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Abstract

We present CLIRMatrix, a massively large col-
lection of bilingual and multilingual datasets
for Cross-Lingual Information Retrieval ex-
tracted automatically from Wikipedia. CLIR-
Matrix comprises (1) BI-139, a bilingual
dataset of queries in one language matched
with relevant documents in another language
for 139×138=19,182 language pairs, and
(2) MULTI-8, a multilingual dataset of queries
and documents jointly aligned in 8 different
languages. In total, we mined 49 million
unique queries and 34 billion (query, doc-
ument, label) triplets, making it the largest
and most comprehensive CLIR dataset to
date. This collection is intended to support
research in end-to-end neural information re-
trieval and is publicly available at https:

//github.com/ssun32/CLIRMatrix. We
provide baseline neural model results on BI-
139, and evaluate MULTI-8 in both single-
language retrieval and mix-language retrieval
settings.

1 Introduction

Cross-Lingual Information Retrieval (CLIR) is a
retrieval task in which search queries and candi-
date documents are written in different languages.
CLIR can be very useful in some scenarios. For
example, a reporter may want to search foreign-
language news to obtain different perspectives for
her story; an inventor may explore the patents in
another country to understand prior art. Tradition-
ally, translation-based approaches are commonly
used to tackle the CLIR task (Zhou et al., 2012;
Oard, 1998; McCarley, 1999): the query transla-
tion approach translates the query into the same
language of the documents, whereas the document
translation approach translates the document into
the same language as the query. Both approaches
rely on a machine translation (MT) system or bilin-
gual dictionary to map queries and documents to

the same language, then employ a monolingual
information retrieval (IR) engine to find relevant
documents.

Recently, the research community has been ac-
tively looking at end-to-end solutions that tackle
the CLIR task without the need to build MT sys-
tems. This line of work builds upon recent ad-
vances in Neural Information Retrieval in the mono-
lingual setting, c.f. (Mitra and Craswell, 2018;
Craswell et al., 2020). There are proposals to di-
rectly train end-to-end neural retrieval models on
CLIR datasets (Sasaki et al., 2018; Zhang et al.,
2019) or MT bitext (Zbib et al., 2019; Jiang et al.,
2020). One can also exploit cross-lingual word em-
beddings to train a CLIR model on disjoint mono-
lingual corpora (Litschko et al., 2018).

Despite the growing interest in end-to-end CLIR,
the lack of a large-scale, easily-accessible CLIR
dataset covering many language directions in high-,
mid- and low-resource settings has detrimentally
affected the CLIR community’s capability to repli-
cate and compare with previously published work.
For example, among the widely-used datasets, the
CLEF collection (Ferro and Silvello, 2015) covers
many languages but is not large enough for training
neural models. The more recent IARPA MATE-
RIAL/OpenCLIR collection (Zavorin et al., 2020),
is not yet publicly accessible. This motivates us
to design and build CLIRMatrix, a massively large
collection of bilingual and multilingual datasets for
CLIR.

We construct CLIRMatrix from Wikipedia in
an automated manner, exploiting its large variety
of languages and massive number of documents.
The core idea is to synthesize relevance labels via
an existing monolingual IR system, then propa-
gate the labels via Wikidata links that connect
documents in different languages. In total, we
were able to mine 49 million unique queries in 139
languages and 34 billion (query, document, label)

https://github.com/ssun32/CLIRMatrix
https://github.com/ssun32/CLIRMatrix
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Figure 1: Illustration of our CLIRMatrix collection.
The BI-139 portion of CLIRMatrix supports research
in bilingual retrieval and covers a matrix of 139 × 138
language pairs. The MULTI-8 portion of CLIRMatrix
supports research in multilingual modeling and mixed-
language (ML) retrieval, where queries and documents
are jointly aligned over 8 languages.

triplets, creating a CLIR collection across a matrix
of 139× 138 = 19, 182 language pairs. From this
raw collection, we introduce two datasets:

• BI-139 is a massively large bilingual CLIR
dataset that covers 139× 138 = 19, 182 lan-
guage pairs. To encourage reproducibility, we
present standard train, validation, and test sub-
sets for every language direction.

• MULTI-8 is a multilingual CLIR dataset
comprising of queries and documents jointly
aligned 8 languages: Arabic (ar), German
(de), English (en), Spanish (es), French (fr),
Japanese (ja), Russian (ru), Chinese (zh).
Each query will have relevant documents in
the other 7 languages.

See Figure 1 for a comparison of BI-139 and
MULTI-8. The former facilitates the evalua-
tion of bilingual retrieval over a wide variety of
languages, while the latter supports research in
mixed-language retrieval (a.k.a multilingual re-
trieval (Savoy and Braschler, 2019)), which is an
interesting yet relatively under-explored problem.
For both, the train sets are large enough to enable
the training of the neural IR models.

