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Abstract

Research on temporal knowledge bases, which
associate a relational fact (s, r, o) with a va-
lidity time period (or time instant), is in its
early days. Our work considers predicting
missing entities (link prediction) and missing
time intervals (time prediction) as joint Tem-
poral Knowledge Base Completion (TKBC)
tasks, and presents TIMEPLEX, a novel TKBC
method, in which entities, relations and, time
are all embedded in a uniform, compatible
space. TIMEPLEX exploits the recurrent na-
ture of some facts/events and temporal interac-
tions between pairs of relations, yielding state-
of-the-art results on both prediction tasks.

We also find that existing TKBC models heav-
ily overestimate link prediction performance
due to imperfect evaluation mechanisms. In
response, we propose improved TKBC evalua-
tion protocols for both link and time prediction
tasks, dealing with subtle issues that arise from
the partial overlap of time intervals in gold in-
stances and system predictions.

1 Introduction

A knowledge base (KB) is a collection of triples
(s, r, o), with a subject s, a relation type r and an
object o. KBs are usually incomplete, necessitating
completion (KBC), i.e., inferring facts not provided
in the KB. A KBC model is often evaluated via link
prediction: supplying missing arguments to queries
of the form (s, r, ?) and (?, r, o).

Many relations are transient or impermanent.
Temporal KBs annotate each fact (event) with the
time period (instant) in which it holds (occurs)
(Hoffart et al., 2013). A person is born in a city in
an instant, a politician can be a country’s president
for several years, and a marriage may last between
years and decades. Temporal KBs represent these
by (s, r, o, T ) tuples, where T is a span of time.

∗ Equal contribution

Temporal KBC (TKBC) performs completion of
temporal KBs. It is also primarily evaluated by
link prediction queries (s, r, ?, T ) and (?, r, o, T ).
Recently, time prediction (s, r, o, ?) has also been
considered for predicting time instants, but not time
intervals (Lacroix et al., 2020).

While KBC has been intensely researched,
TKBC is only beginning to be explored. TKBC
presents novel challenges in task definition and
modeling. For instance, little is known about how
best to predict intervals for (s, r, o, ?) queries, or
how to evaluate a system response interval. More-
over, we show that even for link prediction queries,
evaluation faces subtle complications owing to the
inclusion of T in (s, r, ?, T ) queries and requires
careful rethinking of evaluation protocols. In this
paper, we propose improved evaluation protocols
for both link and time prediction tasks in a TKBC.

TKBC also brings unique modeling opportuni-
ties. A TKBC system can learn typical durations
of relation validity, or distributions over time gaps
between events, from training data. E.g., a person
must be born before becoming president, which
must precede death. A nation rarely has two presi-
dents at the same time. Such constraints can better
inform both link and time predictions.

In response, we present TIMEPLEX, a novel
TKBC model, which obtains state-of-the-art results
on benchmark datasets for both link and time pre-
diction. At a high level, TIMEPLEX performs ten-
sor factorization of a temporal KB, using complex-
valued embeddings for relations, entities and time
points. It enables these embeddings to capture im-
plicit temporal relationships across facts and rela-
tions, by providing temporal differences as explicit
features. Our contributions are summarized as:
• We propose evaluation protocols for link and

time interval prediction queries for TKBC. For
link prediction, we highlight that existing eval-
uations seriously over/under-estimate system
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performance, and offer a time-aware filtering
method for more reliable evaluation. For time
interval prediction, we propose an evaluation
metric that rewards a model for predicting an in-
terval with partial overlap with gold interval, as
well as for nearness to gold in case of no overlap.
• We present TIMEPLEX, a TKBC model that fac-

torizes a temporal KB using entity, relation and
time embeddings. It can learn and exploit soft or-
dering and span constraints between potentially
all relation pairs (including that of a relation with
itself). It beats recent and competitive models on
several recent standard TKBC data sets.

We will release an open-source implementation1 of
all models and experiments discussed here.

2 Preliminaries and Prior Work

2.1 Time-Agnostic KBC
Time-agnostic KBC has been intensely researched
(Bordes et al., 2013; Yang et al., 2015; Nickel et al.,
2016; Jain et al., 2018a; Lacroix et al., 2018; Jain
et al., 2018b). A common approach is to score
an (s, r, o) triple as a function over jointly learned
entity and relation embeddings. The models are
trained using loss functions imposing - scores for
known triples should be higher than (randomly sam-
pled) negative triples.

Our work is based on ComplEx (Trouillon et al.,
2016), abbreviated as CX. It embeds s, r, o to vec-
tors of complex space s, r,o ∈ CD. CX de-
fines the score φ of a fact (s, r, o) as Re(〈s, r,o?〉)
where

〈s, r,o?〉 =
∑D

d=1 s[d] r[d] o
?[d] (1)

is a 3-way inner product, o? is the complex conju-
gate of o, and Re(c) is real part of c ∈ C. If real
embeddings are used instead, the above formula
reduces to DistMult (Yang et al., 2015). We choose
CX as our base model, because it is competitive
with recent KBC models (Ruffinelli et al., 2020).

2.2 Temporal KBC Problem Setup
A temporal KB associates the validity of a triple
(s, r, o) with one or more time intervals T ⊆ T,
where T is the domain of “all time”. Each interval
T is represented as [tb, te], with begin and end time
instants. Some event-style facts (e.g., born in) may
have tb = te. For simplicity, we assume that T is
discretized to a suitable granularity and is repre-
sented by a set of integers. Temporal KB facts have
the form (s, r, o, T ), and are partitioned into train,

1github.com/dair-iitd/tkbi

dev and eval (test) folds, abbreviated as tr, de, ev.
System predictions are abbreviated as pr.

