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Abstract
In this paper, we propose Cross-Thought,
a novel approach to pre-training sequence
encoder, which is instrumental in building
reusable sequence embeddings for large-scale
NLP tasks such as question answering. In-
stead of using the original signals of full sen-
tences, we train a Transformer-based sequence
encoder over a large set of short sequences,
which allows the model to automatically se-
lect the most useful information for predict-
ing masked words. Experiments on ques-
tion answering and textual entailment tasks
demonstrate that our pre-trained encoder can
outperform state-of-the-art encoders trained
with continuous sentence signals as well as
traditional masked language modeling base-
lines. Our proposed approach also achieves
new state of the art on HotpotQA (full-wiki set-
ting) by improving intermediate information
retrieval performance.1

1 Introduction

Encoding sentences into embeddings (Kiros et al.,
2015; Subramanian et al., 2018; Reimers and
Gurevych, 2019) is a critical step in many Nat-
ural Language Processing (NLP) tasks. The benefit
of using sentence embeddings is that the represen-
tations of all the encoded sentences can be reused
on a chunk level (compared to word-level embed-
dings), which can significantly accelerate inference
speed. For example, when used in question answer-
ing (QA), it can significantly shorten inference time
with all the embeddings of candidate paragraphs
pre-cached into memory and only matched with
the question embedding during inference.

There have been several models specifically de-
signed to pre-train sentence encoders with large-
scale unlabeled corpus. For example, Skip-
thought (Kiros et al., 2015) uses encoded sentence

1Our code will be released at https://github.com/
shuohangwang/Cross-Thought.

Figure 1: Example of short sequences that can leverage
each other for pre-training sentence encoder.

embeddings to generate the next sentence (Fig-
ure 2(a)). Inverse Cloze Task (Lee et al., 2019)
defines some pseudo labels to pre-train a sentence
encoder (Figure 2(b)). However, pseudo labels may
bear low accuracy, and rich linguistic information
that can be well learned in generic language mod-
eling is often lost in these unsupervised methods.
In this paper, we propose a novel unsupervised ap-
proach that fully exploits the strength of language
modeling for sentence encoder pre-training.

Popular pre-training tasks such as language mod-
eling (Peters et al., 2018; Radford et al., 2018),
masked language modeling (Devlin et al., 2019;
Liu et al., 2019) and sequence generation (Dong
et al., 2019; Lewis et al., 2019) are not directly
applicable to sentence encoder training, because
only the hidden state of the first token (a special
token) (Reimers and Gurevych, 2019; Devlin et al.,
2019) can be used as the sentence embedding, but
no loss or gradient is specifically designed for the
first special token, which renders sentence embed-
dings learned in such settings contain limited useful
information.

Another limitation in existing masked language
modeling methods (Devlin et al., 2019; Liu et al.,
2019) is that they focus on long sequences (512
words), where masked tokens can be recovered by

https://github.com/shuohangwang/Cross-Thought
https://github.com/shuohangwang/Cross-Thought
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Figure 2: Structures of pre-training models for sentence encoder. (a) is a Seq2Seq model that generates the next
sentence based on the embedding of the previous sentence. (b) is the classification/ranking model based on pre-
defined pseudo labels. (c) is the structure of our model by using the sentence embedding from other sequences to
generate the masked word.

considering the context within the same sequence.
This is useful for word dependency learning within
a sequence, but less effective for sentence embed-
ding learning.

In this paper, we propose Cross-Thought, which
segments input text into shorter sequences, where
masked words in one sequence are less likely to
be recovered based on the current sequence itself,
but more relying on the embeddings of other sur-
rounding sequences. For example, in Figure 1, the
masked words “George Washington” and “United
States” in the third sequence can only be cor-
rectly predicted by considering the context from
the first sequence. Thus, instead of performing self-
attention over all the words in all sentences, our
proposed pre-training method enforces the model
to learn from mutually-relevant sequences and au-
tomatically select the most relevant neighbors for
masked words recovery.

The proposed Cross-Thought architecture is il-
lustrated in Figure 2(c). Specifically, we pre-
append each sequence with multiple special tokens,
the final hidden states of which are used as the
final sentence embedding. Then, we train multi-
ple cross-sequence Transformers over the hidden
states of different special tokens independently, to
retrieve relevant sequence embeddings for masked
words prediction. After pre-training, the attention
weights in the cross-sequence Transformers can be
directly applied to downstream tasks (e.g., in QA
tasks, similarity scores between question and can-
didate answers can be ranked by their respective
sentence embeddings).