We hope CLIRMatrix is useful and can empower
further developments in this field of research. To
summarize, our contributions are:

1. A massive CLIR collection supporting
both training and evaluation of bilin-
gual/multilingual models.

2. A set of baseline neural results on BI-139 and
MULTI-8. On MULTI-8, we show that a sin-
gle multilingual model can significantly out-
perform an ensemble of bilingual models.

CLIRMatrix is publicly available at https://

github.com/ssun32/CLIRMatrix.

Figure 2: Intuition of CLIR relevance label synthesis.
For the English query “Barack Obama”, first a mono-
lingual IR engine (Elasticsearch) labels documents in
English; then Wikidata links are exploited to propa-
gate the label to the corresponding Chinese documents,
which are assumed to be topically similar.

2 Methodology

Let qX be a query in language X, and dY be a
document in language Y. A bilingual CLIR dataset
consists of I triples

{(qXi , dYij , rij)}i=1,2,...,I (1)

where dYij is the j-th document associated with
query qXi , and rij is a label saying how relevant is
the document dYij to the query qXi . Conventionally,
rij is an integer with 0 representing “not relevant”
and higher values indicating more relevant.

Suppose there are J documents in total. In the
full collection search setup, the index j ranges from
1, . . . , J , meaning that each query qXi searches
over the full set of documents {dYij}j=1,...,J . In
the re-ranking setup, each query qXi searches over
a subset of documents obtained by an initial full-
collection retrieval engine: {dYij}j=1,...,Ki , where
Ki � J . For practical reasons, machine learn-
ing approaches to IR focus on the re-ranking setup
with Ki set to 10∼1000 (Liu, 2009; Chapelle and
Chang, 2011). We follow the re-ranking setup here.

We now describe the main intuition of our con-
struction method and detail various components
and design choices in our pipeline.

2.1 Intuition and Assumptions
To create a CLIR dataset, one needs to decide how
to obtain qXi and dYij , and rij . We set qXi to be
Wikipedia titles, dYij to be Wikipedia articles, and
synthesize rij automatically using a simple yet re-
liable method. We argue that Wikipedia is the best
available resource for building CLIR datasets due
to two reasons: First, it is freely available and con-
tains articles in more than 300 languages, covering

https://github.com/ssun32/CLIRMatrix
https://github.com/ssun32/CLIRMatrix
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a large variety of topics. Second, Wikipedia arti-
cles are mapped to entities in Wikidata1, which is
a relatively reliable way to find the same articles
written in other languages.

To synthesize relevance labels rij , we propose
first to generate labels using an existing monolin-
gual IR system in language X, then propagate the
labels via Wikidata links to language Y. In other
words, we assume:

1. the availability of documents dX in the same
language as the query, and

2. the feasibility of an existing monolingual IR
system in language X to provide labels r̂ij on
(qXi , d

X
ij ) pairs

Then for any dYij that links to dXij , we assign the
relevance label r̂ij .

This intuition is illustrated in Figure 2. Sup-
pose we wish to find Chinese documents that are
relevant for the English query “Barack Obama”.
We first run monolingual IR to find English doc-
uments that answer the query. In this figure, 4
documents are returned, and we attempt to link to
the corresponding Chinese versions using Wikidata
information. When the link is available, we set the
relevance label rij for Chinese documents using
the English-based IR system’s predictions r̂ij ; all
other documents are deemed not relevant. This
gives us the triplet (qXi , d

Y
ij , rij).

2.2 Mining Pipeline

Figure 3: Mining pipeline for constructing a bilingual
CLIR dataset with queries in language X and docu-
ments in language Y.

Figure 3 is our mining pipeline that implements
the intuition in Figure 2. First, we download the

1Wikidata is a knowledge base that contains links to paral-
lel Wikipedia documents in different languages.

Wikipedia dump of language X and then extract
the titles and document bodies of every article. We
index the documents into an Elasticsearch2 search
engine, which serves as our monolingual IR system.
Using the extracted titles as search queries, we
retrieve the top 100 relevant documents and their
corresponding BM25 scores from Elasticsearch for
every query. We then convert the BM25 scores
into discrete relevance judgment labels using Jenks
natural break optimization. Finally, we propagate
these labels to documents in language Y that are
linked via Wikidata.

We downloaded Wikidata and Wikipedia dumps
released on January 1, 2020. Since Wikipedia
dumps contain tremendous amounts of meta-
information such as URLs and scripts, it can be
expensive to extract actual text directly from those
dumps. Inspired by Schwenk et al. (2019), we
extracted document ids, titles, and bodies from
Wikipedia’s search indices3 instead, which contain
raw text data without meta-information.

Wikipedia dumps We discarded dumps with
less than ten thousand documents, which are usu-
ally the dumps of Wikipedia of certain dialects
and less commonly used languages. We are left
with Wikipedia dumps in 139 languages, contain-
ing a good mix of high-, mid- and low-resource lan-
guages. For writing systems that do not use whites-
paces such as Chinese, Japanese, and Thai, we
truncated documents to approximately the first 600
characters. For other languages, we kept roughly
the first 200 tokens of every document. Truncat-
ing the documents is necessary for several reasons:
First, shorter documents are more friendly to neu-
ral models that are bounded by GPU memories.
Second, the first few hundred tokens of Wikipedia
articles are usually the main points of the full text,
thus are more likely to be topically similar across
languages. Last but not least, BM25 tends to over-
penalize long documents, which can lead to sub-
optimal IR performances (Lv and Zhai, 2011). We
hypothesize we can get better relevant judgment
labels if we use shorter documents.

