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Abstract

This paper explores how intent classification
can be improved by representing the class la-
bels not as a discrete set of symbols but as
a space where the word graphs associated to
each class are mapped using typical graph em-
bedding techniques. The approach, inspired
by a previous algorithm used for an inverse
dictionary task, allows the classification algo-
rithm to take in account inter-class similarities
provided by the repeated occurrence of some
words in the training examples of the differ-
ent classes. The classification is carried out by
mapping text embeddings to the word graph
embeddings of the classes. Focusing solely
on improving the representation of the class
label set, we show in experiments conducted
in both private and public intent classification
datasets, that better detection of out-of-scope
examples (OOS) is achieved and, as a conse-
quence, that the overall accuracy of intent clas-
sification is also improved. In particular, using
the recently-released Larson dataset, an error
of about 9.9% has been achieved for OOS de-
tection, beating the previous state-of-the-art re-
sult by more than 31 percentage points.

1 Introduction

Intent classification is usually applied for response
selection in conversational systems, such as text-
based chatbots. For the end-user to have the best
possible experience with those systems, it is ex-
pected that an intent classifier is able not only to
map an input utterance to the correct intent but
also to detect when the utterance is not related to
any of the intents, to which we refer to as out-of-
scope (OOS)1 inputs or samples. In the light of
this, this paper describes and evaluates a method
which tries to capture the complexity of the set
of intents by embedding them into a vector space

1Out-of-domain examples is also a common term in the
literature.

created using word graphs, as described later. We
show that, although the method in some cases is
able to improve the accuracy of a text classifier in
in-scope examples, it has often a tremendous im-
pact on improving the ability of text classifier to
reject OOS text, without relying on OOS examples
in the training set.

Notice that the intent classifier is typically im-
plemented using standard text classification algo-
rithms (Weiss et al., 2012; Larson et al., 2019;
Casanueva et al., 2020). Consequently, to per-
form OOS sample detection, methods often rely
on one-class classification or threshold rejection-
based techniques using the probability outputs for
each class (Larson et al., 2019) or reconstruction
errors (Ryu et al., 2017, 2018).

There also exist approaches based on the assump-
tion that OOS data can be collected and included
in the training set (Tan et al., 2019; Larson et al.,
2019). However, in practice, collecting OOS data
can be a burden for intent classifier creation, which
is generally carried out by domain experts and not
by machine learning experts. Thus, in the ideal
world, one should rely solely on in-scope data for
this task because it is very difficult to collect a set
of data that appropriately represents the space of
the very unpredictable OOS inputs.

The classes in a traditional text classifier are gen-
erally represented by a discrete set of symbols and
the classifier is trained with the help of a finite set
of examples, where the classes are assumed to be
independent and the set of examples to be disjoint.
But, in many cases, the classes are in fact asso-
ciated with inter-connected higher-level concepts
which could be formatted into more meaningful
representations and better exploited in the classi-
fication process for an enhanced representation of
the scope of the classifier.

In particular we explore here the use of graphs
which represent information by means of nodes
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connected to each other by arcs. Recent research
has demonstrated that nodes in a graph can be con-
verted to an embedding, that is, projected into a vec-
tor space, which can then be mapped to sentences
to cope with tasks such as the reverse dictionary
problem (Hill et al., 2016; Kartsaklis et al., 2018).
We propose here an adaptation of those ideas to an
intent classifier so it uses such mappings to expand
the representation of the class space, its scope, and
class inter-dependencies, and thus possibly making
the OOS detection task easier.

This paper presents an investigation of exploit-
ing information from word graphs associated to the
intent classes to improve OOS sample detection in
intent classification. By considering that each class
is represented by a set of text examples and that
different classes can be connected to each other by
means of the repeated occurrence of words in their
respective examples, we build a word graph where
both class labels and words are represented by sin-
gle nodes. The word nodes are connected to the
class label nodes in accordance to their occurrence
in the training samples and their respective class
labels. Then, a typical graph embedding technique
is used to represent classes with the embedding
of their corresponding class label node. Instead
of finding the classes with the highest probability,
the intent classifier search for the class embedding
which maps best to the sentence embedding of a
given input sample.

