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Abstract

It has been shown that multilingual BERT
(mBERT) yields high quality multilingual rep-
resentations and enables effective zero-shot
transfer. This is surprising given that mBERT
does not use any crosslingual signal during
training. While recent literature has studied
this phenomenon, the reasons for the multilin-
guality are still somewhat obscure. We aim
to identify architectural properties of BERT
and linguistic properties of languages that are
necessary for BERT to become multilingual.
To allow for fast experimentation we propose
an efficient setup with small BERT models
trained on a mix of synthetic and natural data.
Overall, we identify four architectural and two
linguistic elements that influence multilingual-
ity. Based on our insights, we experiment with
a multilingual pretraining setup that modifies
the masking strategy using VecMap, i.e., unsu-
pervised embedding alignment. Experiments
on XNLI with three languages indicate that our
findings transfer from our small setup to larger
scale settings.

1 Introduction

Multilingual models, i.e., models capable of pro-
cessing more than one language with comparable
performance, are central to natural language pro-
cessing. They are useful as fewer models need to be
maintained to serve many languages, resource re-
quirements are reduced, and low- and mid-resource
languages can benefit from crosslingual transfer.
Further, multilingual models are useful in machine
translation, zero-shot task transfer and typological
research. There is a clear need for multilingual
models for the world’s 7000+ languages.

With the rise of static word embeddings, many
multilingual embedding algorithms have been pro-
posed (Mikolov et al., 2013; Hermann and Blun-
som, 2014; Faruqui and Dyer, 2014); for a survey
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Figure 1: Multilinguality in our BERT model (0) is
harmed by three architectural modifications: lang-pos,
shift-special, no-random (8); see §2.3 for definitions.
Together with overparameterization almost no multilin-
guality is left (17). Pairing a language with its inver-
sion (i.e., inverted word order) destroys multilinguality
as well (3). Having parallel training corpora is helpful
for multilinguality (not shown). Results are for embed-
dings from layer 8.

see (Ruder et al., 2019). Pretrained language mod-
els (Peters et al., 2018; Howard and Ruder, 2018;
Devlin et al., 2019) have high performance across
tasks, outperforming static word embeddings. A
simple multilingual model is multilingual BERT1

(mBERT). It is a BERT-Base model (Devlin et al.,
2019) trained on the 104 largest Wikipedias with a
shared subword vocabulary. There is no additional
crosslingual signal. Still, mBERT yields high-
quality multilingual representations (Pires et al.,
2019; Wu and Dredze, 2019; Hu et al., 2020).

The exact reason for mBERT’s multilinguality
is – to the best of our knowledge – still debated. K
et al. (2020) provide an extensive study and con-
clude that a shared vocabulary is not necessary,
but that the model needs to be deep and languages
need to share a similar “structure”. Artetxe et al.
(2020) show that neither a shared vocabulary nor
joint pretraining is required for BERT to be mul-
tilingual. Conneau et al. (2020b) find that BERT
models across languages can be easily aligned and

1https://github.com/google-research/
bert/blob/master/multilingual.md

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
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that a necessary requirement for achieving multi-
linguality are shared parameters in the top layers.
This work continues this line of research. We find
indications that six elements influence the multilin-
guality of BERT. Figure 1 summarizes our main
findings.

1.1 Contributions
• Training BERT models consumes tremendous

resources. We propose an experimental setup
that allows for fast experimentation.

• We hypothesize that BERT is multilingual be-
cause of a limited number of parameters. By
forcing the model to use its parameters effi-
ciently, it exploits common structures by align-
ing representations across languages. We pro-
vide experimental evidence that the number
of parameters and training duration is inter-
linked with multilinguality and an indication
that generalization and multilinguality might
be conflicting goals.

• We show that shared special tokens, shared
position embeddings and the common mask-
ing strategy to replace masked tokens with
random words contribute to multilinguality.
This is in line with findings from (Conneau
et al., 2020b).

• We show that having identical structure across
languages, but an inverted word order in
one language destroys multilinguality. Simi-
larly having shared position embeddings con-
tributes to multilinguality. We thus hypoth-
esize that word order across languages is an
important ingredient for multilingual models.

• Using these insights we perform initial experi-
ments to create a model with higher degree of
multilinguality.

• We conduct experiments on Wikipedia and
evaluate on XNLI to show that our findings
transfer to larger scale settings.

Our code is publicly available.2

2 Setup and Hypotheses

2.1 Setup
We aim at having a setup that allows for gaining
insights quickly when investigating multilinguality.

2https://github.com/pdufter/minimult

'He ate wild honey. '

[He, ate, wild, hon, ##e, ##y, .]

[195, 1291, 1750, 853, 76, 80, 8] [2243, 3339, 3798, 2901, 2124 ,2128, 2056]

[::He, ::ate, ::wild, ::hon, ::##e, ::##y, ::.]

BERT Model

TOKENIZE

CONVERT TO IDS SHIFT 
IDS

PREFIX FOR DISPLAYING ONLY

Figure 2: Creating a Fake-English sentence by adding
a shift of 2048 to token indices.

Our assumption is that these insights are transfer-
able to a larger scale real world setup. We verify
this assumption in §5.