Wikidata dump We downloaded the JSON
dump4 of Wikidata, a structured knowledge base
that links to Wikipedia. We designed a regex rule
that efficiently obtains a list of entities IDs from

2https://www.elastic.co/
3https://dumps.wikimedia.org/other/cirrussearch/
4https://dumps.wikimedia.org/wikidatawiki/entities/
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the Wikidata dump. For every entity ID, we also
extracted a list of related (language code, document
title) pairs. Using our extracted Wikipedia data, we
matched the document titles to Wikipedia docu-
ment IDs5. The extracted data allows us to con-
struct two dictionaries: 1) A dictionary that maps
the document ID in some language to its Wiki-
data entity ID. 2) A reverse dictionary that maps
a Wikidata entity ID to document IDs in different
languages. This enables us to locate a document’s
counterpart in another language quickly; we use
this information to find link relevant documents
across languages.6

2.3 Design Choices

Document titles as search queries We consid-
ered several methods used to generate search
queries. One quick way is to acquire human-
generated search queries directly from search logs.
However, this is not a viable option because search
logs are not publicly available for most languages.
Alternatively, we can engage human annotators to
manually generate search queries, but this can be
time-consuming and expensive, and it is not possi-
ble to scale the process quickly to 139 languages.

We use document titles as search queries for two
reasons: (1) They are readily available in large
amounts for each of the 139 languages, which en-
ables us to build large datasets (i.e., I is large). (2)
In certain real-world search settings, queries are
typically short, spanning only two to three tokens
(Belkin et al., 2003) and informational, covering
a wide variety of topics (Jansen et al., 2008). We
leave the investigation of complex queries to fu-
ture work. We want to emphasize that our mining
pipeline is compatible with all query types; for ex-
ample, we can use the first sentences of documents
as queries (Schamoni et al., 2014; Sasaki et al.,
2018) if desired.

5Note that documents in different languages do not share
document IDs. This means that document N in language X
does not refer to the same entity as document N in language
Y.

6We acknowledge that there are potentially missing inter-
language links in Wikidata. This implies that our method
may miss the labeling of some relevant documents. Wikidata
has several policies to improve its data quality, such as re-
quests for editors to link new Wikipedia articles to entities in
Wikidata. There are also automated auditing tools that period-
ically identify articles with missing or inconsistent Wikidata
labels and ask human editors for verification. An interesting
research problem for future work is to find ways to quantify
the coverage of these inter-language links.

BM25 and Elasticsearch The main step of our
mining pipeline is to index documents into a mono-
lingual IR system, and then retrieve a list of relevant
documents and similarity scores for every query.
We assume the similarity score between a query
and document accurately reflects the degree of rel-
evance for that document. Since many Wikipedia
dumps contain millions of documents, the computa-
tions needed to retrieve relevant documents for all
139 languages is non-trivial. We need an efficient
retrieval system that can handle the retrieval task ef-
ficiently and accurately. For this reason, we chose
Elasticsearch7 as our monolingual IR system.

Elasticsearch is an open-source, highly opti-
mized search engine software based on Apache
Lucene8. It has built-in analyzers that handle
language-specific preprocessing such as tokeniza-
tion and stemming. By default, Elasticsearch im-
plements the BM25 weighting scheme (Robertson
et al., 2009), a bag-of-word retrieval function that
calculates similarity scores between queries and
documents based on term frequencies and inverse
document frequencies. BM25 is a strong baseline
that frequently outperforms existing neural IR mod-
els on multiple benchmark IR datasets (Chapelle
and Chang, 2011; Guo et al., 2016; McDonald et al.,
2018).

We used Elasticsearch 6.5.4 and imported the
same settings as the official search indices from
Wikipedia9. For every query, we configured Elas-
ticsearch to search both document titles and docu-
ment bodies, with twice the weight given to docu-
ment titles. We limit Elasticsearch to return only
the top 100 documents for each query and assume
documents not returned by the search engine are
irrelevant. We parallelized the retrieval processes
by running multiple Elasticsearch instances on nu-
merous servers and dedicated one Elasticsearch
instance to every language.