Given the train and dev folds, our goal is to learn
a model that scores any unseen fact. A system
is evaluated via link prediction queries (?, r, o, T )
and (s, r, ?, T ), and time interval prediction queries
(s, r, o, ?). In our setting, KB incompleteness exists
at all times — the eval fold may include instances
from any interval in time, arbitrarily overlapping
train and dev fold instances.2

2.3 Recent TKBC Systems

Recent work adopts a common style for extending
φ(s, r, o) to temporal score φ(s, r, o, t). Lacroix
et al. (2020) embed each time instant t to vec-
tor t and use the form 〈s, r,o?, t〉 (called TNT-
ComplEx). This can be interpreted as any one
of s, r,o? becoming t-dependent. Goel et al.
(2020) make both subject and object embed-
dings time-dependent; the ‘diachronic’ embed-
ding e ∈ RD of entity e is characterized by
et[d] = ae[d] sin(we[d] t + be[d]), where d ∈ D
and the sinusoidal nonlinearity affords the capac-
ity to switch “entity features” on and off with
time t. HyTE (Dasgupta et al., 2018) models
t ∈ RD, ‖t‖2 = 1 and project all of s, r,o on
to t: x ↓ t = x − (x · t)t, where x ∈ {s, r,o}.
In all cases, time-dependent entity embeddings are
plugged into standard scoring functions like Dist-
Mult, CX, or SimplE (Kazemi and Poole, 2018). A
very different approach (Garcı́a-Durán et al., 2018)
encodes the string representation of relation and
time with an LSTM, which is used in TransE (TA-
TransE) or DistMult (TA-DM).

These formulations do not directly model recur-
rences of a relation or interactions (e.g., mutual
exclusion) between relations. There is some prior
work on explicitly providing ordering constraints
between relations (e.g., born, married, died) (Jiang
et al., 2016). In contrast, TIMEPLEX assumes no
such additional engineered inputs; it has explicit
components to enable learning of temporal (soft)
constraints, as model weights, jointly with embed-
dings of entities, relations, and time instants. Such
constraint based reasoning has also been exploited
(in a limited way) for a different task, namely, tem-
poral question answering (Jia et al., 2018).

2A different TKBC task studies only future fact predictions
(Trivedi et al., 2017; Jin et al., 2019).
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2.4 Standard Evaluation Schemes

Link Prediction: Link prediction queries in
KBC are of the form (s, r, ?) with a gold re-
sponse oev. Similarly, for TKBC they are of
the form (s, r, ?, T ). The cases of (?, r, o) and
(?, r, o, T ) are symmetric and receive analogous
treatment. Link prediction performance is evalu-
ated by finding the rank of oev in the list of all
entities ordered by decreasing score φ assigned
by the model, and computing MRR. Other mea-
sures include the fraction of queries where oev is
recalled within the top 1 or top 10 ranked predic-
tions (HITS@1 and HITS@10).

A query may have multiple correct answers. A
model must not be penalized for ranking a different
correct entity over oev. In KBC this is achieved by
filtering out all correct entities above oev in ranked
list before computing the metrics. In TKBC, filter-
ing requires additional care, as depicted in Table 1.
We develop time-aware filtering in Section 3.2.

Time Prediction: Time prediction queries of the
form (s, r, o, ?) will require comparing a gold time
interval T ev = [tev

b , t
ev
e ] with a predicted interval

T pr = [t
pr
b , t

pr
e ]. Since this is an understudied task,

evaluation metrics have not yet been standardized.
One might adapt the TAC metric popular in Tem-
poral Slot Filling (Ji et al., 2011; Surdeanu, 2013).
Adapted to TKBC, TAC3 will compute a score
as 1

2

[
1

1+|tev
b −t

pr
b |

+ 1
1+|tev

e −t
pr
e |

]
. Unfortunately, TAC

score is not entirely satisfactory for this task. For in-
stance, TAC will assign the same merit score when
gold interval [10,20] is compared with predicted
interval [5,15], versus when gold [100,200] is com-
pared with prediction [95,195]. However, a human
would judge the latter more favorably, because a 5-
minute delay in a 10-minute trip would usually be
considered more serious than in a 100-minute jour-
ney. In response, we investigate alternative evalua-
tion metrics inspired by bounding box evaluation
protocols from Computer Vision, in Section 3.1.

3 Evaluation Metrics and Filtering

The preceding discussion motivates why we
need clearly-thought-out filtering and evaluation
schemes, not only for time interval prediction
queries, but also because time affects link predic-
tion evaluation in subtle but fundamental ways.

3TAC’s original score compares gold and predicted bounds
on begin and end of an interval. This formula is its adaptation,
where begin and end are each a specific time point.

This section addresses both issues.

3.1 Time Interval Prediction

One possible way to evaluate time prediction is to
adapt measures to compare bounding boxes in com-
puter vision, e.g., Intersection Over Union (IOU):
IOU(T ev, T pr) = vol(T ev∩T pr)

vol(T ev∪T pr) ∈ [0, 1], where vol
for our case simply refers to the size of the in-
terval. Unfortunately, IOU loses discrimination
once T ev ∩ T pr = ∅; e.g., IOU([1, 2], [3, 4]) =
IOU([1, 2], [30, 40]) = 0. This has been noticed re-
cently in computer vision also, and a metric called
gIOU been introduced (Rezatofighi et al., 2019):

gIOU(T ev, T pr) = IOU(T ev, T pr)−
vol((T ev d T pr) \ (T ev ∪ T pr))

vol(T ev d T pr)
∈ (−1, 1]. (2)

T ev d T pr is the smallest single contiguous interval
(hull) containing all of T ev and T pr. E.g., [1, 2] d
[30, 40] = [1, 40].

gIOU can be negative, which is not ideal for
a performance metric that is aggregated over in-
stances. A simple fix (gIOU′) is to scale it to [0,1]
via (gIOU + 1)/2, but we notice that the tiniest
overlap between T ev and T pr yields gIOU′ to be at
least half, regardless of vol(T ev) or vol(T pr). In re-
sponse, we propose a novel affinity enhanced IOU:

aeIOU(T ev, T pr)=
max{1, vol(T ev ∩ T pr)}

vol(T ev d T pr)
(3)

When T ev ∩ T pr = ∅, the denominator includes
“wasted time”, reducing aeIOU. The ‘1’ in the
numerator represents the smallest granularity of
time in the data (see Section 2.2).