Our contributions are summarized as follows. (i)
We propose the Cross-Thought model to pre-train
a sentence encoder with a novel pre-training task:
recovering a masked short sequence by taking into
consideration the embeddings of surrounding se-
quences. (ii) Our model can be easily finetuned on
diverse downstream tasks. The attention weights
of the pre-trained cross-sequence Transformers can
also be directly used for ranking tasks. (iii) Our
model achieves the best performance on multiple
sequence-pair classification and answer-selection
tasks, compared to state-of-the-art baselines. In
addition, it further boosts the recall of informa-
tion retrieval (IR) models in open-domain QA task,
and achieves new state of the art on the HotpotQA
benchmark (full-wiki setting).

2 Related Work

Sequence Encoder Many studies have explored
different ways to improve sequence embeddings.
Huang et al. (2013) proposes deep structured se-
mantic encoders for web search. Tan et al. (2015)
uses LSTM as the encoder for non-factoid an-
swer selection, and Tai et al. (2015) proposes tree-
LSTM to compute semantic relatedness between
sentences. Mou et al. (2016) also uses tree-based
CNN as the encoder for textual entailment tasks.
Cheng et al. (2016) proposes Long Short-Term
Memory-Networks (LSTMN) for inferring the re-
lation between sentences, and Lin et al. (2017)
combines LSTM and self-attention mechanism to
improve sentence embeddings. Multi-task learn-
ing (Subramanian et al., 2018; Cer et al., 2018) has
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also been applied for training better sentence em-
beddings. Recently, in additional to supervised
learning, models pre-trained with unsupervised
methods begin to dominate the field.

Pre-training Several methods have been pro-
posed to directly pre-train sentence embedding,
such as Skip-thought (Kiros et al., 2015), Fast-
Sent (Hill et al., 2016), and Inverse Cloze Task (Lee
et al., 2019). Although these methods can obtain
better sentence embeddings in an unsupervised
way, they cannot achieve state-of-the-art perfor-
mance in downstream tasks even with further fine-
tuning. More recently, Peters et al. (2018) proposes
to pre-train LSTM with language modeling (LM)
task, and Radford et al. (2018) pre-trains Trans-
former also with LM. Instead of sequentially gen-
erating words in a single direction, Devlin et al.
(2019) proposes the masked language modeling
task to pre-train bidirectional Transformer. Most
recently, Guu et al. (2020); Lewis et al. (2020) pro-
pose to jointly train sentence-embedding-based in-
formation retriever and Transformer to re-construct
documents. However, their methods are usually
difficult to train with reinforcement learning meth-
ods involved, and need to periodically re-index the
whole corpus such as Wikipedia. In this paper,
to pre-train sentence encoder, we propose a new
model Cross-Thought to recover the masked in-
formation across sequences. We make use of the
heuristics that nearby sequences in the document
contain the most important information to recover
the masked words. Therefore, the challenging re-
trieval part can be replaced by soft-attention mech-
anism, making our model much easier to train.

3 Cross-Thought

In this section, we introduce our proposed pre-
training model Cross-Thought, and describe how
to finetune the pre-trained model on downstream
tasks. Specifically, most parameters in downstream
tasks can be initialized by the pre-trained Cross-
Thought, and for certain tasks (e.g., ranking) the
attention weights across sequences can be directly
used without additional parameters (Figure 3).

3.1 Pre-training Data Construction
Our pre-training task is inspired by Masked Lan-
guage Modeling (Devlin et al., 2019; Liu et al.,
2019), and the key difference is the way to con-
struct sequences for pre-training. As our goal is sen-
tence embedding learning, the pre-training task is

designed to encourage the model to recover masked
words based on sentence-level global context from
other sequences, instead of word-level local con-
text within the same sequence (Figure 1). There-
fore, unlike previous work that segments raw text
into long sequences and shuffles the sequences for
pre-training, we propose to create shorter text se-
quences instead, without shuffling. In this way,
a shorter sequence may not contain all the neces-
sary information for recovering the masked words,
hence requiring the probing into surrounding se-
quences to capture the missing information.