Languages. K et al. (2020) propose to consider
English and Fake-English, a language that is cre-
ated by shifting unicode points by a large constant.
Fake-English in their case has the exact same lin-
guistic properties as English, but is represented by
different unicode points. We follow a similar ap-
proach, but instead of shifting unicode points we
simply shift token indices after tokenization by a
constant; shifted tokens are prefixed by “::” and
added to the vocabulary. See Figure 2 for an exam-
ple. While shifting indices and unicode code points
have similar effects, we chose shifting indices as
we find it somewhat cleaner.3

Data. For our setup, aimed at supporting fast
experimentation, a small corpus with limited vo-
cabulary is desirable. As training data we use the
English Easy-to-Read version of the Parallel Bible
Corpus (Mayer and Cysouw, 2014) that contains
the New Testament. The corpus is structured into
verses and is word-tokenized. We sentence-split
verses using NLTK (Loper and Bird, 2002). The
final corpus has 17k sentences, 228k words, a vo-
cabulary size of 4449 and 71 distinct characters.
The median sentence length is 12 words. By creat-
ing a Fake-English version of this corpus we get a
shifted replica and thus a sentence-parallel corpus.

As development data we apply the same proce-
dure to the first 10k sentences of the Old Testament
of the English King James Bible. All our evalua-
tions are performed on development data, except
for word translation and when indicated explicitly.

Vocabulary. We create a vocabulary of size
2048 from the Easy-to-Read Bible with the word-
piece tokenizer (Schuster and Nakajima, 2012).4

3For example, the BERT tokenizer treats some punctua-
tion as special symbols (e.g., “dry-cleaning” is tokenized as
[“dry”, “-”, “##cleaning”], not as [“dry”, “##-”, “##clean-
ing”]). When using a unicode shift, tokenizations of English
and Fake-English can differ.

4https://github.com/huggingface/
tokenizers

https://github.com/pdufter/minimult
https://github.com/huggingface/tokenizers
https://github.com/huggingface/tokenizers
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Using the same vocabulary for English and Fake-
English yields a final vocabulary size of 4096.

Model. We use the BERT-Base architecture (De-
vlin et al., 2019), modified to achieve a smaller
model: we divide hidden size, intermediate size
of the feed forward layer and number of attention
heads by 12; thus, hidden size is 64 and intermedi-
ate size 256. While this leaves us with a single at-
tention head, K et al. (2020) found that the number
of attention heads is important neither for overall
performance nor for multilinguality. We call this
smaller model BERT-small.

As a consistency check for our experiments we
consider random embeddings in the form of a ran-
domly initialized but untrained BERT model, re-
ferred to as “untrained”.

Training Parameters. We mostly use the orig-
inal training parameters as given in (Devlin et al.,
2019). Learning rate and number of epochs was
chosen to achieve reasonable perplexity on the
training corpus (see supplementary for details). Un-
less indicated differently we use a batch size of 256,
train for 100 epochs with AdamW (Loshchilov and
Hutter, 2019) (learning rate 2e-3, weight decay .01,
epsilon 1e-6), and use 50 warmup steps. We only
use the masked-language-modeling objective, with-
out next-sequence-prediction. With this setup we
can train a single model in under 40 minutes on a
single GPU (GeForce GTX 1080Ti). We run each
experiment with five different seeds, and report
mean and standard deviation.

2.2 Evaluation

We evaluate two properties of our trained language
models: the degree of multilinguality and – as a
consistency check – the overall model fit (i.e., is
the trained language model of reasonable quality).

2.2.1 Multilinguality
We evaluate the degree of multilinguality with three
tasks. Representations from different layers of
BERT can be considered. We use layer 0 (uncon-
textualized) and layer 8 (contextualized). Several
papers have found layer 8 to work well for monolin-
gual and multilingual tasks (Tenney et al., 2019; He-
witt and Manning, 2019; Sabet et al., 2020). Note
that representations from layer 0 include position
and segment embeddings besides the token embed-
dings as well as layer normalization.

Word Alignment. Sabet et al. (2020) find that
mBERT performs well on word alignment. By
construction, we have a sentence-aligned corpus

with English and Fake-English. The gold word
alignment between two sentences is the identity
alignment. We use this automatically created gold-
alignment for evaluation.

To extract word alignments from BERT we use
(Sabet et al., 2020)’s Argmax method. Consider
the parallel sentences s(eng), s(fake), with length
n. We extract d-dimensional wordpiece embed-
dings from the l-th layer of BERT to obtain embed-
dings E(s(k)) ∈ Rn×d for k ∈ {eng, fake}. The
similarity matrix S ∈ [0, 1]n×n is computed by
Sij := cosine-sim

(
E(s(eng))i, E(s(fake))j

)
. Two

wordpieces i and j are aligned if

(i = argmax
l
Sl,j) ∧ (j = argmax

l
Si,l).

The alignments are evaluated using precision,
recall and F1 as follows:

p =
|P ∩G|
|P |

, r =
|P ∩G|
|G|

, F1 =
2 p r
p + r

,

where P is the set of predicted alignments and G
the set of true alignment edges. We report F1.

Sentence Retrieval is popular for evaluating
crosslingual representations (e.g., (Artetxe and
Schwenk, 2019; Libovickỳ et al., 2019)). We ob-
tain the embeddings E(s(k)) as before and compute
a sentence embedding e(k)s simply by averaging
vectors across all tokens in a sentence (ignoring
CLS and SEP tokens). Computing cosine similari-
ties between English and Fake-English sentences
yields the similarity matrix R ∈ Rm×m where
Rij = cosine-sim(e

(eng)
i , e

(fake)
j ) for m sentences.

Given an English query sentence s(eng)
i , we ob-

tain the retrieved sentences in Fake-English by
ranking them according to similarity. Since we can
do the same with Fake-English as query language,
we report the mean precision of these directions,
computed as

ρ =
1

2m

m∑
i=1

1argmaxl Ril=i + 1argmaxl Rli=i.

We also evaluate word translation. Again, by
construction we have a ground-truth bilingual dic-
tionary of size 2048. We obtain word vectors by
feeding each word in the vocabulary individually
to BERT, in the form “[CLS] {token} [SEP]”. We
then evaluate word translation like sentence re-
trieval and denote the measure with τ .