Comparison of Evaluation Metrics: A good
time interval prediction metric (M ) must satisfy
the property (P ) that: if two predicted intervals
have intersections of the same size (possibly zero)
with the gold interval, then the prediction that has a
smaller hull with the gold interval should be scored
higher by M . Formally, let T pr1 and T pr2 be two
predictions made for T ev.

Property P: Let vol(T ev∩T pr1) = vol(T ev∩T pr2).
Then, M(T ev, T pr1) > M(T ev, T pr2) if and only
if vol(T ev d T pr1) < vol(T ev d T pr2).

Theorem: IOU and gIOU′ do not satisfy prop-
erty P, whereas aeIOU satisfies it.

The proof for the theorem is in Appendix B. This
suggests that aeIOU is a more defensible metric for
our task, compared to other alternatives.
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Eval query: (s = French National Assembly, r = has member, o =?, T ev = [2000, 2003])
Candidates Known Method 1 Method 2 Method 3
o, system duration of Unfiltered Time- Time-sensitive
ordered o (any fold) insensitive 2000 2001 2002 2003
Pierre [2002, 2003] 1 0 1 1 0 0
Paul [2003, 2008] 1 0 1 1 1 0
Alain [2008, 2009] 1 0 1 1 1 1

Claude [2000, 2003] 1 0 0 0 0 0
Jean - - - - - - -

Time-sensitive rank of Jean 1+4=5 1+0=1 1+3=4 1+3=4 1+2=3 1+1=2

Table 1: Jean is the gold answer (oev). Rows are ranked system predictions, which may be seen with same s and
r for different intervals (Column 2). Columns 3–4 show the filtering of existing methods (1:unfiltered, 0:filtered).
Columns 5–8 (Method 3, our proposal) show the filtering for each time instant. The bottom row shows ranks of
Jean as computed by different methods. Existing methods over- or under-estimate performance. Method 3 assigns
Jean a rank of 3.25, which is the average of the filtered ranks {4, 4, 3, 2} for each time instant in [2000, 2003].

3.2 Link Prediction

We first illustrate the unique challenges offered by
TKBC link prediction queries through an example
in Table 1. The query asks for the name of a person
who was a member of the French National Assem-
bly in interval [2000, 2003]. Let the gold answer
(object) oev be Jean, which is ranked at the fifth po-
sition by the model. All four entities above Jean are
seen with the same subject and relation in the data,
but for different time intervals. E.g., Pierre is also
a member of the assembly, but during [2002, 2003].
The key question is: how should the four entities
above Jean be filtered to compute its final rank?
We argue (Table 1) that existing filtering ap-
proaches are unsatisfactory. Dasgupta et al. (2018)
underrate model performance by not performing
any filtering (Method 1). In this example, the
model is penalized for Claude, even though the
time-interval for Claude exactly matches the query.
On the other hand, Garcı́a-Durán et al. (2018) and
Jin et al. (2019) ignore time information altogether
and filter out all entities seen with gold (s, r). This
can greatly overestimate system quality (Method 2).
For instance, the model is not penalized for predict-
ing Alain, even though its membership interval has
no overlap with the query interval.
Ideally, filtering must account for the overlap be-
tween the query time interval and the time intervals
associated with system-proposed entities. We pro-
pose such a filtering strategy (Method 3). We split
the query interval into time instants, and compute
a filtered rank for each time point independently.
Entities that have full time overlap (or no overlap)
will always (respectively, never) get filtered for a
time instant. Partially overlapping entities will get
filtered in only overlapping instants (e.g., 2 out of 4
for Pierre). After computing filtered ranks for each

time instant, we output the final rank as an aver-
age of all such filtered ranks. In this example, this
approach will compute the average of {4, 4, 3, 2},
which is 3.25. This average rank is used when com-
puting standard metrics like MRR and HITS@10.

Note that the run-time complexity of the pro-
posed evaluation protocol is linear in the size of
interval, because we compute a filtered rank for
each time point separately.

4 The Proposed TIMEPLEX Framework

Similar to TNT-Complex, TIMEPLEX learns
complex-valued entity, relation, and time instant
embeddings. However, it has several differences
from TNT-Complex. (1) Its base scoring function
φTX(s, r, o, t) adds several products of three em-
beddings, instead of a single four-way product (Sec-
tion 4.1). (2) It has a fully automatic mechanism to
introduce additional features to capture recurrent
nature of a relation, as well as temporal interac-
tions between pairs of relations (Section 4.2). (3) It
uses a two-phase training (Section 4.3) curriculum
that estimates first the embeddings and then novel
additional parameters. (4) Its testing protocol can
output a missing time-interval T for time-interval
prediction queries (Section 4.4).

4.1 TIMEPLEX Base Model

Just as a joint distribution is often approximated
using lower-order marginals in graphical mod-
els (Koller and Friedman, 2009), TIMEPLEX con-
structs a base score (φTX ) by augmenting CX score
with three time-dependent terms:
φTX(s, r, o, t)

= 〈s, rSO,o?〉+ α 〈s, rST, t?〉
+ β 〈o, rOT, t?〉+ γ 〈s,o, t?〉. (4)
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Here, s,o, t ∈ CD, whereas each r is rep-
resented as a collection of three such vectors
(rSO, rST, rOT), and hence requires three times the
parameters. rST represents a relation which is true
for entity s at time t (similarly for rSO and rOT).
α, β and γ are hyperparameters.

Jiang et al. (2016) observed that several relations
attach to a subject or object only at specific time
points. E.g., subject Barack Obama was president
in 2009, regardless of the object United States. In
such cases, the formulation above is fully expres-
sive. To extend from single time instants t to an
interval T , we propose

φTX(s, r, o, T ) =
∑

t∈T φ
TX(s, r, o, t). (5)

4.2 Relation Recurrence and Pair Scores

We extend TIMEPLEX’s base model via additional
(soft) temporal constraints that can help in better
assessing the validity of a tuple. We aim to capture
three types of temporal constraints:
Relation Recurrence: Many relations do not re-

cur for a given entity (e.g., a person is born only
once). Some relations recur with fixed periodic-
ity (e.g., Olympic games recur every four years).
Recurrences of other relations may be distributed
around a mean time period.