We have implemented and tested this idea with
different types of base methods for sentence em-
bedding, such as Long-short Term Memory (LSTM)
neural networks and Bidirectional Encoder Rep-
resentations from Transformers (BERT), and per-
formed OOS detection by means of a simple
threshold-based rejection. We conducted a thor-
ough evaluation on both private and public intent
classification datasets, such as the Larson dataset
for this specific task (Larson et al., 2019).

Our results show that the proposed word-graph
based method improves considerably OOS detec-
tion, compared against the corresponding tradi-
tional classification algorithms, based on combin-
ing the sentence embedding algorithm with soft-
max probabilities. In the case of the Larson dataset,
where comparison against varied OOS detection
methods is available, we show that our proposed
approach reduces dramatically the previous state-
of-the-art (SOTA) false acceptance rate in more
than 30 percentage points, from 41.1% to 9.9%.

2 The Word Graph Method

This section presents a formal description of the
methodology employed in this work.

2.1 Embedding the Set of Classes
An intent classification method is a function D
which maps a set of sentences (potentially infinite)
S = {s1, s2, ...} into a finite set of classes Ω =
{ω1, ω2, ..., ωc}:

D : S → Ω D(s) = ωi (1)

To enable a numeric, easier handling of the in-
put text, an embedding ξ : S → Rn is often used,
mapping the space of sentences S into a vector
space Rn, and defining a classification function
E : Rn → Ω such as D(s) = E(ξ(s)). In typical
intent classifiers, E is usually composed of a func-
tion C which computes the probability of s being
in a given class, followed by the arg max function.
In many intent classifiers, C is the softmax function.

S
ξ→ Rn C→ Rc argmax→ Ω (2)

This paper explores how to use embeddings in
the other side of the classification functions, that is,
by embedding the set Ω of classes into another vec-
tor space Rm. The idea is to use class embedding
functions which somehow capture better inter-class
relations such as similarities, using, for instance,
information from the training sets, as we will show
later. Formally, we use a class embedding func-
tion ψ : Ω → Rm, its inverse ψ−1, and a function
M : Rn → Rm to map the two vector spaces so
D(s) = ψ−1(M(ξ(s))).

S
ξ→ Rn M→ Rm ψ−1

→ Ω (3)

In this paper we use typical sentence embedding
methods to implement ξ. To approximately con-
struct the function M we employ a basic Mean
Square Error (MSE) method using the training
set composed of sentence examples for each class
ωi ∈ Ω. As we will see next, the training set will
also be used to construct the embedding function
for the set of classes ψ and an approximation for
its inverse ψ−1.

2.2 Adapting Kartsaklis Method (LSTM)
In this paper we explore a text classification method
proposed for the inverse dictionary problem, where
text definitions of terms are mapped to the term
they define, proposed by Kartsaklis et al. (2018).
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The embedding of the class set into the continuous
vector space (equivalent to the ψ function in equa-
tion 3) is done by expanding the knowledge graph
of the dictionary words with nodes corresponding
to words related to those terms and performing
random walks on the graph to compute graph em-
beddings related to each dictionary node, using the
DeepWalk algorithm (Perozzi et al., 2014). No-
tice that DeepWalk is a two-way function mapping
nodes into vectors and back.

An LSTM, composed of two layers and an atten-
tion mechanism, is used by Kartsaklis et al. (2018)
for mapping the input texts to the output vector
space. To map the two continuous vector spaces
representing the definition texts and the dictionary
terms, a MSE function, learned from the training
dataset, is used. This approach achieves SOTA re-
sults on the reverse dictionary task and also in other
tasks such as document classification and text-to-
entity mapping.

In this work, the approach from Kartsaklis et al.
(2018) is employed for mapping the classes into a
vector space, although we do not use a knowledge
graph as described later. Instead, we create a word
graph G by associating each class to a node and
connecting to each of them nodes which correspond
to words in the sentences of the training set of each
class. We represent this by the function ζ, such as
ζ(Ω) = G, which is also invertible. Substituting
this in equation 3,

S
LSTM→ Rn MSE→ Rm DeepWalk−1

→ G
ζ−1

→ Ω (4)

In practice, we compute the mapping from the
class embedding space into the class set, called
here InvG : Rm → Ω, simply by computing the
distance d between a point in Rm and the inverted
projection of each class from Ω, and considering
the closest class. That is, for each wi ∈ Ω, we
consider the associated node inG, and compute the
mapping in Rm of that node, as shown here:

InvG(x) = argmin
wi

d(x,DeepWalk(G(wi)) (5)

By substituting this function into equation 4, we
obtain the algorithm we call here LSTM+:

S
LSTM→ Rn MSE→ Rm InvG→ Ω (6)

For comparison, the traditional corresponding
classification method is tested, where the word
graph embedding and associated functions are re-
placed by discrete softmax outputs. We call this

simply LSTM:

S
LSTM→ Rn softmax→ Rc argmax→ Ω (7)

2.3 Replacing the LSTM with BERT

The natural language processing community has
been recently focusing attention on the novel trans-
former models (Vaswani et al., 2017). This is due
to the great performance improvement in several
complex tasks, such as machine translation, ques-
tion answering, and text classification. Moreover,
such a performance is achieved without the use of
convolutions or recurrence in neural networks. By
using only the attention mechanism, models are
built with lower computational costs, enabling the
rapid development of larger and stronger models,
which have been achieving SOTA performance in
many different tasks.

BERT is one of such models (Devlin et al., 2019).
It is a language representation model pre-trained
on unlabeled text and conditioned on both the left
and right contexts. Therefore, a simple output layer
can be fine-tuned to attain strong results in many
different tasks. BERT is employed in this paper
with the word graph embedding layer (identical to
the one in LSTM+). We call this algorithm BERT+:

S
BERT→ Rn MSE→ Rm InvG→ Ω (8)

Like in the previous case, we also use the BERT
algorithm with traditional discrete softmax outputs
for comparison, called here BERT:

S
BERT→ Rn softmax→ Rc argmax→ Ω (9)

2.4 Replacing the LSTM with TFIDF

The term frequency-inverse document frequency
(TFIDF) indicates the importance of a word given
its frequency in a document from a corpus (Han
et al., 2011). With this statistic, it is possible to
detect key words which play important roles in a
given document, adjusting to the fact that several
words frequently appear in the corpus. Such a
technique has been used to generate features in
many NLP tasks.

TFIDF is used in this work with an additional
output-dense, feed-forward network layer in two
different approaches. In the first one, it uses linear
outputs for regression with the word graph repre-
sentation, using the Kartsaklis et al. (2018)-inspired
algorithm exactly as we did for the LSTM and
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BERT algorithms. We call this algorithm TFIDF+.
To compare, the feed-forward layer is configured
with discrete softmax outputs called TFIDF.

2.5 Replacing the LSTM with Average
Embedding

Average word embeddings is also used in this work.
In particular, Glove (Pennington et al., 2014) is em-
ployed for embedding each word of the document.
Subsequently, the average of the word embeddings
is computed to generate the sentence features. Such
an average is computed according to equation 10,
where xj is the average embedding for sentence j
given the embedding of each of its N words xij .
Finally, the computed features are inputted to a
regression or a classification dense feed-forward
networks, similarly to the previous approaches.

xj =
1

N

N∑
i=1

xij (10)

As before, we consider a version where we use
average word embeddings in substitution of the
LSTM in algorithm LSTM+, called EMB+, and
also a discrete version using softmax, EMB.

2.6 Out-of-scope Sample Detection
A rejection mechanism based on a pre-defined
threshold is used for OOS detection. This method
can be easily applied to all of the methods described
previously, without the need neither for any specific
training procedure nor OOS training data.

In greater detail, suppose that for each class ωi ∈
Ω there is a score denoted φi ∈ Z, where |Z| = |Ω|.
Given that max(Z) represents the highest score
associated to a class, and that a rejection threshold
θ has been defined on a validation set, samples
can be classified as OOS whenever max(Z) < θ,
and they are simply rejected, i.e. no classification
output is produced for them. Otherwise, the sample
is considered as an in-scope (IS) sample and the
classification is conducted normally.

In this work, the scores in Z are represented
either by the softmax probability computed for
LSTM, BERT, TFIDF, and EMB, or by the similar-
ity of sentence and graph embeddings for LSTM+,
BERT+, TFIDF+, and EMB+. For the latter, the
similarity is computed by means of the dot product
between those two embeddings.