3.2 Cross-Thought Pre-training

The pre-training model is illustrated in Figure
3(a). As aforementioned, the input of pre-
training data consists of M continuous sequences
[X0, X1, ..., XM−1]. Similar to BERT (Devlin
et al., 2019), we use the hidden state of the spe-
cial token as the final sentence embedding. To
encode the embeddings with richer semantic infor-
mation, we propose to pre-appendN special tokens
S instead of a single one to each sequence X .

We first use Transformer to encode the seg-
mented short sequences as follows:

Hm = Transformer([S;Xm]), (1)

Em = Hm[0:N − 1], (2)

where S ∈ RN×d are the embeddings of N spe-
cial tokens, and Xm ∈ Rlm×d are the contextual-
ized word embeddings of the m-th sequence. lm
is the sequence length and d is the dimension of
the embedding. [·; ·] is the concatenation of matri-
ces. Hm ∈ R(N+lm)×d are all the hidden states
of the Transformer, and Em ∈ RN×d are the hid-
den states on the special tokens, used as the final
sequence embedding.

Next, we build cross-sequence Transformer on
top of these sequence embeddings, so that each
sequence can distill information from other se-
quences. As the embeddings of different special
tokens encode different information, we run Trans-
former on the embedding of each special token
separately:

Fn = [E0[n];E1[n]; ...;EM−1[n]] , (3)

Cn = Cross-Transformer (Fn) , (4)

where Em[n] ∈ Rd is the n-th row of Em. Fn ∈
RM×d is the concatenation of all the embeddings
of the n-th special token in each sequence. Cn ∈
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Figure 3: Illustration of Cross-Thought for pre-training and finetuning procedures. Circles in red are sentence
embeddings. Lines in blue are the cross-sequence Transformers, the attention weights of which are α in Eqn. (7).
Words in red are special tokens, the hidden states of which are the sentence embeddings. Multiple special tokens
are used to enrich the sentence embeddings. In (a), the sentence embedding of the third sequence provides context
that can help generate the masked word in the first sequence. In (b), the model can be initialized with pre-trained
Cross-Thought for Answer Selection or Textual Entailment tasks. The attention weights α and hidden states of
cross-sequence Transformers can be used directly for Ranking and Classification tasks.

RM×d is the output of cross-sequence Transformer,
where all the information across sequences are
fused together. As the weights of multi-head at-
tention in cross-sequence Transformer will be used
for downstream tasks, we decompose the attention
weights of one head in the cross-sequence Trans-
former on the n-th special tokens as follows:

Q = WQFn, (5)

K = WKFn, (6)

α = Softmax (
QKT

√
d

), (7)

where WQ ∈ Rd×d,WK ∈ Rd×d are the parame-
ters to learn. α ∈ RM×M are the attention weights
that can be directly used in downstream tasks (e.g.,
for measuring the similarity between question and
candidate answers in QA tasks).

Finally, to encourage the embedding from other
sequences retrieved by cross-sequence Transformer
to help generate the masked words in the current
sequence, we use another Transformer layer on top
of the merged sequence embeddings as follows:

Gm = [C0[m];C1[m]; ...;CN−1[m];Hm[N :]] ,

Om = Transformer(Gm), (8)

where Cn[m] ∈ Rd is the hidden state of cross-
sequence Transformer on the n-th special token

of the m-th sequence. Hm[N :] ∈ Rlm×d from
Eqn.(1) is the hidden state for non-special words
Xm. Om ∈ R(N+lm)×d will be used to generate
the masked word:

Lmask =
∑
m,i

− log(P (am,i|Om)), (9)

where P (am,i|Om) is the probability of generating
the i-th masked word in the m-th sequence.

3.3 Cross-Thought Finetuning
To demonstrate how pre-trained Cross-Thought can
initialize models for downstream tasks, we take two
tasks as examples: answer selection and sequence-
pair classification (under the setting of using sen-
tence embeddings only, without word-level cross-
sequence attention (Devlin et al., 2019)). The pro-
cedure is illustrated in Figure 3 (b).