Discrete relevance judgment labels A potential
pitfall of using document titles as queries is that
some short queries can be ambiguous (Allan and
Raghavan, 2002). For example, it is impossible to
figure out whether the search query ”Java” refers
to the Java programming language or the island in

7Elasticsearch is also used as the backend search engine
for Wikipedia.org

8https://lucene.apache.org/core/
9For example, the settings for English Wikipedia is

available at https://en.wikipedia.org/w/api.php?action=cirrus-
settings-dump&format=json&formatversion=2. For BM25,
b = 0.3 and k1 = 1.2.
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Indonesia without other context words. Fortunately,
Wikipedia disambiguates different document titles
by appending category information to the titles,
e.g., Java (Programming Language) and Java (Is-
land), etc. Nevertheless, we do not want to rank
retrieved documents solely based on their BM25
scores. To prevent potential ambiguity issues, we
smooth out the BM25 scores into discrete relevance
judgment labels. We achieve this by using the Jenks
natural break optimization (McMaster and McMas-
ter, 2002), an algorithm that finds optimal BM25
score intervals for different labels by iteratively re-
ducing the variance within labels and maximizing
the variance between labels.

More specifically, for each query qXi , we normal-
ized the BM25 scores r̂ij of dXij to the unit range
and then used Jenks optimization to distribute the
normalized scores into 5 different relevance judg-
ment labels {1, 2, 3, 4, 5}. We want to emphasize
that we did not run Jenks optimization globally
across all BM25 scores because the scales of BM25
scores are not consistent across different queries.
Additionally, documents that are not returned by
Elasticsearch or not linked by any Wikidata are
deemed irrelevant and given a label 0. We also as-
signed the label 6 to the document associated with
the title query. So final rij is of a scale of 0 to 6,
with 0 being irrelevant and 6 being most relevant.

2.4 Bilingual and Multilingual datasets

BI-139 Using the aforementioned pipeline, we
build a bilingual dataset {(qXi , dYij , rij)}i=1,2,...,I

for every X→Y language direction. In the “raw”
version, there are 49.28 million unique queries
and 34.06 billion (query, document, label) triplets
across 139 × 138 = 19, 182 language directions.
We also generated a “base” version, which contains
standard train, validation, test1, and test2 subsets
for each language direction. Train sets contain up
to I=10,000 queries, while validation, test1, and
test2 sets each contain up to 1,000 queries. We
ensured that queries in the train and validation/test
sets of one language direction do not overlap with
the queries in the test sets from other language
directions. For every query, we ensure there are
precisely K =100 candidate documents by filling
the shortfall with random irrelevant documents.

MULTI-8 This is a multilingual CLIR dataset
covering 8 languages from various regions of the
world (Arabic, German, English, Spanish, French,
Japanese, Russian, and Chinese). First, we re-

stricted queries to those with a relevant document
(rij = 6) in all 8 languages. Then, for each query
qXi , we use the monolingual IR systems to collect
100 documents in the same language dXij .10 Similar
to BI-139 base, if ElasticSearch returns less than
100 documents labels (rij ≥ 1), then we fill-up the
short-fall with random irrelevant documents with
label rij = 0. Finally, we merge these document
lists such that for any query in language X, we have
7× 100 documents in the other 7 languages.

Similar to the base version of BI-139, the train
sets contain 10,000 queries, while validation, test1,
and test2 sets contain 1,000 queries; but note the
query sets are different. This dataset supports two
kinds of research: First, one can still evaluate bilin-
gual CLIR (single-language retrieval) like BI-139,
but exploit training multilingual models using more
than two languages. Second, one can evaluate
on multilingual CLIR (mixed-language retrieval),
where the document list to be re-ranked contains
two or more languages. This research direction is
relatively unexplored, with the exception of early
work in the 2000s in the CLEF campaign (Savoy
and Braschler, 2019).

2.5 File Formats

{“src id”: ”6267”,
“src query”: “Cultural imperialism”,
“tgt results”: [[“3383724”, 6], [“19028”, 5], [“6291141”,
4], [“4394682”, 2], [“138124”, 1], [”1245746”, 1],
[“1004260”, 0], ...}

Figure 4: An example English query “Cultural imperi-
alism” and the document IDs and labels of its relevant
Chinese documents.

6499809 〈TAB〉 Structured light is the process of projecting a
known pattern (often grids or horizontal bars) on to a scene...

Figure 5: The IDs and texts of documents are stored
tab-separated in a text file.

For every language direction, we store queries
and their relevant document IDs and labels in the
JSON Lines format (Figure 4). For each unique
language, we store the IDs and texts of documents
in TSV files (Figure 5). Note that we will release
both the truncated and the original documents.

3 Experimental Setup

10Recall that our Wikidata entities dictionary can map a
language-independent entity to query strings (Wikipedia arti-
cle titles) in any language.