3 Experimental Evaluation

We performed a comparative evaluation of the per-
formance of the classifiers described in the previous

section using a public dataset described in (Larson
et al., 2019) called here the Larson dataset2; a real
dataset from a finance chatbot; and a pool of 40
datasets in two different languages from chatbots
built using the same platform, to check for the re-
producibility of the results from the finance chatbot
dataset.

For those experiments, the methods were imple-
mented as follows. For DeepWalk, the embedding
size was set to 150, and the walk sizes to 20, for
undirected graphs. For LSTM and LSTM+, we
considered word embeddings with 200 elements,
output sentence embeddings of size 150, and both
methods were trained for 50 epochs. For both map-
ping sentence to graph embeddings and the softmax
classifiers, we trained two-layer neural networks
with 800 hidden neurons for 1,000 epochs on Lar-
son dataset, and 300 hidden neurons for 20 epochs
on the other datasets. Those parameters were set
after preliminary evaluations.

3.1 Evaluation Metrics

We take into account a commonly-used metric for
OOS dectection, i.e. equal error rate (EER) (Lane
et al., 2007; Ryu et al., 2017, 2018; Tan et al., 2019),
which corresponds to the classification error rate
when the threshold θ is set to a value where false ac-
ceptance rate (FAR) and false rejection rate (FRR)
are the closest. These two metrics are defined as:

FAR =
Number of accepted OOS samples

Total of OOS samples
(11)

FRR =
Number of rejected IS samples

Total of IS samples
(12)

In addition, in-scope error rate (ISER) is con-
sidered to report IS performance, i.e. the accuracy
considering only IS samples, as the class error rate
in (Tan et al., 2019). This metric is important to
evaluate whether the alternative classification meth-
ods are able to keep up with the performance of
their counterparts in the classification task.

3.2 Results on the Larson Dataset

In this section we present an evaluation on the
Larson dataset (Larson et al., 2019), a recently
proposed dataset which has been specifically de-
signed to cope with intent classification and, most
importantly, dealing with rejection of OOS sam-
ples, which is referred in the paper as out-of-scope
queries. There is a total of 22,500 in-scope samples,

2https://github.com/clinc/oos-eval
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Method EER FAR FRR ISER
LSTM 13.4 23.7 16.4 12.2
BERT 12.8 35.3 10.1 6.7
TFIDF 13.7 17.7 17.3 11.7
EMB 18.0 22.8 22.8 18.1
LSTM+ 11.7 20.8 11.9 8.4
BERT+ 9.8 9.9 12.4 7.4
TFIDF+ 19.2 29.5 26.4 24.2
EMB+ 31.7 29.1 34.3 58.2

Table 1: Results on Larson dataset (in %, the lower
the better), for both out-of-scope and in-scope samples:
equal error rate (ERR), false acceptance rate (FAR),
and false rejection rate (FRR); and only in-scope sam-
ples: class error rate (ISER).

evenly distributed across 150 classes, and 1,200 out-
of-scope samples. From that, the in-scope samples
are divided into 18,000 samples for training, and
4,500 samples for test. From the OOS samples, we
take only the same 1,000 examples used in (Larson
et al., 2019) for test for a direct comparison.

Table 1 presents a summary of the results on
this dataset. We observe that the proposed word
graph-based methods making use of LSTM and
BERT sentence embeddings are able to outper-
form their corresponding softmax versions, where
BERT+ achieves the lowest EER with 9.8% and
the FAR value of 9.9%, beating SOTA results by at
least 30 percentage points.

In fact, Larson et al. (Larson et al., 2019) reports
the best OOS recall as 66.0%, which is equivalent
to an FAR of 34%. However, in the setting where
no OOS sample is used for training, the reported
FAR value is of 41.1% and our approach achieved
31.2 percentage points below that value.

BERT presents the best ISER, meaning that it
is the best type of method for classifying in-scope
samples. However, the method does not cope well
with out-of-scope examples, and results in the high-
est values for FAR and that negatively affects the
final error rate. Overall, as depicted in Figure 1,
the graph-based methods tend to produce systems
with larger ROC under-the-curve areas, i.e. better
systems overall.

We note also that TFIDF+ and EMB+ had poorer
performance than TFIDF and EMB, respectively,
which we believe owns mainly to the considerably
higher ISER presented by the former. We have
evaluated several configurations for those methods
but we have not been able to achieve lower val-
ues for ISER, what may indicate that it might be
more difficult to make use of such types of sentence
embeddings in the proposed framework.