Multilinguality Score. For an easier overview
we compute a multilinguality score by averaging
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retrieval and translation results across both layers.
That is µ = 1/4(τ0 + τ8 + ρ0 + ρ8) where τk,ρk
means representations from layer k have been used.
We omit word alignment here as it is not a suitable
measure to compare all models: with shared po-
sition embeddings, the task is almost trivial given
that the gold alignment is the identity alignment.

2.2.2 Model Fit
MLM Perplexity. To verify that BERT was suc-
cessfully trained we evaluate the models on per-
plexity (with base e) for training and development
data. Perplexity is computed on 15% of randomly
selected tokens that are replaced by “[MASK]”.
Given those randomly selected tokens in a text
w1, . . . , wn and probabilities pw1 , . . . , pwn that the
correct token was predicted by the model, perplex-
ity is calculated as exp(−1/n

∑n
k=1 log(pwk

)).

2.3 Architectural Properties

Here we formulate hypotheses as to which archi-
tectural components contribute to multilinguality.

Overparameterization: overparam. If BERT
is severely overparameterized the model should
have enough capacity to model each language sep-
arately without creating a multilingual space. Con-
versely, if the number of parameters is small, the
model has a need to use parameters efficiently.
The model is likely to identify common structures
among languages and model them together, thus
creating a multilingual space.

To test this, we train a larger BERT model that
has the same configuration as BERT-base (i.e., hid-
den size: 768, intermediate size: 3072, attention
heads: 12) and is thus much larger than our stan-
dard configuration, BERT-small. Given our small
training corpus and the small number of languages,
we argue that BERT-base is overparameterized. For
the overparameterized model we use learning rate
1e-4 (following (Devlin et al., 2019)).

Shared Special Tokens: shift-special. It has
been found that a shared vocabulary is not essential
for multilinguality (K et al., 2020; Artetxe et al.,
2020; Conneau et al., 2020b). Similar to prior stud-
ies, in our setting each language has its own vo-
cabulary, as we aim at breaking the multilinguality
of BERT. However in prior studies, special tokens
([UNK], [CLS], [SEP], [MASK], [PAD]) are usu-
ally shared across languages. Shared special tokens
may contribute to multilinguality because they are
very frequent and could serve as “anchor points”.
To investigate this, we shift the special tokens with

ENGLISH
195 1291 1750 853 76 80 8

1 2 3 4 5 6 7

0 0 0 0 0 0 0

2243 3339 3798 2901 2124 2128 2056

129 130 131 132 133 134 135

1 1 1 1 1 1 1

FAKE-ENGLISH
Tok.

Pos.

Seg.

Figure 3: lang-pos: input indices to BERT with lan-
guage specific position and segment embeddings.

the same shift as applied to token indices.
Shared Position Embeddings: lang-pos. Posi-

tion and segment embeddings are usually shared
across languages. We investigate their contribution
to multilinguality by using language-specific posi-
tion (lang-pos) and segment embeddings. For an
example see Figure 3.

Random Word Replacement: no-random.
The MLM task as proposed by Devlin et al. (2019)
masks 15% of tokens in a sentence. These tokens
are replaced with “[MASK]” in p[mask] = 80%,
remain unchanged in p[id] = 10% and are re-
placed with a random token of the vocabulary in
p[rand] = 10% of the cases. The randomly sampled
token can come from any language resulting in
Fake-English tokens to appear in English sentences
and vice-versa. We hypothesize that this random re-
placement could contribute to multilinguality. We
experiment with the setting p = (0.8, 0.2, 0.0)
where p denotes the triple (p[mask], p[id], p[rand]).

2.4 Linguistic Properties

Inverted Word Order: inv-order. K et al. (2020)
shuffled word order in sentences randomly and
found that word order has some, but not a se-
vere effect on multilinguality. They conclude that
“structural similarity” across languages is impor-
tant without further specifying this term. We
investigate an extreme case: inversion. We in-
vert each sentence in the Fake-English corpus:
[w1, w2, . . . , wn] → [wn, wn−1, . . . , w1]. Note
that, apart from the reading order, all properties
of the languages are preserved, including ngram
statistics. Thus, the structural similarity of English
and inverted Fake-English is arguably very high.

Comparability of Corpora: no-parallel. We
hypothesize that the similarity of training corpora
contributes to “structural similarity”: if we train
on a parallel corpus we expect the language struc-
tures to be more similar than when we train on two
independent corpora, potentially from different do-
mains. For mBERT, Wikipedias across languages
are in the same domain, share some articles and
thus are comparable, yet not parallel. To test our
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::gold
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Fake-Englisch

Figure 4: Top: PCA of the token embeddings from
layer 0 of the original model (ID 0). The representa-
tions of the two languages clearly have a similar struc-
ture. Bottom: PCA of a sample of token embeddings.
Corresponding tokens in English and Fake-English are
nearest neighbors of each other or nearly so. This is
quantitatively confirmed in Table 1.

hypothesis, we train on a non-parallel corpus. We
create it by splitting the Bible into two halves, using
one half for English and Fake-English each, thus
avoiding any parallel sentences during training.

3 Results

3.1 Architectural Properties
Table 1 shows results. Each model has an asso-
ciated ID that is consistent with the code. The
original model (ID 0) shows a high degree of
multilinguality. As mentioned, alignment is an
easy task with shared position embeddings yield-
ing F1 = 1.00. Retrieval works better with con-
textualized representations on layer 8 (.97 vs. .16)
whereas word translation works better on layer 0
(.88 vs. .79), as expected. Overall the embeddings
seem to capture the similarity of English and Fake-
English exceptionally well (see Figure 4 for a PCA
of token embeddings). The untrained BERT mod-
els perform poorly (IDs 18, 19), except for word
alignment with shared position embeddings.

