
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 4211–4221,
November 16–20, 2020. c©2020 Association for Computational Linguistics

4211

Learning Explainable Linguistic Expressions with Neural Inductive Logic
Programming for Sentence Classification

Prithviraj Sen
IBM Research

San Jose, CA, USA
senp@us.ibm.com

Marina Danilevsky
IBM Research

San Jose, CA, USA
mdanile@us.ibm.com

Yunyao Li
IBM Research

San Jose, CA, USA
yunyaoli@us.ibm.com

Siddhartha Brahma
Google Research

Mountain View, CA, USA
sidbrahma@google.com

Matthias Boehm
Graz University of Technology

Graz, Austria
m.boehm@tugraz.at

Laura Chiticariu
IBM Watson

San Jose, CA, USA
chiti@us.ibm.com

Rajasekar Krishnamurthy
IBM Watson

San Jose, CA, USA
rajase@us.ibm.com

Abstract

Interpretability of predictive models is becom-
ing increasingly important with growing adop-
tion in the real-world. We present RuleNN, a
neural network architecture for learning trans-
parent models for sentence classification. The
models are in the form of rules expressed in
first-order logic, a dialect with well-defined,
human-understandable semantics. More pre-
cisely, RuleNN learns linguistic expressions
(LE) built on top of predicates extracted us-
ing shallow natural language understanding.
Our experimental results show that RuleNN
outperforms statistical relational learning and
other neuro-symbolic methods, and performs
comparably with black-box recurrent neural
networks. Our user studies confirm that the
learned LEs are explainable and capture do-
main semantics. Moreover, allowing domain
experts to modify LEs and instill more do-
main knowledge leads to human-machine co-
creation of models with better performance.

1 Introduction

Difficult-to-interpret, black-box predictive models
have been shown to harbor undesirable biases (e.g.,
racial bias in computing risk of recidivism among
criminals (Angwin et al., 2016; Liptak, 2017)). Re-
newed interest in interpretability (BlackBoxNLP)
has led to techniques for explaining not only the in-
ner workings of the model but also to explain how
it derives a prediction.

While various techniques for explainability exist
(see survey by Guidotti et al. (2018)), one popular

approach explains predictions from a black-box
model by using a surrogate models (Ribeiro et al.,
2016). Another extracts explanations from neural
network layer activations, especially when said
activations appeal to human intuition such as at-
tention (Bahdanau et al., 2015) which may be
interpreted as importance weights assigned to (la-
tent) features derived by the model. While such
approaches are useful, they raise questions such as
whether the purported explanation provided by the
surrogate correctly reflects the process employed
by the black-box model to arrive at the prediction
(sometimes called inexact explanation (Chu et al.,
2018)). Similarly, attention only provides noisy
explanations (Serrano and Smith, 2019). Such ap-
proaches leave room for improvement because ex-
plainability is treated as an after-thought whereas
our goal is to treat it as a first-class citizen. In other
words, is it possible to devise a neural network
that directly learns a model expressed in a clear,
human-readable dialect?

First-order logic (FOL) is a human-interpretable
fragment of logic that includes existential (∃) and
universal (∀) quantification along with proposi-
tional logic’s conjunction (∧), disjunction (∨) and
negation (¬) operators. FOL can model diverse
applications such as data integration (Singla and
Domingos, 2006), image interpretation (Donadello
et al., 2017), and as the next example shows, natu-
ral language processing (NLP).

Consider identifying sentences denoting com-
munication between two parties in a legal contract.
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A1︷ ︸︸ ︷
Notices may be

transmit.01︷ ︸︸ ︷
transmitted

Argm︷ ︸︸ ︷
electronically , by

A0︷ ︸︸ ︷
registered︸ ︷︷ ︸
register.02

mail.

communication(s)← Contains(s, a) ∧ a.A1 = notice

∧ (a.verb = inform ∨ a.verb = transmit)

Figure 1: Legal contract sentence and an LE for label
communication (syntax simplified for brevity).

Figure 1 shows such a sentence along with lin-
guistic abstractions in PropBank notation (Palmer
et al., 2005) extracted using shallow semantic pars-
ing. It consists of two actions, transmit.01
and register.02, with arguments A0, A1 and
Argm. Figure 1 also shows an FOL rule that as-
signs label communication by evaluating lin-
guistic clues. We refer to such rules as linguistic
expressions (LE). More precisely, the LE in the
figure assigns communication if: action be-
longs to the sentence, surface form of the action
belongs to a dictionary containing “inform” and
“transmit”, and its A1 argument matches a dictio-
nary containing “notice”. Not only does the LE’s
conditions evaluate to true on the sentence exam-
ple, but attribution, i.e., which parts of the sentence
led to the prediction is also clear: transmit.01,
rather than register.02, leads to the predicted
label because the surface form corresponding to
transmit.01’s action and its A1 argument is
“transmit” and “notice”, respectively. This allows
domain experts to verify the LE’s semantics and
explain predictions without encountering afore-
mentioned complications due to the use of surro-
gate models, for instance.