4165

af als am an ar arz ast az azb ba bar be bg bn bpy br
.90 .88 .56 .90 .80 .86 .88 .80 .87 .87 .89 .83 .85 .78 .85 .84

bs bug ca cdo ce ceb ckb cs cv cy da de diq el eml eo
.89 .91 .88 .85 .90 .89 .72 .89 .84 .87 .90 .88 .81 .83 .80 .87

es et eu fa fi fo fr fy ga gd gl gu he hi hr hsb
.87 .83 .86 .85 .86 .87 .84 .90 .78 .79 .87 .78 .82 .79 .88 .86

ht hu hy ia id ilo io is it ja jv ka kk kn ko ku
.88 .86 .82 .90 .00 .88 .86 .83 .84 .84 .89 .81 .85 .67 .86 .76

ky la lb li lmo lt lv mai mg mhr min mk ml mn mr mrj
.82 .88 .88 .85 .83 .86 .85 .80 .88 .84 .92 .86 .87 .86 .74 .82

ms my mzn nap nds ne new nl nn no oc or os pa pl pms
.89 .77 .85 .85 .88 .73 .75 .89 .90 .89 .91 .71 .83 .76 .86 .78

pnb ps pt qu ro ru sa sah scn sco sd sh si simple sk sl
.70 .72 .86 .81 .89 .85 .73 .77 .81 .94 .78 .87 .48 .93 .86 .89

sq sr su sv sw szl ta te tg th tl tr tt uk ur uz
.88 .88 .91 .88 .87 .92 .85 .81 .85 .81 .89 .87 .87 .85 .85 .84

vec vi vo wa war wuu xmf yi yo zh
0.88 0.89 0.89 0.75 0.86 0.83 0.79 0.65 0.89 0.84

Table 1: Results of 138 language directions from BI-139 base with English queries. In each cell, the top shows a
candidate’s language code and the bottom shows the NDCG@10 score for that language direction.

Figure 6: Neural architecture of our baseline CLIR
model. Modules in the dotted rectangle share weights.

Baseline neural CLIR model We follow the im-
plementation of the vanilla BERT ranker model
(MacAvaney et al., 2019), which obtained strong re-
sults in monolingual IR. As shown in Figure 6, the
model encodes a query-document pair with BERT
(Devlin et al., 2019) and stacks a linear combina-
tion layer on top of the [CLS] token. We extended
the ranker model to use multilingual BERT11. At
training time, we sample documents pairs in which
the positive documents have higher relevance judg-
ment labels than the negative documents. For each
document pair, we obtain scores for both docu-

11We used BERT-Base, Multilingual Cased

ments using the same BERT ranker model. We
then optimize the parameters with pairwise hinge
loss and Adam optimizer. We trained all models for
20 epochs and sampled around 1,000 training pairs
for each epoch. At inference time, we rerank docu-
ments based on the output scores from the BERT
ranker model.

Evaluation metric We report all results in
NDCG (normalized discounted cumulative gain),
an IR metric that measures the usefulness of doc-
uments based on their ranks in the search results
(Järvelin and Kekäläinen, 2002). Following a com-
mon practice from the IR community, we calculate
NDCG@10, which only evaluates the top 10 re-
turned documents. For a given query, let ρi be the
relevance judgment label of the i-th document in
the predicted document ranking and φi be the rel-
evance judgment label of the i-th document in the
optimal document ranking. We define DCG@10
and ideal DCG@10 as:

DCG@10 =
10∑
i=1

2ρi − 1

log2(i+ 1)

IDCG@10 =

10∑
i=1

2φi − 1

log2(i+ 1)

(2)
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We can calculate NDCG@10 for that query as:

NDCG@10 =
DCG@10
IDCG@10

(3)

The NDCG@10 of a test set is the arithmetic mean
of NDCG@10 values for all queries. The range of
the metric is [0, 1] and a higher NDCG@10 score
means predicted rankings are closer to the ideal
rankings.

3.1 Results on BI-139
We present results on the 138 target languages
for English queries. For each language direction,
we trained a baseline CLIR model on the base
train set and kept the checkpoint with the best
NDCG@10 performance on the base validation
set. We reranked the documents in the base test1
set and calculated NDCG@10. Table 1 lists the
the baseline results.12 The pleasant surprise here
is that the baseline CLIR models also generally
did pretty well on languages that are not officially
supported by multilingual BERT. For example, the
model achieved 0.65 on Yiddish (yi) and 0.75 on
Walloon (wa) when multilingual BERT was trained
on neither of these languages. There are several
explanations for this. For one, we hypothesize