When applying our architectural modifica-
tions (lang-pos, shift-special, no-random) individ-
ually we see medium to slight decreases in multi-
linguality (IDs 1, 2, 4). lang-pos has the largest
negative impact. Apparently, applying just a single
modification can be compensated by the model. In-
deed, when using two modifications at a time (5–7)
multilinguality goes down more, only with 7 there
is still a high degree of multilinguality. With all
three modifications (8) the degree of multilingual-
ity is drastically lowered (µ .12 vs. .70).

We see that the language model quality (see
columns MLM-Perpl.) is stable on train and dev
across models (IDs 1–8) and does not deviate from
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Figure 5: Cosine similarity matrices of position embed-
dings. The maximum length after tokenization in our
experiments is 128. Position embedding IDs 0-127 are
used by English, 128-255 by Fake-English.

original BERT (ID 0) by much.5 Thus, we can con-
clude that each of the models has fitted the training
data well and poor results on µ are not due to the
fact that the architectural changes have hobbled
BERT’s language modeling performance.

The overparameterized model (ID 15) exhibits
lower scores for word translation, but higher ones
for retrieval and overall a lower multilinguality
score (.58 vs. .70). However, when we add lang-
pos (16) or apply all three architectural modifi-
cations (17), multilinguality drops to .01 and .00.
This indicates that by decoupling languages with
the proposed modifications (lang-pos, shift-special,
no-random) and greatly increasing the number of
parameters (overparam), it is possible to get a well-

5Perplexities on dev are high because the English of the
King James Bible is quite different from that of the Easy-to-
Read Bible. Our research question is: which modifications
harm BERT’s multilinguality without harming model fit (i.e.,
perplexity). The relative change of perplexities, not their
absolute value is important in this context.
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Mult.- Layer 0 Layer 8 MLM-
score Align. Retr. Trans. Align. Retr. Trans. Perpl.

ID Description µ F1 ρ τ F1 ρ τ train dev

0 original .70 1.00 .00 .16 .02 .88 .02 1.00 .00 .97 .01 .79 .03 9 00.2 217 07.8

1 lang-pos .30 .87 .05 .33 .13 .40 .09 .89 .05 .39 .15 .09 .05 9 00.1 216 09.0
2 shift-special .66 1.00 .00 .15 .02 .88 .01 1.00 .00 .97 .02 .63 .13 9 00.1 227 17.9
4 no-random .68 1.00 .00 .19 .03 .87 .02 1.00 .00 .85 .07 .82 .04 9 00.6 273 07.7
5 lang-pos;shift-special .20 .62 .19 .22 .19 .27 .20 .72 .22 .27 .21 .05 .04 10 00.5 205 07.6
6 lang-pos;no-random .30 .91 .04 .29 .10 .36 .12 .89 .05 .32 .15 .25 .12 10 00.4 271 08.6
7 shift-special;no-random .68 1.00 .00 .21 .03 .85 .01 1.00 .00 .89 .06 .79 .04 8 00.3 259 15.6
8 lang-pos;shift-special;no-random .12 .46 .26 .09 .09 .18 .22 .54 .31 .11 .11 .11 .13 10 00.6 254 15.9

15 overparam .58 1.00 .00 .27 .03 .63 .05 1.00 .00 .97 .01 .47 .06 2 00.1 261 04.5
16 lang-pos;overparam .01 .25 .10 .01 .00 .01 .00 .37 .13 .01 .00 .00 .00 3 00.0 254 04.9
17 lang-pos;shift-special;no-random;overparam .00 .05 .02 .00 .00 .00 .00 .05 .04 .00 .00 .00 .00 1 00.0 307 07.7

3 inv-order .01 .02 .00 .00 .00 .01 .00 .02 .00 .01 .01 .00 .00 11 00.3 209 14.4
9 lang-pos;inv-order;shift-special;no-random .00 .04 .01 .00 .00 .00 .00 .03 .01 .00 .00 .00 .00 10 00.4 270 20.1

18 untrained .00 .97 .01 .00 .00 .00 .00 .96 .01 .00 .00 .00 .00 3484 44.1 4128 42.7
19 untrained;lang-pos .00 .02 .00 .00 .00 .00 .00 .02 .00 .00 .00 .00 .00 3488 41.4 4133 50.3

30 knn-replace .74 1.00 .00 .31 .08 .88 .00 1.00 .00 .97 .01 .81 .01 11 00.3 225 12.4

Table 1: Multilinguality and model fit for our models. Mean and standard deviation (subscript) across 5 different
random seeds is shown. ID is a unique identifier for the model setting. To put perplexities into perspective: the
pretrained mBERT has a perplexity of roughly 46 on train and dev. knn-replace is explained in §4.

Layer 0 Layer 8 Perpl.
ID Description µ F1 ρ τ F1 ρ τ train dev

0 original .70 1.00 .16 .88 1.00 .97 .79 9 217
21 no-parallel .25 .98 .06 .28 .98 .50 .15 14 383

21b lang-pos;no-parallel .07 .60 .10 .07 .73 .11 .02 16 456

Table 2: Results showing the effect of having a parallel
vs. non-parallel training corpus.

performing language model (low perplexity) that
is not multilingual. Conversely, we can conclude
that the four architectural properties together are
necessary for BERT to be multilingual.