FOL rules may be learned using inductive logic
programming (ILP) (Muggleton, 1996), statistical
relational learning (StarAI) (Getoor and Taskar,
2007) or neuro-symbolic AI (Evans and Grefen-
stette, 2018). None of these however, target NLP.
FOL rules consist of predicates which are Boolean
functions that specify conditions for the rule to
hold, e.g., Contains and dictionary-match con-
ditions in Figure 1. Thus, we need to: 1) learn
discriminative predicates, 2) combine them into
LEs, and 3) learn multiple LEs in case one is in-
sufficient. Figure 2 summarizes our approach. We
leverage natural language understanding (NLU)
to generate well defined, human-interpretable pred-
icates. Our main contribution is RuleNN, a neural

Dictionaries

Sentences NLU RuleNN Verify LEs

facts
predicates LEs

Figure 2: Pictorial depiction of our approach.

network (NN) comprising predicate generation
(PGM) and clause generation (CGM) modules for
learning and combining discriminative predicates
to form LEs. By adding more modules, RuleNN
can learn multiple LEs jointly. We also show how
to extract LEs expressed in crisp FOL from Ru-
leNN post-hoc that may, in turn, be handed to
domain experts for verification and even modifi-
cation, to instill further domain expertise going
beyond the available training data.

By evaluating on two real-world sentence clas-
sification datasets and comparing against a host
of baselines, we show that LEs learned by Ru-
leNN lead to large gains in terms of area under
the precision-recall curve (AUC-PR). Averaging
across labels, RuleNN’s AUC-PR is 6.8×, 7.6×,
1.5× that of ILP, StarAI, other neuro-symbolic AI
approaches, respectively. We also compare against
black-box methods that are far less explainable. In
particular, we show that RuleNN’s LEs are com-
parable to bi-directional LSTMs (Hochreiter and
Schmidhuber, 1997) with GloVE embeddings (Pen-
nington et al., 2014). A user study with 4 do-
main experts confirms that RuleNN’s LEs are in-
terpretable, capture domain semantics and are con-
ducive to human-machine model co-creation. We
make the following contributions:

• Propose LEs for explainable NLP constructed
using predicates from NLU.

• Propose RuleNN, a modular NN for learning
multiple LEs. Given predicates, RuleNN can
learn rules for any application, not just NLP.

• Compare with ILP, StarAI, neuro-symbolic AI
and LSTMs on real sentence classification data.

• Evaluate explainability of LEs via a user study.

• Illustrate human-machine co-creation by show-
ing how humans interact with explainable LEs.

2 Related Work

Inductive logic programming (ILP) (Muggleton,
1996) learns rules that perfectly entail the posi-
tive examples and reject all negatives. Top-down
ILP systems (Muggleton et al., 2008; Corapi et al.,
2010; Cropper and Muggleton, 2015) in particular,
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generate rules before testing them on data. Since a
0-error rule may not exist, noise-tolerant ILP (Mug-
gleton et al., 2018) learns rules that minimize error
which is more suited for noisy real-world scenarios.
We compare RuleNN against top-down and noise-
tolerant ILP in Section 5.

Markov logic network (MLN) (Richardson and
Domingos, 2006), a member of statistical relational
learning (StarAI) (Getoor and Taskar, 2007), com-
prises weighted rules to extend Markov random
fields (Pearl, 1988) to the first-order setting. A long
line of work exploring various techniques culmi-
nated in the LSM heuristic (Kok and Domingos,
2010) that learns MLN rules before estimating pa-
rameters. Since such a stepwise approach can be
computationally expensive, BoostSRL (Khot et al.,
2011) jointly learns rules and parameters by ap-
proximating the gradient using functional gradient
boosting (Friedman, 2001). RuleNN replaces log-
ical operations with differentiable functions, thus
learning LEs end-to-end without approximations.
Section 5 reports results of LSM and BoostSRL.

Neuro-symbolic AI employs neural networks
for rule induction (Yang et al., 2017; Evans and
Grefenstette, 2018; Dong et al., 2019). To the
best of our knowledge however, none of these ad-
dress NLP tasks such as sentence classification.
NeuralLP (Yang et al., 2017) for instance, learns
restricted chain rules to predict links in knowl-
edge graphs. ∂ILP (Evans and Grefenstette, 2018)
learns recursion by materializing all possible logic
programs thus incurring exponential complexity.
Neural Logic Machines (Dong et al., 2019) trans-
late FOL to tensor operations and multi-layer per-
ceptrons thus precluding extraction of FOL rules.
In contrast, we learn LEs for NLP by constructing
predicates from NLU, RuleNN’s complexity is
proportional to the number of rules, and we also
extract FOL rules once training has converged.
Other combinations of FOL and neural networks
include Kazemi and Poole (2018); Sourek et al.
(2018); Donadello et al. (2017); Gupta et al. (2020)
and neural theorem provers (Rocktäschel and
Riedel, 2017), which convert user-specified rules
into neural networks. In particular, neural module
networks (Gupta et al., 2020) convert composi-
tional questions into modules in a neural network
with the goal being to learn all parameters jointly.
In contrast to RuleNN, none of these directly learn
rules from labeled data.