Ordering Between Relations: A relation pre-
cedes another, for a given entity. E.g., person-
BornYear should precede personDiedYear for a
given subject entity (person).

Time Gaps Between Relations: The difference
in time instants of two relations (wrt to an en-
tity) is distributed around a mean, e.g., person-
DiedYear minus personBornYear has a mean of
about 70 with some observed variance.

The first constraint concerns a single relation,
whereas the latter two concern pairs of relations.
Jiang et al. (2016) attempted to capture relation
ordering constraints as model regularization, but
their approach does not take into account time dif-
ferences. Nor does it model relation recurrence.

Basic TIMEPLEX may not be able to learn these
constraints from data either, since each time instant
is modeled as a separate embedding with indepen-
dent parameters — it has no explicit understanding
of the difference between two time instants. In
response, we augment TIMEPLEX with additional
features that capture how soon an event recurs, or
how soon after the occurrence of one relation, an-
other relation is likely to follow. We define two
scoring functions φRec and φPair for these two cases,

to be aggregated with φTX (eqn. 4).
Inspired by Garcı́a-Durán and Niepert (2018),

we model time gaps as drawn from Gaussian distri-
butions. We use N (x|µ, σ) to denote the probabil-
ity density of a Gaussian distribution with mean µ
and std deviation σ at the time (difference) value x
(See Figure 1 (a)). We denote as KBtr all tuples in
the train fold.

Recurrence Score: We say that (s, r, o) recurs
if there are at least two distinct intervals T such
that (s, r, o, T ) ∈ KBtr. If there are at least KRec

distinct pairs (s, o) such that (s, r, o) recurs, then r
is considered recurrent. KRec is a hyperparameter.

For each recurrent relation r, our model learns
three new parameters: µr, σr, and br. Intuitively,
N (·|µr, σr) represents a distribution of typical du-
rations between two recurring instances of a rela-
tion (with a specific subject and object entity) and
br is the bias term. For non-recurrent relations, only
the bias br is learnt. While computing recurrence
features, all training tuples of the form (s, r, o, T )
are reduced to (s, r, o, t), i.e., with a singleton time
interval, where t = tb, the start time of T . TIME-
PLEX sets a fact recurrence score, φRec, as follows:
1. If (s, r, o, ?) /∈ KBtr, set φRec = 0.
2. Else, if r is not recurrent, set φRec = br. This

allows the model to learn to penalize repetition
of relations that do not recur.

3. Find time gap (δ) to its closest recurrence:
δ = min

{(s,r,o,t′)∈KBtr: t′ 6=t}
|t− t′|. (6)

Then, set

φRec(s, r, o, T = [tb, te]) =

φRec(s, r, o, tb) = wrN
(
δ|µr, σr

)
+ br. (7)

The intuition is that φRec should penalize the
proposed (s, r, o, T ) if δ is not close to the mean
gap µr. For example, (Presidential election, held in,
USA, 2017) should be penalized, if (Presidential
election, held in, USA, 2016) is known, and the
event reoccurs every 4 years (µr = 4, σr ≈ 0).

Relation Pairs Score: TIMEPLEX also learns
soft time constraints between pairs of relations.
We describe this mechanism for subjects; objects
are handled analogously. For each relation pair
(r, r′), we maintain four parameters, µrr′ , σrr′ ,
brr′ and wrr′ , whose purpose we will describe
presently. As with recurrence scores, all training
tuples (s, r, o, T ) are reduced to (s, r, o, t), where t
= tb, the start time of T . Given the candidate tuple
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(a)

(b)

Figure 1: (a) Pre-training Data Statistics Collection Strategy for relation pair (bornIn, graduatedFrom). Such
statistics are computed for all relation pairs, and (b) Relation Pair Score Computation of a fact using the statistics
collected in part (a). Here, δrri = (t− ti).

(s, r, o, t) to score, we collect fact tuples
{fi = (s, ri, oi, ti) ∈ KBtr, ri 6= r}, (8)

sc(fi) = N (t − ti|µrri , σrri) + brri having the
same subject but a different relation, into the set
called KBPair(s). The ith tuple in KBPair(s) is
scored as sc(fi) = N (t − ti|µrri , σrri) + brri .
This represents the contribution of fi in the va-
lidity of candidate tuple, based on their (signed)
time difference, and typical time differences ob-
served between these two relations. φPair

sub needs to
aggregate these over fi. The (trained) parameter
wrr′ measures how much the times associated with
r′ influence our belief in (s, r, o, t). Using these,
we define the weighted average

φPair
sub (s, r, o, t) =

∑
fi∈KBPair(s)

sc(fi)
exp(wrri)∑
fj
exp(wrrj )

.

A similar φPair
obj score is computed for the object

entity, and overall φPair = φPair
sub + φPair

obj (See Fig-
ure 1 (b)). The final scoring function of TIME-
PLEX is

φ(s, r, o, T ) = φTX(s, r, o, T )

+ κφPair(s, r, o, T ) + λφRec(s, r, o, T ), (9)
where κ and λ are model hyperparameters.