Figure 1: ROC curves on Larson dataset

3.3 Results on the Finance Dataset

This dataset uses data extracted from a real chatbot
of a large financial institution from Brazil, called
here the Finance dataset. The chatbot has content
related to products and concepts associated both
to the institution and finance in general. This set
contains a total of 8,823 examples in Brazilian Por-
tuguese language, split into 6,176 for training and
2,647 for test, distributed over a total of 285 classes.

Besides the different language, this dataset al-
lows us to complement the evaluation of the previ-
ous section with an unbalanced dataset. The num-
ber of samples per class is non uniform, where most
of the classes (87%) contain less than 47 samples,
but there is one class with a very large number of
examples (1,189), and some classes with as few as
2 samples.

In addition, this dataset has not been conceived
to deal with OOS samples. For this reason, we had
to create a simulation of such scenario by remov-
ing 85 randomly-selected classes and their corre-
sponding samples from the training set and then
considering all test samples associated to the re-
moved classes as OOS samples. We repeated that
procedure five times to come up with five different
samplings of OOS classes for a better statistical
analysis. The resulting training set sizes vary from
3,383 to 4,796 samples and the corresponding test
sets contain about 35% of OOS samples on aver-
age. Results hereafter present an average over the
results of the five samplings.

The results are presented in Table 2. LSTM+,
with the proposed use of word graphs, achieved
the best results in the four metrics. It is interest-
ing not only that EER improves compared with
LSTM, from 25.7% to 19.2%, but also that ISER
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Method EER FAR FRR ISER
LSTM 25.7 ±4.6 32.2 ±2.4 32.0 ±7.8 17.5 ±2.7
BERT 24.6 ±3.3 29.2 ±5.3 33.4 ±3.3 17.9 ±1.9
TFIDF 22.0 ±1.1 26.9 ±4.4 26.5 ±3.5 43.8 ±8.0
AVG 25.8 ±2.7 30.5 ±4.0 33.5 ±5.5 48.5 ±8.2
LSTM+ 19.2 ±1.6 20.6 ±5.7 22.2 ±2.8 9.5 ±1.3
BERT+ 22.2 ±1.6 23.0 ±2.5 28.2 ±2.3 17.2 ±1.7
TFIDF+ 24.8 ±0.8 28.5 ±2.3 35.8 ±1.7 53.3 ±7.1
AVG+ 32.3 ±2.4 45.6 ±2.8 33.7 ±5.0 65.0 ±7.0

Table 2: Results on Finance dataset (in %, the lower
the better), for both out-of-scope and in-scope samples:
equal error rate (ERR), false acceptance rate (FAR),
and false rejection rate (FRR); and only in-scope sam-
ples: class error rate (ISER).

Figure 2: ROC curves on the Finance dataset.

also improves significantly by 6 percentage points.
In the case of the BERT-based algorithms, the dif-
ference in ISER is much smaller with an improve-
ment of only 0.7 percentage points. In general,
the word graph-based BERT+ results in a better
system than the softmax counterpart, i.e. BERT,
where the former achieves an EER of 22.2% while
the latter achieves 24.6%. And the better perfor-
mance of LSTM+ and BERT+ against LSTM and
BERT, respectively, is confirmed by the ROC curve
in Figure 2.

Similar to the results on Larson, TFIDF+ and
AVG+ presented higher EER than TFIDF and AVG,
respectively. The dramatic decreases in ISER
show that those word-graph implementations work
poorly as classifiers for in-scope samples and we
believe that this directly affects the performance
on the other metrics. In our opinion, such results
indicate that one requirement to benefit from using
word graphs to enhance class representations is to
make use of sentence embeddings which produce
an intent classifier which has an ISER at least com-
parable to that of softmax-based classifiers. Oth-
erwise, the benefits of the proposed approach are

Dataset #Samples #In-scope
classes

Median samples per
in-scope class

1 13600 966 9.0
2 13064 75 107.0
3 12733 76 105.5
4 12948 206 38.0
5 12916 205 38.0
6 11905 196 38.0
7 12316 75 105.0
8 7252 63 75.0
9 8596 64 96.0

10 8389 91 61.0
11 12727 76 105.5
12 8657 63 100.0
13 11293 137 47.0
14 11120 137 45.0
15 12324 75 105.0
16 8042 307 16.0
17 7851 302 16.0
18 22520 20 502.0
19 18751 91 108.0
20 12722 76 105.5

Table 3: Characteristics of the English chatbot datasets.