Recall that in Figure 1, the sentence comprises

actions and we evaluate the LE on each action. This
is in fact multiple instance learning (MIL) (Diet-
terich et al., 1997; Amores, 2013) where one in-
stance (e.g., sentence) contains a set of instances
(e.g., actions) and is strictly more general than in-
dependent and identically distributed (IID) clas-
sification. Previous use of MIL includes aspect-
based sentiment analysis (Pappas and Popescu-
Belis, 2014). In Section 5, we compare RuleNN
against MIL classifiers including MIRI (Bjerring
and Frank, 2011), a MIL rule-learner, and MITI
(Blockeel et al., 2005), a MIL decision tree learner.

3 Constructing Predicates based on
Natural Language Understanding

In this section, we describe how to define human
interpretable predicates by leveraging semantic role
labeling (SRL) (Jurafsky and Martin, 2014) and
syntactic parsing. In Section 4, we show how to
learn discriminative LEs on top of such predicates.

3.1 From Linguistic Features to Predicates

We begin by introducing first-order logic constructs
such as logical predicates, constants and facts be-
fore applying them to the NLP domain. We ground
all definitions via examples subsequently.

Definition 3.1 (Logical Predicate). A predicate is a
Boolean-valued function returning true (1) or false
(0). Formally, let x denote a logical variable that
takes values from domain of constants Dom. Then
Pred(x1, . . . xn) denotes an n-ary predicate where
xi is either a logical variable or constant ∈ Dom.

Pred(x1, . . . xn) denotes a ground atom that evalu-
ates to either true or false if xi denotes a constant,
∀i=1, . . . n. A fact is an atom that holds true.

Given our interest in sentence classification, we
will be dealing with logical constants correspond-
ing to sentences and actions extracted from them.
We describe two ways to generate predicates for
NLP, the first of which uses SRL arguments and
dictionaries.

Definition 3.2 (SRL Predicate). Given SRL ar-
gument SemAttr and dictionary h, predicate
SemAttrMatchesh(a) is true if h contains ac-
tion a’s surface form corresponding to SemAttr.

Let h = {w1, . . . wd} denote a dictionary of se-
mantically related words (or phrases) such that
wi ∈ V, ∀i = 1, . . . d, where V denotes the vocab-
ulary. Also, letH denote a set of dictionaries such
that ∀h∈H : h ⊆ V and let SemAttr denote an
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A1
(notice)

transmit.01
(transmit)

Argm
(electronically)

register.02
(register)

A0
(registered mail)

(a)

Dict1
inform
notify

transmit

Dict2
notice

communication

(b)

Contains(S1, transmit.01)
Contains(S1, register.02)
MatchesDict(Dict1, transmit.01.verb)
MatchesDict(Dict2, transmit.01.A1)

(c)

Figure 3: Generating (c) facts and predicates from (a) shallow semantic parsing and (b) dictionaries.

argument for an action extracted using SRL. Using
Definition 3.2, one can define one predicate1 per
SRL argument per dictionary h ∈ H.

Definition 3.3 (Syntactic Predicate). Given syntac-
tic argument SynAttr and v ∈ Dom(SynAttr),
predicate IsSynAttrv(a) holds true if action a’s
value of SynAttr is v.

The second type of predicate we propose is derived
from syntactic arguments of actions such as tense
and voice. Let SynAttr denote such an argument
whose domain is denoted byDom(SynAttr) (e.g.,
Dom(voice) = {active, passive}). Definition 3.3
then allows creation of one predicate per domain
value v per syntactic argument.
The main construct in FOL is a rule or clause:

R : c← b1, b2, . . . bn

whereR is an identifier, b1, . . . bn denote predicates
in its body and c denotes the head predicate. If the
body is true then the head is also true, which in the
context of classification, will be the label predicate
`(x) which in turn, if true, implies that the instance
denoted by x is to be assigned the label. In short,
we treat clauses as binary classifiers. For multiple
labels, we utilize distinct label predicates and learn
distinct clauses.

Definition 3.4 (Linguistic Expression or LE). A
clause defined over logical variables representing
sentence s and action a, includes a distinguished
binary predicate Contains(s,a) which is true if a
belongs to s, and whose body contains SRL and/or
syntactic predicates (see Definitions 3.2 and 3.3).

Figure 3 (a) shows actions and their arguments
extracted from the example in Figure 1 expressed
in PropBank annotation schema (Palmer et al.,
2005). One such action is transmit.01, whose
SRL arguments include notice (A1, the target of
the action), electronically (ARGM, how the action
is performed.) and registered mail (A0, the agent

1“Predicate” refers to the logical kind used to build LEs,
not to be confused with SRL’s predicate-argument structure.