12Language codes: af:Afrikaans, als:Alemannic,
am:Amharic, an:Aragonese, ar:Arabic, arz:Egyptian Arabic,
ast:Asturian, az:Azerbaijani, azb:Southern Azerbaijani,
ba:Bashkir, bar:Bavarian, be:Belarusian, bg:Bulgarian,
bn:Bengali, bpy:Bishnupriya Manipuri, br:Breton,
bs:Bosnian, bug:Buginese, ca:Catalan, cdo:Min Dong,
ce:Chechen, ceb:Cebuano, ckb:Kurdish (Sorani), cs:Czech,
cv:Chuvash, cy:Welsh, da:Danish, de:German, diq:Zazaki,
el:Greek, eml:Emilian-Romagnol, en:English, eo:Esperanto,
es:Spanish, et:Estonian, eu:Basque, fa:Persian, fi:Finnish,
fo:Faroese, fr:French, fy:West Frisian, ga:Irish, gd:Scottish
Gaelic, gl:Galician, gu:Gujarati, he:Hebrew, hi:Hindi,
hr:Croatian, hsb:Upper Sorbian, ht:Haitian, hu:Hungarian,
hy:Armenian, ia:Interlingua, id:Indonesian, ilo:Ilocano, io:Ido,
is:Icelandic, it:Italian, ja:Japanese, jv:Javanese, ka:Georgian,
kk:Kazakh, kn:Kannada, ko:Korean, ku:Kurdish (Kurmanji),
ky:Kirghiz, la:Latin, lb:Luxembourgish, li:Limburgish,
lmo:Lombard, lt:Lithuanian, lv:Latvian, mai:Maithili,
mg:Malagasy, mhr:Meadow Mari, min:Minangkabau,
mk:Macedonian, ml:Malayalam, mn:Mongolian, mr:Marathi,
mrj:Hill Mari, ms:Malay, my:Burmese, mzn:Mazandarani,
nap:Neapolitan, nds:Low Saxon, ne:Nepali, new:Newar,
nl:Dutch, nn:Norwegian (Nynorsk), no:Norwegian (Bokmål),
oc:Occitan, or:Odia, os:Ossetian, pa:Eastern Punjabi,
pl:Polish, pms:Piedmontese, pnb:Western Punjabi,
ps:Pashto, pt:Portuguese, qu:Quechua, ro:Romanian,
ru:Russian, sa:Sanskrit, sah:Sakha, scn:Sicilian, sco:Scots,
sd:Sindhi, sh:Serbo-Croatian, si:Sinhalese, simple:Simple
English, sk:Slovak, sl:Slovenian, sq:Albanian, sr:Serbian,
su:Sundanese, sv:Swedish, sw:Swahili, szl:Silesian,
ta:Tamil, te:Telugu, tg:Tajik, th:Thai, tl:Tagalog, tr:Turkish,
tt:Tatar, uk:Ukrainian, ur:Urdu, uz:Uzbek, vec:Venetian,
vi:Vietnamese, vo:Volapük, wa:Walloon, war:Waray, wuu:Wu,
xmf:Mingrelian, yi:Yiddish, yo:Yoruba, zh:Chinese

that low resource languages such as Yiddish, a
high German-derived language, and Walloon, a Ro-
mance language, benefit from their similarities to
other languages within the same language families.
For queries such as named entities, it is also pos-
sible that some relevant cross-language Wikipedia
document may be multilingual and contain some
overlap with the query term untranslated. The de-
tails will depend on the query in question.

3.2 Results on MULTI-8

Multilingual IR is a field that has been largely un-
explored in recent years. MULTI-8 enables evalua-
tion in two kinds of scenarios (see Table 2):

Single-language retrieval This scenario is sim-
ilar to BI-139 in terms of evaluation, i.e. dur-
ing test we only have queries in source language
qX = Stest and documents in one target language
dY = Ttest. We divide MULTI-8 test set into
8× 7 = 56 pairs.

For training, we compare bilingual model
(BMS→ T) trained in every language pair, against
a multilingual model (MM) trained on data con-
catenated from all 56 language directions. As we
can see in Table 3, the MM model performs better
than the respective BM models in most language
directions. This suggests that multilingual training
is a promising research direction even for single-
language retrieval.

Mix-language retrieval In this scenario, at test
time we have a single source query qX = Stest
and wish to retrieve documents dY = Atest which
can be in any of the 8 MULTI-8 languages. The
multilingual model (MM) can be applied directly,
but the bilingual model (BM) requires some modi-
fications. One can run multiple BM one for each
target language, then merge the resulting document
lists (Savoy, 2003; Tsai et al., 2008). A common
strategy, which we adopt here, is to z-normalize the
output scores and rank all the test documents based
on z-scores.

As seen in Table 4, the multilingual model
performs significantly better than the ensem-
bled/merged bilingual models. The average
NDCG@10 of the multilingual model is 0.684,
which is 17.1% than bilingual models with z-score
merging strategy.
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Scenario Models Train Evaluation

Single-language retrieval
{BMS → T } qX = Strain, d

Y = Ttrain qX = Stest, d
Y = Ttest

MM qX = Atrain, d
Y = Atrain

Mix-language retrieval
{BMS → T } qX = Strain, d

Y = Ttrain qX = Stest, d
Y = Atest

MM qX = Atrain, d
Y = Atrain

Table 2: Different ways of using MULTI-8. A refers to the concatenation of all languages, which is used in mix-
language retrieval. S and T refer to the queries/documents in the source and target language under consideration
for the bilingual case (i.e., single-language retrieval similar to BI-139 setups). For either, it is possible to train
either bilingual models (BM) based on pairwise data or a multilingual model (MM) based on all language data.

q
d ar de en es fr ja ru zh

ar .65O .60N .65N .64O .65O .60N .64N

de .75O .75N .77N .72N .72N .74N .71N

en .79N .82N .83N .79N .83O .82O .82O

es .74N .72N .76N .75N .74O .74N .74O

fr .75N .75N .76N .79N .75O .74N .76O

ja .71O .68N .67N .68N .67O .69O .70O

ru .73O .71N .71N .73N .73O .72O .71N

zh .67N .67N .63N .66N .66O .64N .66N

Table 3: MULTI-8 single-language retrieval results of bilingual models (BM). The rows are the source query
language, and the columns are the target document language. The up arrows next to NDCG@10 scores indicate
instances where the multilingual model (MM) outperforms the bilingual models.

ar de en es fr ja ru zh

BM .52 .58 .66 .60 .63 .59 .57 .58

MM .59 .72 .75 .73 .65 .68 .62 .68

4% 13 23 14 22 16 10 20 13

Table 4: MULTI-8 mix-language retrieval results. 4%
shows percent improvement of MM over BM z-norm.