4.3 Training

We train TIMEPLEX in a curriculum of two phases.
In the first phase, we optimize embeddings for
all entities, relations and time-instants by mini-
mizing the log-likelihood loss using only the base
model TX. We compute the probability of predict-

ing a response o for a query (s, r, ?, T ) as:

Pr(o|s, r, T ) = exp(φTX(s, r, o, T ))∑
o′ exp(φ

TX(s, r, o′, T ))
(10)

We can similarly compute Pr(s|r, o, T ) and similar
terms for time instant queries, e.g., Pr(o|s, r, t) and
Pr(t|s, r, o). We then convert every (s, r, o, T =
[tb, te]) ∈ KBtr in time-instant format by enumer-
ating all (s, r, o, t), for t ∈ [tb, te]. Training of
embeddings minimizes the log-likelihood loss:

−
∑

〈s,r,o,t〉∈KBtr

(
log Pr(o|s, r, t; θ)

+ log Pr(s|o, r, t; θ)

+ log Pr(t|s, r, o; θ)
)

(11)
In the second phase, we freeze all embeddings and
train the parameters of the recurrence and pairs
models. Here, too, we use the log-likelihood loss,
except that φTX is replaced by the overall φ func-
tion. Parameters µrr′ and σrr′ of the relation-pairs
model component are not trained via backpropaga-
tion. Instead, they are fitted separately, using the
difference distributions for the pair of relations in
the training KB. This improves the overall stability
of training.

4.4 Inference

At test time, for a link prediction query, TIME-
PLEX ranks all entities in decreasing order of
Pr(o|s, r, T ) or Pr(s|r, o, T ) scores. For time
prediction, its goal is to output a predicted time
duration T pr. We first compute a probability
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distribution over time instants Pr(t|s, r, o) =
exp(φ(s,r,o,t))∑

t′∈T exp(φ(s,r,o,t′)) . We then greedily coalesce
time instants to output the best duration. For
greedy coalescing, we tune a threshold parameter
θr for each relation r using the dev fold (such that
shorter θr prefers short duration and vice versa).
We then initialize the predicted interval T pr as
argmaxt Pr(t|s, r, o). Then, as long as total prob-
ability of the interval, i.e.,

∑
t∈T pr Pr(t|s, r, o) is

less than θr, we extend T pr with the instant to its
left or right, whichever has a higher probability.

5 Experiments

We investigate the following research questions.
(1) Does TIMEPLEX convincingly outperform the
best time-agnostic and time-aware KBC systems on
link prediction and time interval prediction tasks?
(2) Are recurrent and pairwise features helpful in
the final performance? (3) Are TIMEPLEX’s time
embeddings meaningful, i.e., do they capture the
passage of time in an interpretable manner? (4) Do
TIMEPLEX predictions honor temporal constraints
between relations?

5.1 Datasets & Experimental Setup

Datasets: We report on experiments with
four standard TKBC datasets. WIKIDATA12k
and YAGO11k (Dasgupta et al., 2018) are two
knowledge graphs with a time interval associated
with each triple. These contain relational facts like
(David Beckham, plays for, Manchester United;
[1992, 2003]). ICEWS14 and ICEWS05-15
(Garcı́a-Durán et al., 2018) are two event-based
temporal knowledge graphs, with facts from
Integrated Crisis Early Warning System repository.
These primarily include political events with
timestamps (no nontrivial intervals). We consider
the time granularity for interval datasets as 1 year,
and for ICEWS datasets as 1 day. See Table 5 in
Appendix A for salient statistics of these datasets.
By experimenting across the spectrum, from ‘point’
events to facts with duration, we wish to ensure the
robustness of our observations.

Garcı́a-Durán et al. (2018) also report perfor-
mance on the Yago15k dataset. However, for this
dataset, only 17% of the facts have associated tem-
poral information. In contrast, all the datasets we
used had at least 99% of facts with temporal in-
formation. Hence, we believe a temporal model
will not substantially improve the performance of a

time-agnostic model on this dataset. Note that TNT-
Complex (Lacroix et al., 2020) also obtained only a
slight improvement over a time-agnostic model on
Yago15k, supporting our hypothesis. A contempo-
raneous work by (Ahrabian et al., 2020) proposed
new multi-relational temporal Knowledge Graph
based on the daily interactions between artifacts in
GitHub. We leave exploration of this dataset for
future work.

Algorithms compared: We compare against our
reimplementations of CX, HyTE, TA-family, and
TNT-Complex. In all cases we verify that our im-
plementations give comparable or better scores as
reported in literature. We combine HyTE and TA,
with scoring functions from TransE, DistMult and
CX and present the best results. We also compare
against reported results in DE-SimplE.

Experimental Details: For all models, we opti-
mize parameters with AdaGrad running for 500
epochs for all losses, with early stopping on dev
fold. We control for an approximately comparable
number of parameters and set dimensionality of
200 for all complex embeddings and 400 for all
real embeddings. We follow other best practices in
the literature, such as L2 regularization only on em-
beddings used in the current batch (Trouillon et al.,
2016), adding inverted facts (o, r−1, s, T ) , using
1vsAll negative sampling (Dettmers et al., 2018)
whenever applicable, and using temporal smooth-
ing for ICEWS datasets (Lacroix et al., 2020).

Some instances in interval datasets have tb or te
missing. Following Dasgupta et al. (2018), we re-
place missing values by −∞ or +∞, respectively.
For time prediction queries, we remove such in-
stances from test sets. For ICEWS datasets we set
tb = te. For time interval prediction, all models use
our greedy coalescing inference from Section 4.4.

For TIMEPLEX, we perform a grid search for all
hyperparameters, and pick the best values based
on MRR scores on valiations set. Hyperparameters
for all datasets are described in Appendix G.

5.2 Results and Observations
Table 2 compares all algorithms for link prediction.
We find that the best performing baseline among
existing TKBC systems is the recently proposed
TNT-Complex model. TIMEPLEX outperforms
TNT-Complex by over 3 MRR points in ICEWS
datasets. Its gains (3.25 and 5.6 pts) are even more
pronounced in interval datasets. All differences
are statistically significant using paired t-test with
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Dataset→ WIKIDATA12k YAGO11k ICEWS05-15 ICEWS14
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CX 24.82 14.30 48.90 18.14 11.46 31.11 48.68 37.00 72.63 45.50 33.87 69.73
TA (CX) 22.78 12.69 46.00 15.24 9.36 26.26 49.23 37.6 72.69 40.97 29.58 63.87
HyTE (TransE) 25.28 14.70 48.26 13.55 3.32 29.81 23.73 3.11 62.76 24.91 2.98 65.30
DE-SimplE 25.29 14.68 49.05 15.12 8.75 26.74 51.30 39.20 74.80 52.60 41.80 72.50
TNT-Complex 30.10 19.73 50.69 18.01 11.02 31.28 60.58 51.14 78.50 56.72 47.04 75.40
TIMEPLEX (base) 32.38 22.03 52.79 18.35 10.99 31.86 63.91 54.62 81.42 60.25 51.29 77.05
TIMEPLEX 33.35 22.78 53.20 23.64 16.92 36.71 63.99 54.51 81.81 60.40 51.50 77.11

Table 2: Link prediction performance across four datasets. The last row reports results for TIMEPLEX(base)
augmented with pair/recurrent features.