1 1

0 0

transmit.01

register.02

MatchesDict(Dict1,·)
MatchesDict(Dict2,·)

Figure 4: Example predicate matrix where rows and
columns denote actions and predicates, respectively.

of the action). We use shorthand a.SemAttr to
refer to action a’s surface form associated with
SemAttr. Figure 3 (b) and (c) show two dictio-
naries and the facts generated using these, respec-
tively. Dict1 contains three tokens, one of which
matches the surface form of transmit.01,
i.e. transmit.01.verb = transmit. This
leads to the fact MatchesDict(Dict1,
transmit.01.verb) which is syntactic sugar
for the SRL predicate produced with SemAttr
verb and dictionary Dict1 in accordance with
Definition 3.2. Similarly, transmit.01.A1 =
notice and dictionary Dict2 leads to another fact
MatchesDict(Dict2, transmit.01.A1).

3.2 Problem Formulation

Definition 3.4 states that an LE contains two kinds
of logical variables and Contains is the only
predicate defined on sentence s (neither Definition
3.2 nor 3.3 introduce a predicate over s). This im-
plies that we need to predict sentence labels based
on the facts defined over actions. Indeed, the LE’s
body in Figure 1 contains free variable a not ap-
pearing in the head and under standard existential
semantics this implies that the head is true only if
there exists an a which satisfies the body.

Let D = {(x1, y1), . . . , (xn, yn)} denote a bi-
nary class, labeled sample where xi is a constant
denoting an instance to be classified (in our case,
sentences) with label yi ∈ {0, 1}. Let Ri denote
xi’s constituents (in our case, the set of actions
from xi). Also, let P = {Pred1, . . .PredN} denote
unary predicates defined using Definitions 3.2 and
3.3. Since all predicates are unary, we can repre-
sent all facts associated with xi using a predicate
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α1

α2

α3

(1, 0, 0) ≡ P1

(0, 1, 0) ≡ P2

(0, 0, 1) ≡ P3

1
2P1 + 1

2P3

(1/2, 0, 1/2) ≡
(0, 1/2, 1/2) ≡ 1

2P2 + 1
2P3

(1/3, 1/3, 1/3) ≡
1
3P1 + 1

3P2 + 1
3P3

(1/2, 1/2, 0) ≡ 1
2P1 + 1

2P2

Figure 5: Convex hull of {P1, P2, P3}. Highlighted
points (in blue) denote specific predicate combinations.

matrix M ∈ {0, 1}|Ri|×|P| such that Mkj = 1 if
Predj(a) is true and 0 otherwise, where a denotes
the kth action inRi. Figure 4 shows an example of
a predicate matrix. Our task is to learn (possibly,
multiple) LEs that capture xi’s label yi.

4 RuleNN: Learning Linguistic
Expressions with Neural Networks

We now present RuleNN, a neural network for
learning LEs from labeled data. Since LEs are dis-
crete objects, we first present a parameterized predi-
cate that is defined in terms of learnable parameters.
Subsequently, we introduce predicate and clause
generation modules. By adding more of these mod-
ules, the architecture scales to facilitate learning of
multiple, longer LEs.

4.1 Parameterized Predicate and Predicate
Generation Module

Parameterized predicate (PP) expresses a linear
(more precisely, convex) combination of predicates
from P . Consider P’s convex hull which is the
smallest convex set containing all its predicates.
Since P (a)∈{0, 1}, ∀P ∈P (Definition 3.1), any
point in the convex hull may be expressed as:

PPP(a;α) =
∑

Pi∈P αiPi(a), ∀a∈Ri, xi∈D
such that

∑
i αi = 1, αi ≥ 0 ∀i = 1, . . . |P|

Given α = [α1, . . . α|P|]
>, parameterized predi-

cate PPP(a;α) returns a distinct predicate combi-
nation of P . In particular, when α is a one-hot en-
coding PPP(a;α) results in a distinct predicate in
P which corresponds to a corner of the convex hull.
In fact, the hull spans a (|P| − 1)-simplex. Figure
5 shows the convex hull of 3 predicates that forms
a 2-simplex or triangle and points in blue highlight
salient predicate combinations.

Given an update scheme, e.g. backpropagation,
PPP(a;α) can switch from one predicate (combi-

γ

softmax

α

×

PPP

M PP1
P PP2

P⊗ PP1
P ∧ PP2

P

(a) (b)

Figure 6: (a) Predicate Generation Module. (b) Con-
junction using Hadamard product.

nation) to another by updating α. Thus, PPs enable
learning LEs via gradient-based optimization. Fig-
ure 6 (a) depicts PP as a combination of layers or
a predicate generation module (PGM). To enforce
the non-negativity and summation constraints, we
derive α (shown in blue) from auxiliary variables
γ ∈ R|P| (shown in green) using the softmax
transform (Srivastava and Sutton, 2017):

αi =
eγi∑|P|
j=1 e

γj
, ∀i = 1, . . . |P|

PPP(a;α) (vector in red in Figure 6 (a)) is then
given by the matrix-vector product Mα where M
denotes the predicate matrix of some xi ∈ D.

