.aws/amazon-reviews-ml/readme.html
https://docs.opendata.aws/amazon-reviews-ml/readme.html
https://docs.opendata.aws/amazon-reviews-ml/readme.html
https://github.com/fxsjy/jieba
http://www.phontron.com/kytea
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En De Es Fr Ja Zh Average

Fine-grained Classification

Body only 53.3 50.1 51.9 52.6 56.8 64.8 54.9
Body, title & category 43.0 42.5 47.1 47.1 51.7 57.7 48.2

Binarized Classification

Body only 8.8 7.2 7.4 7.3 11.1 12.5 9.1
Body, title & category 6.3 5.5 5.5 5.3 8.0 10.8 6.9

(a) Fully supervised task (MAE×100). The language of the training and test sets are the same.

Source Lang. En Test De Test Es Test Fr Test Ja Test Zh Test Average

En - 69.2 64.2 73.3 84.4 93.2 76.9
De 81.3 - 66.9 71.7 88.9 87.1 79.2
Es 73.6 68.4 - 65.7 92.5 85.2 77.1
Fr 77.5 68.4 61.7 - 88.6 86.4 76.5
Ja 78.5 77.6 71.5 82.4 - 83.8 78.8
Zh 78.8 77.9 79.1 84.1 84.3 - 80.8

(b) Zero-shot cross-lingual transfer task (fine-grained classification MAE×100). We train mBERT on source language data and
test on non-source language data.

Source Lang. En Test De Test Es Test Fr Test Ja Test Zh Test Average

En - 15.5 10.7 14.0 19.4 27.6 17.4
De 15.3 - 11.4 14.6 23.6 21.6 17.3
Es 12.0 14.7 - 11.4 21.2 22.3 16.3
Fr 15.3 13.9 10.5 - 22.6 22.6 17.0
Ja 15.4 17.8 12.9 16.8 - 21.1 16.8
Zh 14.3 16.1 13.6 17.5 20.2 - 16.3

(c) Zero-shot cross-lingual transfer task (binarized classification MAE×100). We train mBERT on source language data and test
on non-source language data.

En Train En Test De Test Es Test Fr Test Ja Test Zh Test Non-En Average

6.25% 51.6 81.1 72.4 88.3 104.2 110.7 91.3
12.5% 48.1 72.0 69.8 79.4 91.1 103.7 83.2

25% 45.0 72.3 66.0 74.9 86.3 94.9 78.9
50% 43.4 71.5 65.7 75.1 85.3 92.1 77.9

100% 43.0 69.2 64.2 73.3 84.4 93.2 76.9

(d) Amount of source language training data versus same-language and zero-shot transfer performance (fine-grained, MAE×100).
The training data comes from the English portion of the corpus only.

Table 2: mBERT classification mean absolute error (MAE×100). The ‘fine-grained’ classification task predicts the
5-star rating, whereas the ‘binarized’ task predicts whether the review is negative (i.e., 1-2 stars) or positive (i.e.,
4-5 stars). Unless otherwise stated, we use the review body, review title, and product category as mBERT inputs.

We truncate all reviews at 2,000 characters. New-
lines and tabs in the body of the review were re-
moved.

Some Amazon reviews contain HTML markup.
We used Lynx3 to render the reviews as UTF-8
plain-text.

Product and reviewer IDs were anonymized by
mapping each ID to a unique randomly generated
integer.

We provide the product category labels for 30
common product types, and all other product cate-
gories are mapped to ‘other’.

3https://lynx.invisible-island.net

3 Corpus Characteristics

Amazon product ratings are given on a 5-star scale.
To avoid any class imbalance issues in the dataset,
we downsampled the reviews to ensure that each
star rating constituted exactly 20% of the corpus.
We provide 200,000, 5,000, and 5,000 reviews for
the training, development, and test sets, respec-
tively.

In Table 1, we compile some of the important
statistics for the corpus. The number of unique
products and reviewers is broadly similar across
different languages.

In Figure 2, we show the distribution of product

https://lynx.invisible-island.net
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Figure 2: Distribution of product categories across the training data in different languages.

categories for each language. There is substantial
variation in the distribution of product categories
by language. Chinese reviews, most notably, are
heavily skewed towards books.

4 Baseline Results

In Table 2, we provide baseline mean absolute error
(MAE) results for supervised and zero-shot multi-
lingual text classification with our corpus, where

MAE (y, ŷ) =

∑n
i=1 |yi − ŷi|

n

and yi, ŷi ∈ {1, 2, 3, 4, 5} are the true star rating
and the predicted rating for the i-th review respec-
tively. All of our baseline models are initialized
with the cased multilingual BERT (mBERT) base
model (Devlin et al., 2019), which has 110M pa-
rameters.

Note that the star ratings for each review are or-
dinal, and a 2-star prediction for a 5-star review
should be penalized more heavily than a 4-star pre-
diction for a 5-star review. However, previous work
on Amazon reviews classification (e.g., Yang et al.,
2016) used the classification accuracy as the pri-
mary metric, which ignores the ordinal nature of
the labels. We use MAE in our baselines as the
primary metric instead. We also report the classifi-
cation accuracy for completeness (Table 3), but we
encourage the use of MAE in future work.