4 Related Work

Information retrieval (IR) has made a tremendous
amount of progress, shifting focus from tradi-
tional bag-of-world retrieval functions such as tf-
idf (Salton and McGill, 1986) and BM25 (Robert-
son et al., 2009), to neural IR models (Guo et al.,
2016; Hui et al., 2018; McDonald et al., 2018)
which have shown promising results on multiple
monolingual IR datasets. Recent advances in pre-
trained language models such as BERT (Devlin
et al., 2019) have also led to significant improve-

ments in IR tasks. For example, MacAvaney et al.
(2019) achieves state-of-the-art performances on
benchmark datasets by incorporating BERT’s con-
text vectors into existing baseline neural IR models
(McDonald et al., 2018). Training on synthetic
is also a common practice, e.g., Dehghani et al.
(2017) show that supervised neural ranking mod-
els can greatly benefit from pre-training on BM25
labels.

Cross-lingual Information Retrieval (CLIR) is a
sub-field of IR that is becoming increasingly im-
portant as new documents in different languages
are being generated every day. The field has
progressed from translation-based methods (Zhou
et al., 2012; Oard, 1998; McCarley, 1999; Yarmo-
hammadi et al., 2019) to recent neural CLIR mod-
els (Vulić and Moens, 2015; Litschko et al., 2018;
Zhang et al., 2019) that rely on cross-lingual word
embeddings. In contrast to the wide availability of
monolingual IR datasets (Voorhees, 2005; Craswell
et al., 2020), cross-lingual and multilingual IR
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Dataset #Lang Manual? Multilingual? #query #document #triplets

(CLEF 2000-2003) 10 yes yes 2.2K 1.1M 33K
(MATERIAL, 2017) 7 yes no 11.5K 90K ∼20K
(Schamoni et al., 2014) 2 no no 245K 1.2M 3.2M
(Sasaki et al., 2018) 25 no no 10.9M 23.9M 40.1M

CLIRMatrix BI-139 raw 139 no no 49.3M 50.5M 34.1B
CLIRMatrix BI-139 base 139 no no 27.5M 50.1M 22.3B
CLIRMatrix MULTI-8 8 no yes 10.4K 13.4M 72.8M

Table 5: Comparison of CLIR datasets by number of languages (#Lang), whether it is manually constructed or
supports multilingual retrieval, and data statistics. Large #query and #triplets are needed for neural training.

datasets are scarce. Examples of the widely used
CLIR datasets are the CLEF 2000-2003 collection
(Ferro and Silvello, 2015), which focus primar-
ily on European languages, and IARPA MATE-
RIAL/OpenCLIR collection (Zavorin et al., 2020),
which focus on a few low-resource language direc-
tions. Creating a CLIR dataset for more language
directions remains an open challenge.

Extracting CLIR datasets from Wikipedia has
been explored in previous work. Schamoni et al.
(2014) build a German–English bilingual CLIR
dataset from Wikipedia, which contains 245,294
German queries and 1,226,741 English documents.
They convert the first sentences from German
Wikipedia documents into queries and follow
Wikipedia’s interlanguage links to find relevant doc-
uments in English. Sasaki et al. (2018) apply the
same techniques and release a larger CLIR dataset
which contains English queries and relevant docu-
ments in 25 languages. Both datasets truncate the
documents to the first 200 tokens and rely on bidi-
rectional inter-article links to find partially relevant
documents. Our contribution differs in three im-
portant aspects: (i) BI-139 is a significantly larger
dataset, covering more languages and more doc-
uments. (ii) MULTI-8 provides a new multilin-
gual retrieval setup, not previously available. (iii)
We argue that our method can reliably find more
relevant documents by propagating search results
from monolingual IR systems to other languages
via Wikidata. This is in contrast to directly using
bidirectional links extracted from Wikipedia doc-
uments to determine relevance, which are much
sparser. Further, our method allows for more finer-
grained levels of relevance (e.g. as opposed to
binary relevance), making the dataset more chal-
lenging.

A comparison of various existing CLIR datasets

is presented in Table 5.