4.2 Clause Generation Module
Figure 1’s LE is a conjunction of two SRL predi-
cates; such combinations can be learned by com-
bining multiple PGMs into a clause generation
module (CGM). Let m denote the number of predi-
cates in an LE. Following other works (Yang et al.,
2017; Sourek et al., 2018), CGMs replace non-
differentiable logical conjunction with a smooth t-
norm operator (Esteva and Godo, 2001). While var-
ious t-norms exist, product t-norm leads to better
results (Evans and Grefenstette, 2018). Note that,
RuleNN’s architecture does not rely on product t-
norm and may easily switch to another t-norm if de-
sired. Product t-norm of PP1

P(a;α1), PP2
P(a;α2)

is given by Hadamard product or element-wise mul-
tiplication PP1

P(a;α1) ⊗ PP2
P(a;α2), ∀a ∈ Ri,

∀xi ∈ D (see Figure 6 (b)).

4.3 RuleNN Architecture
Let k denote the desired number of LEs to learn.
Figure 7 depicts RuleNN consisting of k CGMs
shown in solid boxes (corresponding to k LEs),
consisting of m PGMs per CGM shown in dashed
boxes (corresponding to m predicates within each
LE). Our motivation for learning multiple LEs is
because a single rule may not result in high pre-
cision and high recall due to the precision-recall
trade-off. Thus, learning a disjunction of more than
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M

γ1
1

softmax

α1
1
× PP1

1

Predicate Generation Module

...
...

...

γ1
m

softmax

α1
m
× PP1

m

∧m
i=1PP1

i

⊗

⊗

Clause Generation Module

...
...

...

γk
1

softmax

αk
1

× PPk
1

...
...

...

γk
m

softmax

αk
m

× PPk
m

∧m
i=1PPk

i

⊗

⊗

concat

concat

max

∃∨k
j=1

∧m
i=1PPj

i

Figure 7: RuleNN for learning k m-length clauses.

Name Global/Local Description

M Local Predicate matrix for instance
R Local Actions in instance

PP j
i Local Responses for actions belonging to instance
αj

i Global Attention weights defining a learned predicate
γj
i Global Log attention weights for learned predicate
k Global Number of LEs (hyperparameter)
m Global Length of LEs (hyperparameter)

Table 1: Notation with description

one LE, i.e., the label is assigned if any LE holds
true for the sentence, can lead to improved results.

In detail, the bottom left of Figure 7 shows
a predicate matrix M for some x ∈ D whose
constituent actions are given by R. To model
conjunction, jth CGM’s output is computed by
element-wise multiplying |R|-dimensional vectors
PPj1, . . .PPjm produced by corresponding PGMs,
where (superscript) subscript denote index of
(CGM) PGM. Given outputs of the CGMs, 2 oper-
ations remain: 1) existential over actions following
the semantics of the LE, and 2) disjunction over
all LEs. We treat existential as a disjunction-like
operator. Since logical disjunction is also not dif-
ferentiable, neuro-symbolic AI replaces it with a
t-conorm such as max (Dong et al., 2019) whose
(sub)gradient is available. The (scalar) max across
all CGM outputs models both the existential and
disjunction to return a score for x that may be com-
pared to its label y in D via a loss function. Table
1 describes our notation for easy reference.

4.4 Further Optimizations and LE Retrieval
While RuleNN supports learning m PPs per CGM,
if ∃i 6= i′ such that αj

i = αj
i′ , then jth CGM con-

sists of < m distinct PPs. Effectively, RuleNN

Algorithm 1: Post-hoc LE retrieval
input :Learned α1, . . . αm and training dataD.
output :List of LEs.

1 S ← {} // Loop goes over
(|P|

m

)
combinations

2 while more predicate combinations exist do
3 (p1, . . . pm)← get next predicate combination
4 if

∏m
i=1 αipi

> 0 ∧ ∃x ∈ D such that (p1, . . . pm) ∼ x
then S ← S ∪ {(p1, . . . pm)}

5 return S

TREC Contracts

#Sentences/Questions (Train) 5301 28174
#Sentences/Questions (Test) 497 1259
#Labels 6 9
#Actions (Train) 6996 105552
#Actions (Test) 562 4850
#Actions per sentence 1.3 3.75

Table 2: Broad-level dataset statistics

learns k LEs containing up to m PPs each. To
handle class skew, i.e., D consists of more neg-
ative than positive examples, we utilize negative
sampling (Mikolov et al., 2013). We also apply
dropout (Srivastava et al., 2014) just before max-
pooling to zero-out outputs from randomly chosen
CGMs. Once learning has converged, we can use
Algorithm 1 to retrieve LEs expressed in FOL.
Given α1, . . .αm learned from a single CGM, Al-
gorithm 1 considers each m-combination of pred-
icates from P and returns it as an LE if (Line 4):
1) its associated weight (product of corresponding
numbers in αi, ∀i=1, . . .m) is non-zero, and 2)
it evaluates to true on some instance in D. When
learning k CGMs, we invoke Algorithm 1 once per
CGM and union the LEs. Algorithm 1’s complex-
ity is exponential in m but it is efficient for short
LEs which makes sense since longer LEs are hard
to interpret. In practice, post-hoc retrieval results
in a few hundred LEs (Section 5 discusses how to
navigate such a set of LEs).