Dataset #Samples #In-scope
classes

Median samples per
in-scope class

21 24377 33 252.0
22 14416 31 272.0
23 15899 271 38.0
24 22330 384 15.0
25 22426 468 13.0
26 23215 530 13.0
27 14417 31 272.0
28 22426 468 13.0
29 23215 530 13.0
30 14280 169 60.0
31 18755 351 42.0
32 16578 393 13.0
33 19812 397 15.0
34 20884 390 15.0
35 18428 336 42.0
36 18728 425 13.0
37 16806 390 13.0
38 14838 6 1773.5
39 17046 7 1732.0
40 19110 378 39.0

Table 4: Characteristics of the Brazilian Portuguese
chatbot datasets.

negatively affected by the error which seem be in-
troduced by the in-scope cases.

3.4 Results in a Pool of Chatbots

Considering the diversity of ways in which intents
are defined in professional chatbots, we scaled up
our evaluation on multiple chatbots datasets ob-
tained from a dialogue engine platform provider.
Those datasets were made available by their devel-
opers to be used in improving the performance of
the engine but no personal or private information
was accessed by us.

In total, 40 datasets, 20 in English (EN) and 20
in Brazilian Portuguese (PT-BR) languages, were
used for this experiment. The number of samples
per dataset varies from 7,851 to 40,474, while the
number of in-scope classes ranges from 6 to 966.
For all data sets, the ratio of OOS samples is de-
fined to be close to 20%, resulting in a median num-
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Figure 3: EER and FRR for LSTM and LSTM+ on the Chatbots’ datasets.

ber of samples per in-scope class ranging from 9 to
502. In the experiment, we randomly assigned the
classes into five different training and test datasets
for a better statistical overview. Detailed numbers
are provided in Table 3 and Table 4, where it can
be noticed the diversity in terms of the number of
classes and median samples per class among the
the different chatbots.

Figure 3 and Figure 4 present plots of the re-
sults comparing LSTM+ vs LSTM and BERT+ vs
BERT, respectively, considering two metrics, i.e.
EER and FRR, to provide us an idea of the overall
performance of the classifiers and the number of
examples which are wrongly not rejected. We ob-
serve that LSTM+ generally produces lower EER
and FRR in general and the statistical significance
has been confirmed with the non-parametric paired
Wilcoxon’s signed rank test (Corder and Foreman,
2009). The mean EER and FRR values presented
by LSTM+ were of 24.0% and 26.6%, respec-
tively, and those presented by LSTM were of 26.7%
and 33.8%. For BERT+ and BERT, the results
show that BERT+ generally produces statistically-
significant lower EER and FRR than BERT in the
EN datasets, with mean values of 25.5% and 30.2%,
respectively, against 26.5% and 34.5%. For PT-BR,
though, no statistical difference has been found in
EER, with mean EER of 29.3% for BERT+ and
28.6% for BERT. But BERT+ achieves statistically-
significant lower FRR than BERT, with a mean of
30.1% of the former versus 38.8% of the latter.

Even though BERT+ has not significantly outper-
formed BERT in some scenarios, such as with PT-
BR chatbots, we can observe a great improvement
that the word graphs can bring to intent recognition
if we take into account the ISER metric. That is,
the difference in ISER of BERT+ against BERT
is of 5%, where the former achieved 37% and the
latter 32%. In other words, BERT+ can be con-

sidered quite worse than BERT for in-scope only
intent classification. But, although BERT+ has not
been significantly better than BERT with PT-BR
chatbots, the proposed word graph-based approach
had a great impact in reducing that 5% difference,
since both present similar EER values, and still had
a huge impact in FRR rates since BERT+ presented
significantly better values. Thus, it is likely that
by improving the mapping of sentence and graph
embeddings for those datasets, and consequently
reducing that 5% gap in ISER, BERT+ will stand
out as a significantly better approach than BERT.