Answer Selection The goal is to select one an-
swer from a candidate pool, {X1, X2, ..., XM−1}
based on question X0. We consider the represen-
tations of candidate answers that are cached and
can be matched to question embeddings when a
new question comes in. Based on the pre-trained
model, the attention weights in Eqn.(7) from dif-
ferent heads of the cross-sequence Transformers
can be directly applied to rank the answer candi-
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dates. For further finetuning, the loss relying on
the attention weights is defined as follows:

Lanswer = − log(α[0][m]), (10)

where α[0] are the attention weights between
question X0 and all the answer candidates,
and m is the index of the correct answer in
{X1, X2, ..., XM−1}. Note that we have multiple
cross-sequence Transformers on different special
tokens, and each Transformer has multiple heads.
Thus, we use the mean value of all the attention
matrices as the final weights.

Sentence Pair Classification The goal is to iden-
tify the relation between two sequences, X0 and
X1. Reusable sequence embeddings are very useful
in some tasks, such as finding the most similar pair
of sentences from a large candidate pool, which re-
quires large-scale repetitive encoding and matching
without pre-computed sentence embeddings. As
the pre-training of cross-sequence Transformer is
designed to fuse the embeddings of different se-
quences, the merged representations in Eqn.(4) can
be used for downstream classification as follows:

C̄ = [C0;C1; ...;CN−1],

c̄ = Flatten(C̄),

Lcls = − log
(
Softmax

(
Wcc̄T

)
[y]
)
, (11)

where C̄ ∈ R2N×d is the concatenation of the hid-
den states of all the cross-sequence Transformers
on N different special tokens. Note that there
are only two sequences here for classification.
c̄ ∈ R2Nd is the reshaped matrix for final clas-
sification, and cross-entropy loss is used for opti-
mization.

4 Experiments

In this section, we conduct experiments based on
our pre-trained models, and provide additional de-
tailed analysis.

4.1 Datasets
We conduct experiments on five datasets, the statis-
tics of which is shown in Table 1.

MNLI (Williams et al., 2018)2: Multi-Genre
Natural Language Inference matched (MNLI-m)
and mismatched (MNLI-mm) are textual entail-
ment tasks. The goal is to classify the relation be-
tween premise and hypothesis sentences into three

2https://gluebenchmark.com/tasks

Dataset #train #test #seq Goal

MNLI-m 373K 10K 2 classification
MNLI-mm 373K 10K 2 classification
SNLI 549K 10K 2 classification
QQP 346K 391K 2 classification
Quasar-T 29K 3K 100 ranking
HotpotQA 86K 7K 5M ranking

Table 1: Statistics of the datasets. #train and #test are
the number of samples for training and testing. #seq is
the number of sequences needed to use for each sample.
5M is for 5 million.

classes: entailment, contradiction and neutral. The
train and test sets come from the same source and
same genre in MNLI-m, and different in MNLI-
mm.

SNLI (Bowman et al., 2015)3: The dataset of
Stanford Natual Language Inference is another tex-
tual entailment task.

QQP (Wang et al., 2018): Quora Question Pairs
is to identify whether two questions are duplicated
or not.

Quasar-T (Dhingra et al., 2017)4: This is a
dataset for question answering by searching the
related passages and then reading it to extract the
answer. In this dataset, we evaluate the models by
whether it can correctly select the sentence contain-
ing the gold answer from the candidate pool.

HotpotQA (Yang et al., 2018)5: A dataset of
diverse and explainable multi-hop question answer-
ing. We focus on the full-wiki setting, where the
model needs to extract the answer from all the ab-
stracts in Wikipedia and related sentences.

Note that for the datasets of MNLI, QQP and
HotpotQA, the test sets are hidden and the number
of submissions is limited. For a fair comparison
between our models and baselines, we split 5%
of the training data as validation set and use the
original validation set as test set.

4.2 Implementation Details
All the models are pre-trained on Wikipedia and
finetuned on downstream tasks. We also evaluate
the pre-trained models on whether they can perform
unsupervised paragraph selection, and whether the
improvement over paragraph ranking can lead to
better answer prediction on HotpotQA task. As our
experiments are to evaluate the ability of sentence

3https://nlp.stanford.edu/projects/snli/
4https://github.com/bdhingra/quasar
5https://hotpotqa.github.io/
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MNLI-m MNLI-mm SNLI QQP Quasar-T HotpotQA HotpotQA(u)
Acc Acc Acc Acc Recall@1 Recall@20 Recall@20