5 Experiments

Datasets: We experiment with two datasets: TREC
(Li and Roth, 2002) comprising questions, and the
real-world Contracts data (proprietary) comprising
sentences from legal contracts among enterprises.
Contracts calls for out-of-domain generalization
since its training set involves contracts with IBM as
first party while the test set includes more diverse
companies. Table 2 provides broad-level statistics.
Sentences in Contracts may be labeled with 0, 1 or
more labels (multi-label classification), so we treat
each label as a binary class labeling task. Table 3
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Label Skew |P|

W 0.09 101
SoW 0.07 48
DR 0.06 80
IP 0.05 79
C 0.06 39
P&T 0.10 117
T&T 0.08 77
P&B 0.05 95
L 0.04 71

(a) Contracts: Label statistics

Label Skew |P|

LOC 0.18 133
HUM 0.28 109
NUM 0.17 127
ENTY 0.22 137
DESC 0.22 122
ABBR 0.02 38

(b) TREC: Label Statistics

Predicate-based (↓ours↓)

Label MG��� MG���
NT MITI��� MIRI��� MINet� LSM��� BSRL��� NeuralLP��� RuleNN��� BiLSTM�

C
O

N
T

R
A

C
T

S

W NR 0.07 0.184 0.156 0.294 − 0.183 0.537 0.685 0.805± 0.010
SoW NR NR 0.011 0.011 0.018 − 0.015 0.438 0.658 0.689± 0.030
DR NR 0.05 0.144 0.147 0.258 − 0.021 0.614 0.848 0.807± 0.030
IP NR 0.13 0.145 0.153 0.244 − 0.148 0.550 0.844 0.787± 0.050
C NR 0.38 0.157 0.149 0.580 − 0.545 0.574 0.788 0.653± 0.020
P&T NR 0.30 0.111 0.083 0.314 − 0.269 0.516 0.813 0.802± 0.030
T&T NR 0.11 0.406 0.372 0.586 − 0.591 0.560 0.837 0.846± 0.020
P&B NR 0.10 0.111 0.122 0.154 − 0.192 0.533 0.819 0.786± 0.010
L NR 0.07 0.115 0.126 0.12 − 0.205 0.464 0.750 0.741± 0.070

T
R

E
C

LOC NR NR 0.710 0.699 0.833 0.473 0.835 0.470 0.904 0.998± 0.001
HUM NR 0.36 0.771 0.770 0.922 0.565 0.927 0.558 0.912 0.999± 0.000
NUM NR NR 0.687 0.680 0.821 0.497 0.756 0.497 0.856 0.996± 0.004
ENTY NR NR 0.365 0.373 0.591 0.481 0.425 0.576 0.745 0.957± 0.020
DESC NR 0.52 0.331 0.334 0.540 0.498 0.519 0.437 0.789 0.995± 0.003
ABBR NR NR 0.731 0.731 0.688 0.542 0.735 0.443 0.774 1.000± 0.000

(c) NR and− denote no LEs learned and non-convergence, resp. Bold-font and underscore denotes best performing
approach and best predicate-based method, resp. RuleNN (ours) is the best predicate-based method. Variation of
BiLSTM’s AUC-PR due to changing hidden dimensions is shown after±.

Table 3: Dataset statistics and AUC-PR results
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Figure 8: (a) ∂ILP results. (b) Quality gains due to increasing k. (c) RuleNN per-epoch time vs. k (x-axis) and m.
(d) Convergence vs. epochs (x-axis). (e) Domain experts aid generalization where U denotes all users {a, b, c, d}.

(a) lists per-label2 class skew, which is defined as
the ratio of positive sentences divided by negatives.
Note that, C denotes Communication (the label in
the running example in Figure 1). Each sentence is
processed using SystemT’s (Krishnamurthy et al.,
2008) SRL and dependency parser. We extract each
action’s tense, aspect, mood, modalclass, voice and
polarity (syntactic arguments), and also semantic
arguments such as A0, A1, Argm etc. Table 3 (a)
lists the number of predicates constructed using
hand-crafted dictionaries for each label following
the process described in Section 3. We use TREC’s
standard train/test split to aid comparison which
also exhibits significant class skew (Table 3 (b)),
automatically construct dictionaries by capturing
surface forms (from the training set) that discrimi-
nate well among its labels and construct predicates
by extracting the same syntactic and semantic ar-
guments stated previously.
Methods Compared: RuleNN learns k=50 LEs
containing up to m=4 predicates. We set

2Full label names are available (Legal Categories).