3.2 Linguistic Properties

Inverting Fake-English (IDs 3, 9) breaks multi-
linguality almost completely – independently of
any architectural modifications. Having a language
with the exact same structure (same ngram statis-
tics, vocabulary size etc.), only with inverted order,
seems to block BERT from creating a multilingual
space. Note that perplexity is almost the same. We
conclude that having a similar word order struc-
ture is necessary for BERT to create a multilingual
space. The fact that shared position embeddings are
important for multilinguality supports this finding.
Our hypothesis is that the drop in multilinguality
with inverted word order comes from an incom-
patibility between word and position encodings:
BERT needs to learn that the word at position 0
in English is similar to word at position n in Fake-
English. However, n (the sentence length) varies
from sentence to sentence. This suggests that rel-
ative position embeddings – rather than absolute

position embeddings – might be beneficial for mul-
tilinguality across languages with high distortion.

To investigate this effect more, Figure 8 shows
cosine similarities between position embeddings
for models 1, 9. Position IDs 0-127 are for English,
128-255 for Fake-English. Despite language spe-
cific position embeddings, the embeddings exhibit
a similar structure: in the top panel there is a clear
yellow diagonal at the beginning, which weakens
at the end. The bottom shows that for a model with
inverted Fake-English the position embeddings live
in different spaces: no diagonal is visible.

In the range 90–128 (a rare sentence length)
the similarities look random. This indicates that
smaller position embeddings are trained more than
larger ones (which occur less frequently). We sus-
pect that embedding similarity correlates with the
number of gradient updates a single position em-
bedding receives. Positions 0, 1 and 128, 129 re-
ceive a gradient update in every step and can thus
be considered an average of all gradient updates
(up to random initialization). This is potentially
one reason for the diagonal pattern in the top panel.

3.3 Corpus Comparability

So far we have trained on a parallel corpus. Now
we show what happens with a merely comparable
corpus. The first half of the training corpus is used
for English and the other half for Fake-English. To
mitigate the reduced amount of training data we
train for twice as many epochs. Table 2 shows that
multilinguality indeed decreases as the training cor-
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Figure 6: The longer a model is trained, the more multilingual it gets. x-axis shows training steps. Alignment F1

is not shown as the models use shared position embeddings. Lines show mean and shaded areas show standard
deviation across 5 random seed.

pus becomes non-parallel. This suggests that the
more comparable a training corpus is across lan-
guages the higher the multilinguality. Note, how-
ever, that the models fit the training data worse and
do not generalize as well as the original model.

3.4 Multilinguality During Training

One central hypothesis is that BERT becomes mul-
tilingual at the point at which it is forced to use
its parameters efficiently. We argue that this point
depends on several factors including the number
of parameters, training duration, “complexity” of
the data distribution and how easily common struc-
tures across language spaces can be aligned. The
latter two are difficult to control for. We provided
insights that two languages with identical structure
but inverted word order are harder to align. Fig-
ure 6 analyzes the former two factors and shows
model fit and multilinguality for the small and large
model settings over training steps.

Generally, multilinguality rises very late at a
stage where model fit improvements are flat. In
fact, most of multilinguality in the overparame-
terized setting (15) arises once the model starts
to overfit and perplexity on the development set
goes up. The original setting (0) has far fewer pa-
rameters. We hypothesize that it is forced to use
its parameters efficiently and thus multilinguality
scores rise much earlier when both training and
development perplexity are still going down.

Although this is a very restricted experimental
setup it indicates that having multilingual models
is a trade-off between good generalization and high
degree of multilinguality. By overfitting a model
one could achieve high multilinguality. Conneau
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Figure 7: With knn-replace multilinguality rises earlier.
Alignment F1 is not shown as the model uses shared
position embeddings.

et al. (2020a) introduced the concept of “curse of
multilinguality” and found that the number of pa-
rameters should be increased with the number of
languages. Our results indicate that too many pa-
rameters can also harm multilinguality. However,
in practice it is difficult to create a model with so
many parameters that it is overparameterized when
being trained on 104 Wikipedias.

Rönnqvist et al. (2019) found that current multi-
lingual BERT models may be undertrained. This
is consistent with our findings that multilinguality
arises late in the training stage.

4 Improving Multilinguality

So far we have tried to break BERT’s multilingual-
ity. Now we turn to exploiting our insights for
improving it. mBERT has shared position embed-
dings, shared special tokens and we cannot change
linguistic properties of languages. Our results on
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overparameterization suggest that smaller models
become multilingual faster. However, mBERT may
already be considered underparameterized given
that it is trained on 104 large Wikipedias.

One insight we can leverage for the masking
procedure is no-random: replacing masked words
with random tokens. We propose to introduce a
fourth masking option: replacing masked tokens
with semantically similar words from other lan-
guages. To this end we train static fastText em-
beddings (Bojanowski et al., 2017) on the training
set and then project them into a common space
using VecMap (Artetxe et al., 2018). We use this
crosslingual space to replace masked tokens with
nearest neighbors from the other language. Each
masked word is then replaced with the probabilities
(p[mask], p[id], p[rand], p[knn]) = (0.5, 0.1, 0.1, 0.3),
i.e., in 30% of the cases masked words get re-
placed with the nearest neighbor from the multilin-
gual static embedding space. Note that this proce-
dure (including VecMap) is fully unsupervised (i.e.,
no parallel data or dictionary required). We call
this method knn-replace. Conneau et al. (2020b)
performed similar experiments by creating code
switched data and adding it to the training data.
However, we only replace masked words.

Figure 7 shows the multilinguality score and
model fit over training time. Compared to the orig-
inal model in Figure 6, retrieval and translation
have higher scores earlier. Towards the end multi-
linguality scores become similar, with knn-replace
outperforming the original model (see Table 1).
This finding is particularly important for training
BERT on large amounts of data. Given how ex-
pensive training is, it may not be possible to train
a model long enough to obtain a high degree of
multilinguality. Longer training incurs the risk of
overfitting as well. Thus achieving multilinguality
early in the training process is valuable. Our new
masking strategy has this property.