5 Conclusion and future work

We present CLIRMatrix, the largest and the most
comprehensive collection of bilingual and multilin-
gual CLIR datasets to date. The BI-139 dataset sup-
ports CLIR in 139×138 language pairs, whereas
the MULTI-8 dataset enables mix-language re-
trieval in 8 languages. The large number of sup-
ported language directions allows the research com-
munity to explore and build new models for many
more languages, especially the low-resource ones.
We document baseline NDCG results using a neu-
ral ranker based on multilingual BERT. Our mix-
language retrieval experiments on MULTI-8 show
that a single multilingual model can significantly
outperform the combination of multiple bilingual
models.

For future work, we think it will be interesting
to look at:

1. zero-shot CLIR models for low-resource lan-
guages,

2. comparison of end-to-end neural rankers with
traditional translation+IR pipelines in terms of
both scalability, cost, and retrieval accuracy,

3. advanced neural architectures and training al-
gorithms that can exploit our large training
data,

4. building universal models for multilingual IR.
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Ponzetto, and Ivan Vulić. 2018. Unsupervised cross-
lingual information retrieval using monolingual data
only. In The 41st International ACM SIGIR Con-
ference on Research & Development in Information
Retrieval, pages 1253–1256.

Tie-Yan Liu. 2009. Learning to rank for information
retrieval. Found. Trends Inf. Retr., 3(3):225–331.

Yuanhua Lv and ChengXiang Zhai. 2011. When doc-
uments are very long, bm25 fails! In Proceedings
of the 34th international ACM SIGIR conference on
Research and development in Information Retrieval,
pages 1103–1104.

Sean MacAvaney, Andrew Yates, Arman Cohan, and
Nazli Goharian. 2019. Cedr: Contextualized embed-
dings for document ranking. In SIGIR.

MATERIAL. 2017. Machine Translation for English
Retrieval of Information in Any Language (MATE-
RIAL). https://www.iarpa.gov/index.php/
research-programs/material.

J Scott McCarley. 1999. Should we translate the doc-
uments or the queries in cross-language information
retrieval? In Proceedings of the 37th annual meet-
ing of the Association for Computational Linguistics
on Computational Linguistics, pages 208–214. Asso-
ciation for Computational Linguistics.

Ryan McDonald, George Brokos, and Ion Androut-
sopoulos. 2018. Deep relevance ranking using en-
hanced document-query interactions. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1849–1860.

Robert McMaster and Susanna McMaster. 2002. A his-
tory of twentieth-century american academic cartog-
raphy. Cartography and Geographic Information
Science, 29(3):305–321.

Bhaskar Mitra and Nick Craswell. 2018. An introduc-
tion to neural information retrieval. Foundations
and Trends in Information Retrieval, 13(1):1–126.

Douglas W Oard. 1998. A comparative study of query
and document translation for cross-language infor-
mation retrieval. In Conference of the Association
for Machine Translation in the Americas, pages 472–
483. Springer.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends R© in Information Re-
trieval, 3(4):333–389.

https://catalog.elra.info/en-us/repository/browse/ELRA-E0008/
https://catalog.elra.info/en-us/repository/browse/ELRA-E0008/
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://ceur-ws.org/Vol-1404/paper_5.pdf
http://ceur-ws.org/Vol-1404/paper_5.pdf
http://arxiv.org/abs/2004.13005
http://arxiv.org/abs/2004.13005
https://doi.org/10.1561/1500000016
https://doi.org/10.1561/1500000016
https://www.iarpa.gov/index.php/research-programs/material
https://www.iarpa.gov/index.php/research-programs/material
https://doi.org/10.1561/1500000061
https://doi.org/10.1561/1500000061


4170

Gerard Salton and Michael J McGill. 1986. Introduc-
tion to modern information retrieval.

Shota Sasaki, Shuo Sun, Shigehiko Schamoni, Kevin
Duh, and Kentaro Inui. 2018. Cross-lingual
learning-to-rank with shared representations. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pages 458–463.

Jacques Savoy. 2003. Report on clef-2003 multilingual
tracks. In Workshop of the Cross-Language Evalu-
ation Forum for European Languages, pages 64–73.
Springer.

Jacques Savoy and Martin Braschler. 2019. Lessons
Learnt from Experiments on the Ad Hoc Multilingual
Test Collections at CLEF, pages 177–200. Springer
International Publishing, Cham.

Shigehiko Schamoni, Felix Hieber, Artem Sokolov,
and Stefan Riezler. 2014. Learning translational and
knowledge-based similarities from relevance rank-
ings for cross-language retrieval. In Proceedings of
the 52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 488–494.

Holger Schwenk, Vishrav Chaudhary, Shuo Sun,
Hongyu Gong, and Francisco Guzmán. 2019. Wiki-
matrix: Mining 135m parallel sentences in 1620
language pairs from wikipedia. arXiv preprint
arXiv:1907.05791.

Ming-Feng Tsai, Yu-Ting Wang, and Hsin-Hsi Chen.
2008. A study of learning a merge model for multi-
lingual information retrieval. In Proceedings of the
31st annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 195–202.

Ellen M Voorhees. 2005. The trec robust retrieval
track. In ACM SIGIR Forum, volume 39, pages 11–
20. ACM New York, NY, USA.
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