4.1 Experimental Setup
We predict the reviewer’s rating using the text of
the review (and possibly the product category) as
the input. Following the procedure described in
Devlin et al. (2019), we used the embedding of the

CLS token for prediction. We fine-tuned the model
for 15 epochs with the Adam optimizer using a
constant learning rate of 8× 10−7. We used mini-
batches of 32 reviews. Each experiment required
∼10 hours to complete with a single GPU on an
AWS p3.8xlarge instance with the MXNet Glu-
onNLP framework. We truncated the review body
at 180 wordpieces if it exceeded 180 wordpieces.

4.2 Supervised Text Classification

In Table 2a, we report our MAE on the fully su-
pervised classification task, where the languages of
the training and evaluation data are the same (i.e.,
train on French reviews and test on French reviews,
etc.). We distinguish between the ‘fine-grained’
classification task, where we predict on the 5-star
scale, and the ‘binarized’ classification task, where
we predict whether the reviewer gave 1 to 2 stars
or 4 to 5 stars. For the binarized task, we drop the
3-star reviews in the training and evaluation data.

We also distinguish between the case where the
input is the body of the review alone and where the
input is the review body combined with the review
title and product category. In the latter case, we use
mBERT for sentence pair classification, where the
first ‘sentence’ is the review body and the second
‘sentence’ is the review title concatenated with the
product category. The details for sentence pair
classification can be found in Devlin et al. (2019).

4.3 Zero-shot Text Classification

In Tables 2b and 2c, we report zero-shot cross-
lingual transfer MAE for fine-grained and binarized
classification respectively, where we only fine-tune
mBERT on data from one source language and test
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En De Es Fr Ja Zh Average

Fine-grained Classification

Body only 56.5 58.3 56.9 55.5 53.9 51.4 54.4
Body, title & category 63.3 62.0 58.9 58.8 57.2 55.1 59.2

(a) Fully supervised task (classification accuracy). The language of the training and test sets are the same.

Source Lang. En Test De Test Es Test Fr Test Ja Test Zh Test Average

En - 48.1 48.0 45.4 39.0 39.7 44.0
De 46.6 - 47.9 46.9 38.9 40.0 44.1
Es 48.8 47.5 - 48.1 36.4 41.6 44.5
Fr 48.1 47.1 49.5 - 36.4 40.0 44.2
Ja 45.2 41.5 45.2 39.6 - 41.3 42.6
Zh 44.6 43.2 43.5 41.8 40.0 - 42.7

(b) Zero-shot cross-lingual transfer task (fine-grained classification accuracy). We train mBERT on source language data and test
on non-source language data.

En Train En Test De Test Es Test Fr Test Ja Test Zh Test Non-En Average

6.25% 59.1 44.2 45.5 40.7 35.8 36.6 40.5
12.5% 61.7 46.5 45.6 45.0 37.8 38.3 42.6

25% 62.9 46.6 47.6 45.5 38.1 38.5 43.2
50% 63.2 47.4 47.7 45.6 38.6 39.9 43.9

100% 63.3 48.1 48.0 45.4 39.0 39.7 44.0

(c) Amount of source language training data versus same-language and zero-shot transfer performance (fine-grained, accuracy).
The training data comes from the English portion of the corpus only.

Table 3: mBERT classification accuracy. The ‘fine-grained’ classification task predicts the 5-star rating. Unless
otherwise stated, we use the review body, review title, and product category as mBERT inputs.

the model on non-source languages. In our cross-
lingual experiments, we used the review body, title,
and product category as inputs.

Recent work by Conneau et al. (2019) recom-
mended reporting zero-shot transfer results by us-
ing the target development sets for model check-
point selection. In addition, Keung et al. (2020)
showed that using the source language develop-
ment set to select the checkpoint can lead to sig-
nificant variation in zero-shot transfer performance
and also recommended using the target develop-
ment sets for checkpoint selection. Our results
in Tables 2 and 3 follow their guidance, and we
use the target development set to select the model
checkpoint for each language.

In Table 2d, we vary the amount of English train-
ing data used in mBERT fine-tuning and examine
the change in English test and non-English zero-
shot MAE. Increasing the amount of English train-
ing data is generally helpful, although there are
clearly diminishing returns.

5 Conclusion

We present a curated subset of Amazon reviews
specifically designed to aid research in multilingual
text classification. To the best of our knowledge,

this is the largest public benchmark dataset for the
training and evaluation of multilingual text classifi-
cation models. With this work, we systematically
address various gaps that we identified in existing
multilingual corpora: we apply careful sampling,
filtering, and text processing to the documents to
minimize noise in the dataset, and we provide a
large number of samples for training models in
six languages with well-defined training, develop-
ment, and test splits. We discuss the data prepara-
tion steps, analyze the distribution of the important
characteristics of the corpus, and present baseline
results for supervised and zero-shot cross-lingual
text classification. With these contributions, we
hope that this corpus will be an important resource
to the research community.
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