5 Real Data Experiments

5.1 XNLI

We have presented experiments on a small corpus
with English and Fake-English. Now we provide
results on real data. Our setup is similar to (K
et al., 2020): we train a multilingual BERT model
on English, German and Hindi. As training cor-
pora we sample 1GB of data from Wikipedia (ex-
cept for Hindi, as its size is <1GB ) and pretrain
the model for 2 epochs/140k steps with batch size

ID Description ENG DEU HIN

0-base original .75 .00 .57 .02 .45 .01
3-base inv-order[DEU] .75 .00 .41 .01 .46 .04
8-base lang-pos;shift-special;no-random .74 .00 .37 .02 .38 .02

30-base knn-replace .74 .01 .61 .01 .54 .00

mBERT Results by (Hu et al., 2020) .81 .70 .59

Table 3: Accuracy on XNLI test for different model
settings. Shown is the mean and standard deviation
(subscript) across three random seeds. All models have
the same architecture as BERT-base, are pretrained on
Wikipedia data and finetuned on English XNLI train-
ing data. mBERT was pretrained longer and on much
more data and has thus higher performance. Best non-
mBERT performance in bold.

256 and learning rate 1e-4. In this section, we
use BERT-base, not BERT-small because we found
that BERT-small with less than 1M parameters per-
forms poorly in a larger scale setup. The remaining
model and training parameters are the same as be-
fore. Each language has its own vocabulary with
size 20k. We then evaluate the pretrained mod-
els on XNLI (Conneau et al., 2018). We finetune
the pretrained models on English XNLI (3 epochs,
batch size 32, learning rate 2e-5, following Devlin
et al. (2019)). Then the model is evaluated on En-
glish. In addition, we do a zero-shot evaluation on
German and Hindi.

Table 3 presents accuracy on XNLI test. Com-
pared to mBERT, accuracy is significantly lower
but reasonable on English (.75 vs. .81) – we pre-
train on far less data. ID 0 shows high multilingual-
ity with 0-shot accuracies .57 and .45. Inverting the
order of German has little effect on HIN, but DEU
drops significantly (majority baseline is .33). Our
architectural modifications (8) harm both HIN and
DEU. The proposed knn-replace model exhibits the
strongest degree of multilinguality, boosting the 0-
shot accuracy in DEU / HIN by 4% / 9%. Note
that to accommodate noise in the real world data,
we randomly replace with one of the five nearest
neighbors (not the top nearest neighbor). This indi-
cates that knn-replace is useful for real world data
and that our prior findings transfer to larger scale
settings.

6 Related Work

There is a range of prior work analyzing the rea-
son for BERT’s multilinguality. Singh et al. (2019)
show that BERT stores language representations in
different subspaces and investigate how subword to-
kenization influences multilinguality. Artetxe et al.
(2020) show that neither a shared vocabulary nor
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joint pretraining is essential for multilinguality. K
et al. (2020) extensively study reasons for multilin-
guality (e.g., researching depth, number of parame-
ters and attention heads). They conclude that depth
is essential. They also investigate language proper-
ties and conclude that structural similarity across
languages is important, without further defining
this term. Last, Conneau et al. (2020b) find that a
shared vocabulary is not required. They find that
shared parameters in the top layers are required
for multilinguality. Further they show that differ-
ent monolingual BERT models exhibit a similar
structure and thus conclude that mBERT some-
how aligns those isomorphic spaces. They investi-
gate having separate embedding look-ups per lan-
guage (including position embeddings and special
tokens) and a variant of avoiding cross-language
replacements. Their method “extra anchors” yields
a higher degree of multilinguality. In contrast to
this prior work, we investigate multilinguality in a
clean laboratory setting, investigate the interaction
of architectural aspects and research new aspects
such as overparameterization or inv-order.

Other work focuses on creating better multilin-
gual models. Mulcaire et al. (2019) proposed a
method to learn multilingual contextual represen-
tations. Conneau and Lample (2019) introduce
the translation modeling objective. Conneau et al.
(2020a) propose XLM-R. They introduce the term
“curse of multilinguality” and show that multilin-
gual model quality degrades with an increased num-
ber of languages given a fixed number of param-
eters. This can be interpreted as the minimum
number of parameters required whereas we find in-
dications that models that are too large can be harm-
ful for multilinguality as well. Cao et al. (2020)
improve the multilinguality of mBERT by introduc-
ing a regularization term in the objective, similar
to the creation of static multilingual embedding
spaces. Huang et al. (2019) extend mBERT pre-
training with three additional tasks and show an im-
proved overall performance. More recently, better
multilinguality is achieved by Pfeiffer et al. (2020)
(adapters) and Chi et al. (2020) (parallel data). We
propose a simple extension to make mBERT more
multilingual; it does not require additional supervi-
sion, parallel data or a more complex loss function
– in contrast to this prior work.

Finally, many papers find that mBERT yields
competitive zero-shot performance across a range
of languages and tasks such as parsing and NER

(Pires et al., 2019; Wu and Dredze, 2019), word
alignment and sentence retrieval (Libovickỳ et al.,
2019) and language generation (Rönnqvist et al.,
2019); Hu et al. (2020) show this for 40 languages
and 9 tasks. Wu and Dredze (2020) consider the
performance on up to 99 languages for NER. In
contrast, Lauscher et al. (2020) show limitations of
the zero-shot setting and Zhao et al. (2020) observe
poor performance of mBERT in reference-free ma-
chine translation evaluation. Prior work here fo-
cuses on investigating the degree of multilinguality,
not the reasons for it.