4 Related work

Classification methods, such as those used for in-
tent classification, have been broadly applied to
several areas, with the goal of predicting, for an
input sample, which of the classes of the problem
that sample is associated to. In the case of single-
label classification, the training process consists of
approximating a probability function, for instance
a softmax function for neural networks, by using
as reference an one-hot-encoding representation of
class labels (Bishop, 2006).

OOS sample detection is a problem which may
be critical for intent recognition in chatbots, so that
applying rejection mechanisms are important for
detecting those cases (Feng and Lin, 2019; Lar-
son et al., 2019; Zheng et al., 2019). Traditional
classification can be implemented, for example, by
training a specific OOS class to set up a rejection
threshold, or even by training a binary classifier
(Larson et al., 2019). Given that no specific do-
main information or structure are taken into ac-
count, those methods are roughly the same that
have been previously applied for other classifica-
tion problems (Fumera et al., 2003; Luckner and
Homenda, 2014).

Some recent effort has been put specifically for
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Figure 4: EER and FRR results for BERT and BERT+ on the Chatbots’ datasets.

OOS sample detection for intent recognition, ei-
ther by considering OOS data during the training
process (Tan et al., 2019) or solely by improving
in-scope sample representation by means of Auto
Encoders (Ryu et al., 2017) and Generative Adver-
sarial Neural Networks (GANs) (Ryu et al., 2018),
which is more desirable since there is no reliance
on tedious data gathering processes to represent
unpredictable OOS inputs. The latter two methods
are directly related to ours but, unfortunately, the
lack of publicly-available source codes and datasets
has made it a challenge to reproduce the methods
for a fair direct comparison with ours.

Recently, methods which are able to take ad-
vantage of graph information in machine learning
models have been proposed. Some of them take
advantage at the sample level, such as label propa-
gation (Bui et al., 2018). Others, though, take ad-
vantage of graphs at concept level, such as in (Hill
et al., 2016; Kartsaklis et al., 2018; Prokhorov et al.,
2019). Hill et al. (2016) demonstrate the sentence
embeddings could be mapped onto graph embed-
dings, in reverse dictionary-like problems. Fol-
lowing, Kartsaklis et al. (2018) demonstrated that
textual features can improve considerably such a
mapping. Those findings have opened an opportu-
nity to enhance class modeling and hopefully better
define the scope of a classifier, in special intent clas-
sifiers, since classes can be easily represented in a
graph space by means of their relationship with in-
dividual words extracted from the training samples
as we did in this paper.

The previously-mentioned research have been
put in practice mostly by advances in sentence em-
bedding (Collobert et al., 2011; Pagliardini et al.,
2018) and graph embedding techniques (Cai et al.,
2018). Some of them are directly inspired by ad-
vances in word embeddings and convolutional neu-
ral networks, such as DeepWalk (Perozzi et al.,

2014) and Node2Vec (Grover and Leskovec, 2016).

5 Final Remarks

In this paper we propose the use of information
from word graphs to enhance intent classification,
more specifically, for the detection of out-of-scope
examples. Instead of working on the representation
of the input text, we enhance the representation of
the outputs, i.e. how classes and their correspond-
ing labels are represented. The results demonstrate
the approach has a considerable positive impact
for the detection of out-of-scope examples when
an appropriate sentence embedding such as LSTM
and BERT is used. In the publicly-available Larson
dataset, the proposed approach beats the previously-
published results by a high margin, and particularly
enhancing the false acceptance rate (FAR) from
41.1% to 9.9%.

In our view, the improved results are due to a
better representation of the higher-level concepts
associated to the classes. By connecting the in-
tents to lower-level entities, i.e. the words asso-
ciated to the intents, and therefore establishing
inter-connections between the classes, the word
graph space enriches the traditional representation
of classes by means of classifier parameters which
are learned solely from input examples.

We believe that the approach is general enough
to be applied to others areas and presents ideas to
develop more accurate classifiers in general, across
multiple areas, particularly in contexts where out-
of-scope samples are common. In image classifica-
tion problems, for instance, word graphs related to
visual words could be computed. In addition, the
proposed word graph method can be improved by
exploiting combinations of the proposed expanded
class representation with the traditional softmax-
based method, what may also provide better accu-
racy for in-scope samples in some situations.
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Iñigo Casanueva, Tadas Temčinas, Daniela Gerz,
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