Datasets→ YAGO11k WIKIDATA12k
↓Methods aeIOU aeIOU
HyTE 5.41 5.41
TNT-Complex 8.40 23.35
TIMEPLEX (base) 14.21 26.20
TIMEPLEX 20.03 26.36

Table 3: Time prediction performance.

p < 0.01. These scores establish a new state of the
art for link prediction on all four datasets.

A contemporaneous work, ATiSE (Nayyeri et al.,
2020) models KB entities and relations using time
dependent Gaussian embedding, but show weaker
performance (see Table 2 and Table 11).

We are the first to look at the task of predicting
time intervals, and we report performance using
our novel aeIOU metric (Table 3). We see that
TIMEPLEX outperforms TNT-Complex on both
datasets, with a huge 11+ pt jump on the Yago11K
dataset. It is also noteworthy that even the base
model of TIMEPLEX is consistently better than
TNT-Complex across all experiments.

On Pair/recurrent features: We find that re-
current features are very helpful in both interval
datasets, and significantly improve link prediction
performance. Relation pair features particularly
help in YAGO11k — over 5 pt aeIOU boost in time
prediction, but on WIKIDATA12k they make only a
marginal difference. On inspecting the datasets, we
find that 78% of entities in WIKIDATA12k are seen
with a single, recurring relation (such as award re-
ceived, or member of sports team); therefore, rela-
tion pair features cannot help.

ICEWS datasets are scraped from news events.
On inspecting the datasets, we find that the events
do not follow any temporal ordering and are fairly
non-regular in event recurrence as well. Hence,
TIMEPLEX’s improvements over the base model
are limited. We further investigate the differing per-
formance on datasets and the value of pair features
in the next section.
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Figure 2: L2 distances (y-axis) between TIMEPLEX
time embeddings increase with time gap (x-axis).

5.3 Diagnostics

Time gap vs. embedding distances: Longevity
of relations, or gaps between events, are often de-
termined by physical phenomena that are smooth
and continuous in nature. Therefore, we expect the
embedding of the year 1904 to be closer to that of
1905 compared to the embedding of, say, 1950.

To validate this hypothesis, we compute mean
L2 distance between embeddings of time instants
which are apart by a given time gap. To fil-
ter noise, we drop instant pairs with extreme
gaps that have low support (less than 30). For
WIKIDATA12k we used embeddings of years
[1984, 2020] and for YAGO11k we use embed-
dings of years [1958, 2017].

Figure 2 shows that L2 distance between pairs of
time embeddings increases with the actual year gap
between them. Since we enumerate all time points
in the given fact time-interval, years that are closer
share a lot of facts (triples), and are hence closer in
the embedding space. This has a smoothing effect
on time embeddings. Hence they correlate well
with actual time-gaps. This strongly suggests that
the time embeddings learnt by TIMEPLEX naturally
represent physical time.

Temporal ordering of relation pairs: Both
YAGO11k and WIKIDATA12k contain relations
with temporal dependencies, e.g., bornInPlace
should always precede diedInPlace for the same
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YAGO11k WIKIDATA12k
CX 10.04 0.7

HyTE 7.2 0.4
TNT-Complex 8.82 0.3

TIMEPLEX (Base) 6.6 0.3
TIMEPLEX 1.9 0.2

Table 4: Ordering constraint violations among top pre-
dictions of various models (% of facts in test set).

Figure 3: Time prediction comparison for two systems.

person. We now study whether TIMEPLEX models
are able to learn these natural constraints from data.

We first exhaustively extract all relation pairs
(r1, r2), where the existence of both (s, r1, ?, t1)
and (s, r2, ?, t2) is accompanied by t1 < t2 at least
99% of the time, with a minimum support of 100
entities s.4 We now verify whether TIMEPLEX

honors r1 before r2 when making predictions.
For each query (?, r, o, t) in the test set, we

check whether the top model prediction violates
any known temporal ordering constraint in this list.
For example, for a query (?, hasWonPrize, Nobel
Prize, 1925), if the model predicted Barack Obama
and the KB already had Barack Obama born in
Hawaii in 1961, then this will be considered as an
ordering violation. Table 4 reports the number such
violations as fraction of test set size. TIMEPLEX

significantly reduces such errors for YAGO11k;
this is also reflected in its superior time prediction
performance. For WIKIDATA12k, the errors for
TIMEPLEX (base) are already low, hence pair fea-
tures are not found to be particularly helpful.

As an illustrative example, we consider the time
prediction query (Shinae-ra, wasBornIn, South Ko-
rea, ?), with the gold answer 1969. The only other
fact seen for Shinae-ra in the train KB is (Shinae-ra,
isMarriedTo, ChaIn-Pyo, (1995, -)). TIMEPLEX

predicts 1967 for this query (earning an aeIOU
credit of 33.33). However, TNTComplex predicts
2013 (earning almost no credit) – this also high-
lights that it does not capture commonsense that a

4The list of such relation pairs is given in the Appendix C

person can marry only after they are born.
To understand further, we plot the normalized

scores for this query in time range [1850, 2010] in
Figure 3. The peak around 1967 for the TIMEPLEX

plot can be attributed to the fact that mean differ-
ence for isMarriedTo and wasBornIn relations is
around 30 in the dataset. Standard tensor factor-
ization models like TNT-Complex are unable to
exploit this, but our Pair features provide a way
to the model to make very reasonable predictions.
Other similar plots can be found in the Appendix.