7 Conclusion

We investigated which architectural and linguistic
properties are essential for BERT to yield crosslin-
gual representations. The main takeaways are: i)
Shared position embeddings, shared special tokens,
replacing masked tokens with random tokens and
a limited amount of parameters are necessary ele-
ments for multilinguality. ii) Word order is relevant:
BERT is not multilingual with one language hav-
ing an inverted word order. iii) The comparability
of training corpora contributes to multilinguality.
We show that our findings transfer to larger scale
settings. We experimented with a simple modifi-
cation to obtain stronger multilinguality in BERT
models and demonstrate its effectiveness on XNLI.
We considered a fully unsupervised setting without
any crosslingual signals. In future work we plan
to incorporate crosslingual signals as Vulić et al.
(2019) argue that a fully unsupervised setting is
hard to motivate.
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Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebas-
tian Ruder. 2020. Mad-x: An adapter-based frame-
work for multi-task cross-lingual transfer. arXiv
preprint arXiv:2005.00052.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4996–
5001, Florence, Italy. Association for Computa-
tional Linguistics.
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Ivan Vulić, Goran Glavaš, Roi Reichart, and Anna Ko-
rhonen. 2019. Do we really need fully unsuper-
vised cross-lingual embeddings? In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4407–4418, Hong Kong,
China. Association for Computational Linguistics.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness of
BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
833–844, Hong Kong, China. Association for Com-
putational Linguistics.

Shijie Wu and Mark Dredze. 2020. Are all languages
created equal in multilingual BERT? In Proceedings
of the 5th Workshop on Representation Learning for
NLP, pages 120–130, Online. Association for Com-
putational Linguistics.
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A Additional Details on Methods

A.1 Word Translation Evaluation

Word translation is evaluated in the same way as
sentence retrieval. This section provides additional
details.

For each token in the vocabulary w(k) we feed
the “sentence” “[CLS] {w(k)} [SEP]” to the BERT
model to obtain the embeddings E(w(k)) ∈ R3×d

from the l-th layer of BERT for k ∈ {eng, fake}.
Now, we extract the word embedding by taking
the second vector (the one corresponding to w(k))
and denote it by e

(k)
w . Computing cosine simi-

larities between English and Fake-English tokens
yields the similarity matrix R ∈ Rm×m where
Rij = cosine-sim(e

(eng)
i , e

(fake)
j ) for m tokens in

the vocabulary of one language (in our case 2048).
Given an English query token s(eng)

i , we obtain
the retrieved tokens in Fake-English by ranking
them according to similarity. Note that we can do
the same with Fake-English as query language. We
report the mean precision of these directions that is
computed as

τ =
1

2m

m∑
i=1

1argmaxl Ril=i + 1argmaxl Rli=i.

A.2 inv-order

Assume the sentence “He ate wild honey .” exists
in the corpus. The tokenized version is [He, ate,
wild, hon, ##e, ##y, .] and the corresponding Fake-
English sentence is [::He, ::ate, ::wild, ::hon, ::##e,
::##y, ::.]. If we apply the modification inv-order
we always invert the order of the Fake-English sen-
tences, thus the model only receives the sentence
[::., ::##y, ::##e, ::hon, ::wild, ::ate, ::He].

A.3 knn-replace

We use the training data to train static word em-
beddings for each language using the tool fastText.
Subsequently we use VecMap (Artetxe et al., 2018)
to map the embedding spaces from each language
into the English embedding space, thus creating
a multilingual static embedding space. We use
VecMap without any supervision.

During MLM-pretraining of our BERT model
15% of the tokens are randomly selected and

Lang. Kendall’s Tau Distance XNLI Acc.

en 1.0 81.4

ar 0.72 64.9
de 0.74 71.1
fr 0.80 73.8
ru 0.72 69.0
th 0.71 55.8
ur 0.59 58.0
zh 0.68 69.3
bg 0.75 68.9
el 0.77 66.4
es 0.76 74.3
hi 0.58 60.0

sw 0.73 50.4
tr 0.47 61.6
vi 0.78 69.5

Table 4: Kendall’s Tau word order metric and XNLI
zero-shot accuracies.

“masked”. They then get either replaced by
“[MASK]” (50% of the cases), remain the same
(10% of the cases), get replaced by a random other
token (10% of the cases) or we replace the token
with one of the five nearest neighbors (in the fake-
English setup only with the nearest neighbor) from
another language (30% of the cases). Among those
five nearest neighbors we pick one randomly. In
case more than one other language is available we
pick one randomly.

B Additional Non-central Results

B.1 Model 17
One might argue that our model 17 in Table 1 of the
main paper is simply not trained enough and thus
not multilingual. However, Table 10 shows that
even when continuing to train this model for a long
time no multilinguality arises. Thus in this configu-
ration the model has enough capacity to model the
languages independently of each other – and due
to the modifications apparently no incentive to try
to align the language representations.

B.2 Word Order in XNLI
To verify whether similar word order across lan-
guages influences the multilinguality we propose
to compute a word reordering metric and correlate
this metric with the performance of 0-shot transfer
capabilities of mBERT. To this end we consider
the performance of mBERT on XNLI. We follow
Birch and Osborne (2011) in computing word re-
ordering metrics between parallel sentences (XNLI
is a parallel corpus). More specifically we compute
the Kendall’s tau metric. To this end, we compute
word alignments between two sentences using the
Match algorithm by Sabet et al. (2020), which di-
rectly yield a permutation between sentences as
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Scenario Runtime

pretrain small BERT model on Easy-to-Read-Bible,
100 epochs

∼ 35m

pretrain large BERT model (BERT-base) on Easy-
to-Read-Bible, 100 epochs

∼ 4h

pretrain large BERT model (BERT-base) on
Wikipedia sample, 1 epoch

∼ 2.5days

Table 5: Runtime on a single GPU.