dropout=0.5, batchsize=64, stepsize=0.01 and use
SGD with momentum=0.9. We compare against
NeuralLP and ∂ILP, from neuro-symbolic AI; LSM
and BoostSRL (BSRL), from StarAI; MITI and
MIRI, from multiple instance learning; and top-
down ILP system metagol (MG) (Cropper and
Muggleton, 2015) and its noise-tolerant variant
MetagolNT (MGNT) (Muggleton et al., 2018). All
of these are described in Section 2, and learn rules
which we denote by ��� (aka “white-box” method).
We also compare with black-box methods (denoted
by �): MINet (Wang et al., 2018) and recurrent
neural networks. MINet achieves MIL using a deep
neural net with fully connected layers. BiLSTM
replaces tokens in the sentence with GloVe em-
beddings (Pennington et al., 2014) followed by a
bi-directional LSTM whose hidden vectors are ag-
gregated to produce the label. By varying hidden
units from 200 to 600, we obtain a range for BiL-
STM performance. Note that, only BiLSTM gets
raw sentence tokens as input. MINet along with ���
methods, receive the same predicates and dictionar-
ies that RuleNN receives as input. Thus, we refer
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R2 :communication(s)← Contains(s, a)

∧ (a.Argm ∈ {immediately, electronically,..})
∧ (a.verb ∈ {notify, inform,..})

S2 :

notify.01︷ ︸︸ ︷
Notify buyer

Argm︷ ︸︸ ︷
immediately upon completion or

termination of any assignment and return buyer’s identification badge.

R3 :communication(s)← Contains(s, a)

∧ (a.A0 contains notice

∨ a.A0 contains communication)

∧ a.tense = future

S3 :

A0︷ ︸︸ ︷
Notices required in writing under this agreement will

be.01︷ ︸︸ ︷
be made

to the appropriate contact(s) ..

R4 :communication(s)← Contains(s, a)

∧ a.voice = passive

∧ (a.A1 contains notice

∨ a.A1 contains communication)

S4 :

A1︷ ︸︸ ︷
All notices, with the exception of legal notices, may also be

provide.01︷ ︸︸ ︷
provided

by facsimile.

Figure 9: LEs learned by RuleNN with a sentence ex-
ample each on which they hold true.

to them as predicate-based methods.

5.1 Comparative Results

Table 3 (c) and Figure 8 (a) report area under
precision-recall curve (AUC-PR) for all methods.
Vs. predicate-based and ��� methods: It is un-
likely that there exists any LE which perfectly en-
tails the positives and rejects all negative examples.
Thus, MG learns no rules (NR) and MGNT’s AUC-
PR is poor. Both LSM and BSRL are susceptible
to class skew (Khot et al., 2011). Despite running
for 5 days, LSM did not provide a result (denoted
by -) on Contracts, the larger of the 2 datasets. NN-
based MINet outperforms MITI and MIRI. RuleNN
shows impressive performance despite class skew
and scale. Averaged across labels, it outperforms
MINet by 16% on TREC and 595% on Contracts.
Among ��� methods, RuleNN outperforms BSRL
by 25% on TREC and 109% on Contracts.
Vs. neural-symbolic methods: NeuralLP learns
chain rules (also called closed paths) for link predic-
tion which differs from LE structure defined in Sec-
tion 3. RuleNN outperforms it by 69% on TREC
and 48% on Contracts. ∂ILP’s prohibitive com-
plexity, O(|P|mk), prevents us from learning more
than 2 LEs containing 2 predicates only (settings

R5 :term-&-termination(s)← Contains(s, a)

∧ a.aspect = simple ∧ (a.verb ∈ {terminate, expire, cease})

R6 :liability(s)← Contains(s, a) ∧ a.aspect = simple

∧ (a.A1 contains liable ∨ a.A1 contains liability)

Figure 10: LEs learned by RuleNN for T&T and L.

from Evans and Grefenstette (2018)). Its AUC-PR
(Figure 8 (a)) on C and SoW, Contracts’ labels with
fewest predicates (Table 3 (a)), is erratic. RuleNN
outperforms it on both labels.
Vs. � methods: RuleNN outperforming MINet
shows that despite learning explainable LEs, it can
still improve over black-box methods. In its small-
est setting, BiLSTM contains (upwards of) 400000
learnable parameters (with 300-dim. GloVe embed-
dings). In contrast to RuleNN’sO(|P|mk) parame-
ters (and its settings specified earlier in this section),
BiLSTM’s parameter set is an order of magnitude
larger. This allows BiLSTM to provide excellent
results on shorter questions in TREC (containing
1.3 actions on avg., Table 2) but overfits on Con-
tracts, there being marked differences between data
distributions of the training and test set. RuleNN’s
AUC-PR is comparable to BiLSTM’s on Contracts.
In fact, it outperforms BiLSTM in 4 of 9 labels.
This is in addition to the explainability offered by
the learned LEs (we show examples subsequently).
Impact of parameters and initialization: Figure
8 (c) shows per-epoch training times for RuleNN
on label C in Contracts against varying k (x-axis)
and m. RuleNN’s runtime depends linearly on k
and is not affected much by m. This is a clear win
against more expensive approaches such as ∂ILP
and LSM. Increasing k or m may also allow a
better fit. Figure 8 (b) shows which of Contracts’
labels benefit by increasing k from 1 to 50. We
also tested different random initialization of γji ,
∀i, j. RuleNN converges to similar cross-entropy
loss across different initializations (Figure 8 (d)).