6 Discussion

TIMEPLEX cannot exploit the influence that an en-
tity can have on time difference distributions. For
example, the life expectancy of a person (mean dif-
ference between diedIn and bornIn events) would
be around 85 in Japan, but 54 in Lesotho. Extend-
ing our model to learn separate parameters for each
〈rel, entity〉 pair may be difficult due to sparsity.
Also, recurrent facts may admit exceptions: Winter
Olympics are held every 4 years except for 1992
and 1994. However, we do not expect even humans
to do well in such cases. Exceptions like these are
sparse and difficult to learn, except by rote.

7 Conclusion

We presented TIMEPLEX, a new TKBC framework,
which combines representations of time with rep-
resentations of entities and relations. It also learns
soft temporal consistency constraints, which allow
knowledge of one temporal fact to influence belief
in another fact. TIMEPLEX exceeds the perfor-
mance of existing TKBC systems. Time embed-
dings are temporally meaningful, and TIMEPLEX

makes fewer temporal consistency and ordering
mistakes. We also argue that current evaluation
schemes for both link and time prediction have lim-
itations, and propose more meaningful schemes.
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(Appendix)
A Dataset statistics

See Table 5 for some salient statistics of the
datasets we used for experiments. Yago11k and
Wikidata12k are interval based datasets. ICEWS14
and ICEWS05-15 are instant based datasets.

B Discussion on time evaluation metrics

We re-state the desired property P for a time
evaluation metric-
Let vol(T ev ∩ T pr1) = vol(T ev ∩ T pr2)
M(T ev, T pr1) > M(T ev, T pr2) if and only if
vol(T ev d T pr1) < vol(T ev d T pr2).

aeIOU satisfies P:
For a fixed vol(T ev ∩ T pr), we have
aeIOU(T ev, T pr) ∝ 1/vol(T ev d T pr) (see
Eqn 3). Hence, aeIOU satisfies property P.

IoU and gIOU do not satisfy P:
IoU: This metric gives 0 score to a model, if
model’s predicted interval does not intersect with
the gold, irrespective of the hull. Hence IoU do not
satisfy property P.
gIoU: Let us look at the following example.
Suppose gold interval is [2002,2005], and consider
2 predictions- [1999,2001] and [1900,2001]. For
both predictions, vol((T ev d T pr) \ (T ev ∪ T pr))
is zero, so the hull for the two predictions will
be ignored (see Eqn 2), resulting in same scores
for both predictions. Hence gIoU does not satisfy
property P.

Model Performance with respect to various
time evaluation metrics:
Table 6 reports the TAC, gIOU, and IOU scores of
various temporal methods discussed in the paper.

C Temporal Constraints: Relation
Ordering

Table 7 and 8 lists automatically extracted high
confidence relation orderings seen in Yago11k and
Wikidata12k datasets respectively. These orderings
are used to guide TIMEPLEX at the time of training.

D Time prediction performance across
relation classes

Instant relations include wasBornIn, diedIn,
hasWonPrize, which are events that don’t span an
interval.
Short relations include graduatedFrom, playsFor
whose duration averages less than 5 years.
Long relations include isMarriedTo, isAffiliatedTo
whose duration averages more than 5 years.

E Comparison of filtering methods

In Table 11, we report the performance of most
competitive baseline and TIMEPLEX, the reported
performance use a filtering strategy that does not
enumerate time points in an interval and filters out
entities on exact matching time-interval. Note that
our model consistently outperforms TNT-Complex,
even with a stricter filtering.

F Ablation Study

In this study, we remove each component of TIME-
PLEX (see equation 9) by making either κ=0 or
λ=0, to understand the importance of each compo-
nent (see Table 12).

G Details of Hyperparameters and
Model training

All models are trained on a single NVIDIA Tesla
K40 GPU. Our final model TIMEPLEX consist of a
base model and two time-based gadgets.
TIMEPLEX(base) takes less than 10 minutes to
train on all datasets except for ICEWS05-15, where
it takes 80 minutes. Table 10 lists best hyperparam-
eters of TIMEPLEX(base) on respective dataset.
Both gadgets are trained independently in less than
10 minutes. The parameter λ=5.0 gave best results
for interval datasets, while λ=1.0 gave best results
on event datasets. On Yago11k κ=3.0, while for
rest κ=0.0. The gadget weights are L2 regularized,
with a regularization penalty of 0.002. The model
use 100 negative samples per correct fact for train-
ing.

H Model parameters

The number of parameters for the TIMEPLEXand
baseline models are compared in Table 13.



3745

YAGO11k WIKIDATA12k ICEWS14 ICEWS05-15
Entities 10622 12554 7128 10488

Relations 10 24 230 251
#Instants 251 237 365 4017
#Intervals 6651 2564 0 0

Train 16408 32497 72826 368962
Valid 2051 4062 8941 46275
Test 2050 4062 8943 46092

Table 5: Details of datasets used.

Datasets→ YAGO11k WIKIDATA12k
↓Methods TAC gIOU IOU aeIOU TAC gIOU IOU aeIOU
HyTE 5.59 15.96 1.91 5.41 6.13 14.55 1.40 5.41
TNT-Complex 9.90 20.78 3.99 8.40 26.98 36.63 11.68 23.25
TIMEPLEX (base) 16.57 26.22 5.48 14.21 30.36 39.2 13.20 26.20
TIMEPLEX 22.66 32.64 8.24 20.03 30.71 39.34 13.15 26.36

Table 6: Time prediction performance using - TAC, gIOU, IOU and aeIOU

graduatedFrom −→ diedIn
graduatedFrom −→ hasWonPrize
wasBornIn −→ graduatedFrom

wasBornIn −→ diedIn
wasBornIn −→ isAffiliatedTo
wasBornIn −→ hasWonPrize

wasBornIn −→ playsFor
wasBornIn −→ worksAt

wasBornIn −→ isMarriedTo
isAffiliatedTo −→ diedIn

worksAt −→ diedIn
isMarriedTo −→ diedIn

Table 7: High confidence (99%) relation orderings ex-
tracted from YAGO11k.