Model Parameters

Standard Configuration (“Small model”) 1M
BERT-Base / Overparameterized Model / “Large model” 88M
Real data model (BERT-Base with larger vocabulary) 131M
mBERT 178M

Table 6: Number of parameters for our used models.

required by the distance metric. We compute the
metric on 2500 sentences from the development
data of XNLI and average it across sentences to get
a single score per language. The scores and XNLI
accuracies are in Table 4.

The Pearson correlation between Kendall’s tau
metric and the XNLI classification accuracy in a
zero-shot scenario (mBERT only finetuned on En-
glish and tested on all other languages) is 46%
when disregarding English and 64% when includ-
ing English. Thus there is a some correlation ob-
servable. This indicates that zero-shot performance
of mBERT might also rely on similar word order
across languages. We plan to extend this experi-
ment to more zero-shot results and examine this
effect more closely in future work.

B.3 Larger Position Similarity Plots

We provide larger versions of our position similar-
ity plots in Figure 8.

C Reproducibility Information

C.1 Data

Table 7 provides download links to data.

C.2 Technical Details

The number of parameters for each model are in
Table 6.

We did all computations on a server with up to
40 Intel(R) Xeon(R) CPU E5-2630 v4 CPUs and
8 GeForce GTX 1080Ti GPU with 11GB memory.
No multi-GPU training was performed. Typical
runtimes are reported in Table 5.

Used third party systems are shown in Table 8.

C.3 Hyperparameters
We show an overview on hyperparameters in Ta-
ble 9. If not shown we fall back to default values
in the systems.
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Name Languages Description Size Link

XNLI (Conneau
et al., 2018)

English,
German,
Hindi

Natural Language Inference
Dataset. We use the English
training set and English, Ger-
man and Hindi test set.

392703 sentence pairs in train,
5000 in test, 2500 in dev per
language.

https://cims.nyu.edu/
˜sbowman/xnli/

Wikipedia English,
German,
Hindi

We use 1GB of randomly sam-
pled data from a Wikipedia
dump downloaded in October
2019.

8.5M sentences for ENG,
9.3M for DEU and 800K for
HIN.

download.wikimedia.
org/[X]wiki/latest/[X]
wiki-latest-pages-articles.
xml.bz2

Bible (Mayer and
Cysouw, 2014)

English We use the editions Easy-
to-Read and King-James-
Version.

We use all 17178 sentences
in Easy-to-Read (New Testa-
ment) and the first 10000 sen-
tences of King-James in the
Old Testament.

n/a

Table 7: Overview on datasets.

System Parameter Value

Vecmap
Code URL https://github.com/artetxem/vecmap.git
Git Commit Hash b82246f6c249633039f67fa6156e51d852bd73a3

fastText

Version 0.9.1
Code URL https://github.com/facebookresearch/fastText/

archive/v0.9.1.zip
Embedding Dimension 300

Transformers Version 2.8.0
Tokenizers Version 0.5.2
NLTK Version 3.4.5

Table 8: Overview on third party systems used.

Parameter Value

Hidden size 64; 768 for large models (i.e., overparameterized and those used for XNLI) derived from BERT-based
configuration

Intermediate layer size 256; 3072 for large models
Number of attention heads 1; 12 for large models
Learning rate 2e− 3 (chosen out of 1e− 4, 2e− 4, 1e− 3, 2e− r, 1e− 2, 2e− 2 via grid search; criterion:

perplexity); 1e− 4 for large models, same as used in (Devlin et al., 2019)
Weight decay 0.01 following (Devlin et al., 2019)
Adam epsilon 1e− 6 following (Devlin et al., 2019)
Random Seeds 0, 42, 43, 100, 101; For single runs: 42. For real data experiments: 1,42 and 100.
Maximum input length after tokenization 128
Number of epochs 100 unless indicated otherwise. (chosen out of 10, 20, 50, 100, 200 via grid search; criterion: per-

plexity)
Number of warmup steps 50
Vocabulary size 4096; 20000 per language for the XNLI models
Batch size 256 for pretraining (for BERT-Base models 16 with 16 gradient accumulation steps), 32 for finetuning

Table 9: Model and training parameters during pretraining.

Mult.- Layer 0 Layer 8 MLM-
Num. score Align. Retr. Trans. Align. Retr. Trans. Perpl.

ID Description Epochs µ F1 ρ τ F1 ρ τ train dev

0 original 100 .70 1.00 .00 .16 .02 .88 .02 1.00 .00 .97 .01 .79 .03 9 00.22 217 07.8
17 lang-pos;shift-special;no-random;overparam 100 .00 .05 .02 .00 .00 .00 .00 .05 .04 .00 .00 .00 .00 2 00.02 270 20.1
17 lang-pos;shift-special;no-random;overparam 250 .00 .06 .02 .00 .00 .00 .00 .06 .05 .00 .00 .00 .00 1 00.00 1111 30.7

Table 10: Even when continuing the training for a long time overparameterized models with architectural modifi-
cations do not become multilingual.

https://cims.nyu.edu/~sbowman/xnli/
https://cims.nyu.edu/~sbowman/xnli/
download.wikimedia.org/[X]wiki/latest/[X]wiki-latest-pages-articles.xml.bz2
download.wikimedia.org/[X]wiki/latest/[X]wiki-latest-pages-articles.xml.bz2
download.wikimedia.org/[X]wiki/latest/[X]wiki-latest-pages-articles.xml.bz2
download.wikimedia.org/[X]wiki/latest/[X]wiki-latest-pages-articles.xml.bz2
https://github.com/artetxem/vecmap.git
https://github.com/facebookresearch/fastText/archive/v0.9.1.zip
https://github.com/facebookresearch/fastText/archive/v0.9.1.zip
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Figure 8: Cosine similarity of position embeddings. IDs 0-127 are used for English, 128-255 for Fake-English. .