5.2 Explainability of Learned LEs

Algorithm 1 produces 188 LEs for C in Contracts.
While this may seem excessive, it is possible to
build a graphical user interface (GUI) (Yang et al.,
2019) that allows for instance, to filter LEs based
on a precision threshold and rank LEs based on say,
recall, to efficiently navigate through such a set of
LEs. Unfortunately, we know of no objective met-



4219

ric that can be automatically computed to directly
measure LE’s explainability. Thus, we contrast ex-
ample LEs learned by RuleNN with BSRL’s, one
of the better performing rule-learning baselines.

Besides the LE in Figure 1, Figure 9 shows
3 more RuleNN LEs with example sentences
where a.SemAttr contains w is true when
a.SemAttr includes tokenw which is useful when
SRL extracts an extended piece of the sentence as
a.SemAttr3 (e.g., A0 in S3 in Figure 9). Clearly,
all involved terms are Communication-specific.
For instance, S2 shows how verb notify appears in a
sentence implying communication thus R2 includ-
ing it in its SRL predicate makes sense. Besides
SRL predicates, these LEs also include syntactic
predicates capturing the fact that legal contracts are
often written in passive voice (R4) or future tense
(R3). In contrast, an LE learned by BSRL is:

communication(s) ← Contains(s,a)

∧ a.mood = imperative

∧ a.tense = present participle

which is interpretable but may not make sense
given domain semantics since an action satisfying
these conditions may imply a label besides C. Fig-
ure 10 shows more LEs learned by RuleNN for la-
bels T&T (term and termination) and L (liability).

5.3 Human-Machine Co-creation: User Study

Having shown that RuleNN learns explainable,
high-quality LEs, we were interested in finding
out whether domain experts find the same and in
particular, whether the interaction improves the
LEs? 4 data scientists, with knowledge of NLU
and FOL, were given 188 LEs learned for C. The
goal was to select LEs whose semantics could be
verified. Via the GUI mentioned earlier, partici-
pants could modify LEs (by dropping/adding pred-
icates) and evaluate them on Contracts training set.
Each participant took half an hour to select ≈ 6-8
LEs. This reduction from 188 LEs translates to
a 96% model compression and shows that with
human’s expertise, RuleNN’s LEs can be made
smaller and thus more interpretable. To model
collaborative and iterative development in the real-
world, we union LEs produced by each subset of
3 participants to attain 4 explainable models. As
Figure 8 (e) shows, 3 of these outperform BiLSTM
by ≈ 25% in terms of F-measure (precision and

3Fixing errors in SRL’s output is out of scope of this work.

recall’s harmonic mean). As an example LE mod-
ification, consider R3 (Figure 9) which contains
the predicate a.tense=future. Since a sentence
may imply communication even if it is not in fu-
ture tense (e.g., Figure 1’s sentence is in present
tense), participants dropped this predicate to im-
prove the LE’s recall by 5% (precision remained
≈ 75%). Even if we learn the right patterns (many
Contracts’ sentences are in future tense), domain
expertise may still aid generalization thus going
beyond available training data. Yang et al. (2019)
provides more details on the user study, design of
the UI used to conduct it and related aspects.

6 Conclusion and Future Work

Our experiments indicate that neuro-symbolic Ru-
leNN outperforms other rule induction techniques
in terms of efficiency and quality of rules learned
even in the presence of challenging conditions such
as class skew. Allowing domain experts to instill
their expertise into LEs can also enable human-
machine co-creation of explainable models.

Ideas presented here are general enough to en-
able other applications. RuleNN can be used for
any MIL task assuming predicates are given and
PGMs can be used to learn combinations of base
predicates P even if the structure of the rule differs
from LEs. As an extension, it may even be pos-
sible to determine the number of LEs k from the
data using recurrent neural networks (Yang et al.,
2017). RuleNN can learn rules combining any pre-
viously built classifier’s output probabilities (as-
suming such probabilities lie within [0, 1]). Note
that, RuleNN’s philosophy is distinct from other ex-
plainable AI approaches (Ribeiro et al., 2016; Ser-
rano and Smith, 2019). We show that it is possible
to learn human-interpretable models by designing
neural networks keeping explainability in mind.

As opposed to learning an explainable model
(e.g., RuleNN), one may also choose to explain
a black-box model. Such efforts are usually re-
stricted to explaining outcomes and only provide
a shallow understanding of the overall model, if
at all (Guidotti et al., 2018). While recent embed-
dings (Devlin et al., 2019) may lead to improved
accuracy, these remain poorly understood (Morad-
shahi et al., 2019). One avenue of future work is
to learn explainable rules that domain experts can
interact with on top of such embeddings. Another
is to learn rules and dictionaries jointly, which may
also aid sentiment analysis (Wilson et al., 2005).
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