ICT 65.2 65.3 81.8 85.0 40.5 81.5 44.9
Skip-Thought 65.3 65.7 81.5 84.6 40.2 82.0 37.6
Language Model 73.9 74.2 84.1 86.8 41.9 81.0 33.4
Masked LM-1-512 74.3 74.1 84.9 87.3 43.2 81.5 10.0
Masked LM-1-64 73.8 74.0 84.3 87.0 42.5 81.0 10.0
Masked LM (160G) 75.5 75.7 86.3 89.3 43.5 87.5 10.0

Cross-Thought-1-512 74.5 74.1 85.0 87.5 43.5 81.7 10.0
Cross-Thought-1-64 76.2 76.4 86.3 90.0 47.2 88.0 51.9
Cross-Thought-3-64 76.5 76.6 86.5 90.3 48.2 88.4 55.4
Cross-Thought-5-64 76.8 76.6 86.8 90.3 48.5 88.9 56.5

Table 2: Results on only using sentence embedding for classification and ranking. Cross-Thought-3-64 is to
train Cross-Thought by pre-appending 3 special tokens to the sequences that are segmented into 64 tokens. For
HotpotQA, we only evaluate on how well the model can retrieve gold paragraphs. Results for HotpotQA(u) are
without finetuning. Acc: Accuracy. Recall@20: recall for the top 20 ranked paragraphs.

Models
HotpotQA (full-wiki)

Pas EM Ans EM/F1 Sup EM/F1

Cognitive Graph (Ding et al., 2019) 57.8 37.6/49.4 23.1/58.5
Semantic Retrieval (Nie et al., 2019) 63.9 46.5/58.8 39.9/71.5
Recurrent Retriever (Asai et al., 2020) 72.7 60.5/73.3 49.3/76.1

Masked LM-1-64 + reranker + reader 77.2 60.9/73.5 52.9/77.3
Cross-Thought-1-64 + reranker + reader 80.0 62.3/75.1 54.3/78.6

Table 3: Results on HoptpotQA (full-wiki setting). We use sentence embeddings from the finetuned model of
Cross-Thought or Masked LM as information retriever (IR) to collect candidate paragraphs. Pas EM: exact match
of gold paragraphs; Ans EM/F1: exact match/F1 on short answer; Sup EM/F1: exact match/F1 on supporting facts.

encoder, we only build a light layer on sentence
embeddings for classification task, and use only
dot product (Cross-Thought, ICT) or cosine simi-
larity (Skip-thought, LM, MLM) between sentence
embeddings for ranking task. Note that for fair
comparison, all the encoders in our experiments
have the same structure as RoBERTa-base (12 lay-
ers, 12 self-attention heads, hidden size 768). For
all experiments, we use Adam (Kingma and Ba,
2015) as the optimizer and use the tokenizer of
GPT-2 (Radford et al., 2018).

For model pre-training, all models including
the baselines we re-implement are trained with
Wikipedia pages.6 We use 16 NVIDIA V100 GPUs
for model training. Our code is mainly based on
the RoBERTa codebase,7 and we use similar hyper-
parameters as RoBERTa-base training. Each train-

6The Wikipedia dump we use is enwiki-20191001-pages-
articles-multistream.

7https://github.com/pytorch/fairseq

ing sample contains 500 short sequences with 64
tokens, and we randomly mask 15% of the tokens
in the sequences. During training, we fix the posi-
tion embeddings for the pre-appended special to-
kens, and randomly select 64 continuous positions
from 0 to 564 for the other words. Thus, the model
can be used to encode longer sequences in down-
stream tasks. The batch size is set to 128 (4 million
tokens). We use warm-up steps 10,000, maximal
update steps 125,000, learning rate 0.0005, dropout
0.1 for pre-training. Each model is pre-trained for
around 4 days.

For model finetuning, in experiments for MNLI,
SNLI and QQP, we use batch size 32, warmup steps
7,432, maximal update steps 123,873, and learning
rate 0.00001. For Quasar-T and HotpotQA, we set
batch size 80, warmup steps 2,220, maximal update
steps 20,360, and learning rate 0.00005. Dropout is
the only hyper-parameter we tuned, and 0.1 is the
best from [0.1, 0.2, 0.3]. As HotpotQA in full-wiki
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setting does not provide answer candidates, we ran-
domly sample 100 negative paragraphs from the
top 1000 paragraphs ranked by BM25 scores during
training. During inference, we use sentence em-
beddings to further rank the top 1000 paragraphs.
For the unsupervised experiment on HotpotQA, we
only rank top 200 paragraphs.