educated at −→ position held
educated at −→ employer

educated at −→ member of
educated at −→ award received

educated at −→ academic degree
educated at −→ nominated for

instance of −→ head of government
residence −→ award received

academic degree −→ nominated for
spouse −→ position held

located in the administrative
territorial entity −→ award received

Table 8: High confidence (99%) relation orderings ex-
tracted from WIKIDATA12k

I Training details of TIMEPLEX, HyTE

Each dataset spans along a time range, with a cer-
tain time granularity, which can be year, month
or day. TIMEPLEX learns a time embedding for
every point in this time range, discretized on the
basis of the dataset’s granularity (years for the in-
terval datasets WIKIDATA12k and YAGO11k, and

Instant Short Long
TNT-Complex 4.24 16.34 3.73
Timeplex 18.39 20.63 24.8

Table 9: aeIOU@1 across relation classes on
YAGO11k

days for ICEWS datasets). At training time, TIME-
PLEX looks at a single time point at a time - for
this, we sample a time point uniformly at random
from the query interval [tb, te] associated with the
fact. In contrast, HyTE maps each time point to bin
(heuristically determined), making the data gran-
ularity coarser, and learns representation of these
bins. HyTE looks at time points in an interval as
well, but enumerates each interval fact to produce
a separate fact for each time point beforehand.
Our method of sampling is efficient as the data size
is unchanged. It also ensures each fact is sampled
uniformly, not hurting link prediction performance
by oversampling of long duration facts.

HyTE time prediction: HyTE can only predict
a bin for the test fact. To convert predicted bins
to years (or days), we take a mean of all years
seen with the predicted bin and then do greedy
coalescing to output time interval in years.

J More diagnostics

We plot the normalized scores of TIMEPLEX,
TIMEPLEX(base), and TNTComplex for different
time queries in time range [1850, 2010] in Table 14.
Figure (a) highlights how TNTComplex model fails
to learn that one cannot marry before birth. Figure
(b) shows how with the limited background knowl-
edge on the subject in question, TIMEPLEX can
predict the gold time-interval.
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Learning Rate Reg wt Batch size Temporal smoothing α β γ

YAGO11k 0.1 0.03 1500 0.0 5.0 5.0 0.0
WIKIDATA12k 0.1 0.005 1500 0.0 5.0 5.0 5.0
ICEWS05-15 0.1 0.005 1000 5.0 5.0 5.0 5.0

ICEWS14 0.1 0.005 1000 1.0 5.0 5.0 5.0

Table 10: Hyperparameters for training TIMEPLEX(base) model embeddings on various datasets, tuned on MRR
for validation set. Temporal smoothing was found to help on ICEWS datasets, however it gave no improvement
for interval datasets. We tuned the parameters in a staged manner - first we tune learning rate (lr), regularization
weight (r), batch size(b), and temporal smoothing weight (ts). We performed a random search in the following
ranges: lr ∈ [0.0001, 1.0], r ∈ [0.0001, 1.0], b ∈ [100, 5000], and ts ∈ [0.0001, 10.0]. The models were most
sensitive to regularization weight and learning rate. After finding best values for these parameters, we tuned α, β
and γ weights for each dataset, doing a grid search over the set {0.0, 2.0, 5.0, 7.0, 10.0}

.

WIKIDATA12k YAGO11k
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TNT-Complex 27.35 17.59 48.51 15.78 10.21 28.64
TIMEPLEX 30.61 20.79 51.78 22.77 16.33 36.3

Table 11: Performance of the best models using a filtering strategy that does not enumerate time points in an inter-
val, and filters on an exact match instead. We find that while TIMEPLEX convincingly outperforms the previous
SOTA TNT-Complex using this filtering strategy as well.

Prediction task→ Link Time interval

↓Method
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TIMEPLEX 23.64 16.92 36.71 20.03
TIMEPLEX-Pair 23.15 16.63 36.27 14.21
TIMEPLEX- Rec 18.93 11.46 32.74 20.03
TIMEPLEX- Pair - Rec 18.35 10.99 31.86 14.21

Table 12: Ablation study on Yago11k. Recurrence feature significantly help in link prediction while relation pair
feature helps time-interval prediction.

Models Number of parameters
HytE d(|E|+ |T |+ |R|)

DE-SimplE 2d((3δ + (1− δ))|E|+ |R|)
TNTComplex 2d(|E|+ |T |+ 4|R|)

Timeplex(base) 2d(|E|+ |T |+ 6|R|)
Timeplex 2d(|E|+ |T |+ 6|R|) + 2(|R|2 + |R|)

Table 13: Number of parameters for each model. For HyTE we assume bucket size = 1 here. δ is the fraction of
dimension to represent time in DA-SimplE model.
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Info about query e1 in train set:
<Shin Ae-ra, isMarriedTo, Cha In-pyo>(1995, 3000)

Gold answer 1969
Timeplex prediction 1967

Timeplex (base) prediction 1967
TNTComplex prediction 2013

(a) TIMEPLEX, TIMEPLEX(base) both predict the correct answer but
TNTComplex cannot model that one cannot marry before birth.

Info about query e1 in train set:
<Peter Nowell, graduatedFrom, Wesleyan University>(1948, 3000)
<Peter Nowell, graduatedFrom, University of Pennsylvania>(1952, 3000)

Gold answer 1928
Timeplex prediction 1928

Timeplex (base) prediction 1938
TNTComplex prediction 1918

(b) TIMEPLEX(base) cannot model that one is unlikely to graduate at the age of 10.
TIMEPLEX (base) and TNTComplex do not have a clear vote like Timeplex.

Table 14: Comparing time prediction performance of TIMEPLEX, TIMEPLEX(base) and TNTComplex.