4.3 Baselines

Existing baseline methods are mostly trained with
different encoders or different datasets. For fair
comparison, we re-implement all these baselines
by using a 12-layer Transformer as the sentence en-
coder and Wikipedia as the source for pre-training.
There are three groups of baselines considered for
evaluation:

Pre-trained Sentence Embedding
• ICT (Lee et al., 2019): Inverse cloze task treats

a sentence and its context as a positive pair, oth-
erwise negative. Sentences are masked from the
context 10% of the time. This model is trained
by ranking loss based on the dot product be-
tween sequence embeddings.

• Skip-Thought (Kiros et al., 2015): The task is to
encode sentences into embeddings that are used
to re-construct the next and the previous sen-
tences. This model is based on encoder-decoder
structure without considering attention across
sequences (Cho et al., 2014). We use 6-layer
Transformer as the decoder for re-construction.

Language Modeling In addition, we also re-
implement benchmark baselines on the classic Lan-
guage Modeling (LM) and Mask Language Model-
ing tasks, as most existing models are pre-trained
with different unlabeled datasets:

• Language Model (LM) (Radford et al., 2018):
The task is to predict the probability of the next
word based on given context. As the words
are sequentially encoded, to evaluate the per-
formance of this model on HotpotQA in the un-
supervised setting, we use the last hidden state
as the sentence embedding (instead of the first
one by ICT, MLM, Skip-Thought).

• Masked Language Model (MLM) (Devlin et al.,
2019): The task is to generate randomly masked
words from sequences. We explore different
settings of training data. “Masked LM-1-512”
trains a Transformer on sequences with 512 to-
kens and pre-appends 1 special token to each

sequence. “Masked LM-1-64” is trained on se-
quences with 64 tokens. Both models are trained
with Wikipedia text only. “Masked LM (160G)”
is the RoBERTa model pre-trained on a much
larger corpus.

Multi-hop Question Answering To further eval-
uate our model on multi-hop question answering
task in open-domain setting, we compare our frame-
work with several strong baselines on HotpotQA:

• Cognitive Graph (Ding et al., 2019): It uses an
iterative process of answer extraction and fur-
ther reasoning over graphs built upon extracted
answers.

• Semantic Retrieval (Nie et al., 2019): It uses
a semantic retriever on both paragraph- and
sentence-level to retrieve question-related infor-
mation.

• Recurrent Retriever (Asai et al., 2020): It uses a
recurrent retriever to collect useful information
from Wikipedia graphs for question answering.

4.4 Experimental Results
Results on the classification and ranking tasks are
summarized in Table 2. Results of our pipeline on
HotpotQA (full-wiki) are shown in Table 3.

Effect of Pre-training Tasks Among all the pre-
training tasks, our proposed method Cross-Thought
achieves the best performance. With finetuning,
LM pre-training tasks work better than the Skip-
Thought and ICT methods which are specifically
designed for learning sentence embedding. More-
over, we provide a fair comparison between “Cross-
thought-1-64” and “Masked LM-1-64”, both of
which segment Wikipedia text into short sequences
in 64 tokens for pre-training, and only use the hid-
den state of the first special token as sentence em-
bedding. Results show that our Cross-Thought
model achieves much better performance than
Masked LM-1-64, as well as the Transformer
pre-trained on 160G data (10 times larger than
Wikipedia).

Effect of Training on Short Sequences Results
on “Cross-Thought-1-512” and “Cross-Thought-
1-64” (using sequences of 512 tokens and 64 to-
kens, respectively) clearly show that shorter se-
quences lead to more effective pre-training. More-
over, we also observe that “Cross-Thought-1-512”
and “Masked LM-1-512” achieve almost the same
performance. It means that our Cross-Thought has
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Q Jens Risom introduced what type of design, character-
ized by minimalism and functionality?

Washington was named after President <MASK>by an
act of the <MASK>Congress during the creation of
Washington Territory in 1853.

C1 Scandinavian design is a design movement character-
ized by simplicity, minimalism and functionality that
emerged in the 1950s in the five Nordic countries of
Finland, Norway, Sweden, Iceland and Denmark... (at-
tention weight: 0.259)

Washington, officially the State of Washington, is a state
in the Pacific Northwest region of the United States.
Named for George Washington, the first U.S. president.
(attention weight: 0.987)

C2 Risom was one of the first designers to introduce Scandi-
navian design in the United States... (attention weight:
0.194)

Approximately 60 percent of Washington‘s residents live
in the Seattle metropolitan area, the center of transporta-
tion, business, and industry. (attention weight: 0.012)

C3 Dutch Design can be characterized as minimalist, exper-
imental, innovative, quirky, and humorous... (attention
weight: 0.098)

Manufacturing industries in Washington include aircraft
and missiles, shipbuilding, and other ... (attention weight:
0.001)

Table 4: Case study on unsupervised passage ranking. The attention weights are learned by cross-sequence Trans-
former from pre-training. The examples on the left come from HotpotQA and are the ranked passages from 200
candidates for answering the question. The examples on the right are in the format of Masked Language Modeling
task, where our Cross-Thought needs to recover the masked words by leveraging other sequences. C: the ranked
passages by attention weights.

to be trained on short sequences (64 tokens); oth-
erwise, it would learn more on the word dependen-
cies within sequence other than the sequence em-
beddings. Actually, the effect of short sequences is
also proved by Skip-Thought which focuses on gen-
erating sequences in sentence level, but our Cross-
Thought can achieve better performance.

Effect of Sentence Embedding Size As we
keep the number of parameters fixed for the en-
coders trained with different tasks, increasing the
dimension of hidden state will lead to more pa-
rameters to train. Instead, for each sequence, we
pre-append more special tokens, the hidden states
of which are concatenated together as the final sen-
tence embedding. Experiments on “Cross-Thought-
1-64”, “Cross-Thought-3-64” and “Cross-Thought-
5-64” compare pre-appending 1, 3 and 5 different
special tokens to sequences for pre-training. We
can see that a larger sentence embedding size can
significantly improve performance on the ranking
tasks while not on the classification tasks. We hy-
pothesize that the main reason is ranking tasks are
more challenging, with many different pairs to com-
pare, for which the contextual sentence embeddings
can provide additional information.

Effect of Paragraph Ranking without Finetun-
ing We also conduct an analysis on whether pre-
trained sentence embeddings can be directly used
for downstream tasks without finetuning. Although
model performance without finetuning is generally
worse than supervised training, experiments in col-
umn “HotpotQA(u)” further validate the previously
discussed three conclusions. Besides, we observe

that although the model pre-trained by masked lan-
guage modeling leads to better performance after
finetuning, it is not designed to train sentence em-
beddings, thus cannot be used for passage ranking.
While all the other methods achieve much better
performance than masked language modeling, our
model “Cross-Thought-5-64” with the largest em-
bedding size achieves the best performance.

Effect of Cross-Thought as Information Re-
triever (IR) on QA Task Our pipeline of solving
HotpotQA (full-wiki) consists of three steps: (i)
Fast candidate paragraph retrieval; (ii) Multi-hop
paragraphs re-ranking by a more complex model;
and (iii) Answer and supporting facts extraction.
We evaluate our proposed method on how well the
finetuned sentence embeddings can be utilized in
the first step for IR, with the re-ranker and answer
extractor fixed. “Masked LM-1-64” and “Cross-
Thought-1-64” in Table 3 show that our pre-trained
model achieves better performance than the base-
line model pre-trained on single sequences. More-
over, the pipeline integrating our sentence embed-
ding achieves new state of the art on HotpotQA
(full-wiki).

4.5 Case Study

Table 4 provides a case study on the unsupervised
passage ranking and masked language modeling
tasks. For the case from HotpotQA, we can see that
attention weights from the cross-sequence Trans-
former in Cross-Thought can rank the paragraph
with gold answer to the first place among the 200
candidate paragraphs.
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For the case from Mased Language Modeling,
we also observe that the sentence that can be used
to recover the masked words receives much higher
attention weight compared to others, validating our
motivation on retrieving the useful sentence em-
beddings from other sequences to enhance masked
word recovery in the current sequence.

5 Conclusion

We propose a novel approach, Cross-Thought, to
pre-train sentence encoder. Experiments demon-
strate that using Cross-Thought trained with short
sequences can effectively improve sentence em-
bedding. Our pre-trained sentence encoder with
further finetuning can beat several strong baselines
on many NLP tasks.
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