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Abstract

Retrieving the proper knowledge relevant to
conversational context is an important chal-
lenge in dialogue systems, to engage users
with more informative response. Several re-
cent works propose to formulate this knowl-
edge selection problem as a path traversal
over an external knowledge graph (KG), but
show only a limited utilization of KG struc-
ture, leaving rooms of improvement in perfor-
mance. To this effect, we present AttnIO, a
new dialog-conditioned path traversal model
that makes a full use of rich structural infor-
mation in KG based on two directions of at-
tention flows. Through the attention flows, At-
tnIO is not only capable of exploring a broad
range of multi-hop knowledge paths, but also
learns to flexibly adjust the varying range of
plausible nodes and edges to attend depending
on the dialog context. Empirical evaluations
present a marked performance improvement of
AttnIO compared to all baselines in OpenDi-
alKG dataset. Also, we find that our model can
be trained to generate an adequate knowledge
path even when the paths are not available and
only the destination nodes are given as label,
making it more applicable to real-world dia-
logue systems.

1 Introduction

One of the milestone challenges in conversational
AI is to engage users with a more informative and
knowledgeable response, rather than merely out-
putting generic sentences. For instance, given a
user’s utterance saying “I’m a big fan of Steven
Spielberg”, it would be more engaging to respond
“My favorite movie is his science fiction film A.I.”,
rather than “I like him too.”. An external source
of knowledge such as knowledge graph (KG) can

*Equal contribution.

play a crucial role here, as it could help the con-
versational agent with informative paths, such as
“Steven Spielberg, directed, A.I., has genre, Sci-
ence Fiction”.

The above mentioned motivation gave rise to
a conspicuous need for path retrieval model on
KG, which can learn to traverse a path consisting
of proper entities and relations to mention in the
next response, given the dialog context. Previous
approaches to this knowledge selection problem
rely on either an RL-based agent (Liu et al., 2019)
or a recurrent decoder (Moon et al., 2019), which
greedily selects the most proper entity to traverse
regarding its previous decision. Despite their nov-
elty, we find several rooms of improvement from
the previous works, to move toward a more fine-
grained modeling of knowledge path retrieval for
dialogue systems.

First, a model could make use of the rich rela-
tional information residing at the neighborhood of
each node on KG. Typically, the number of entities
in KG is large, while the numbers of each entity’s
usage in actual dialogues are small. Thus leverag-
ing the neighborhood information of each entity in
knowledge graph could be crucial, to overcome the
sparsity of entity usage and learn proper represen-
tation of entities and relations.

Also, we find that the range of knowledge paths
plausible for a response to a given dialog may vary,
depending on the dialog context and user intent.
In response to a closed question such as “Who
directed the movie A.I.?”, there could be only one
or two knowledge paths valid as answer. On the
contrary, in response to an open question such as
“Do you know Steven Spielberg?”, there could be a
variety of knowledge paths natural enough to carry
on the conversation. Therefore, a model should
be able to choose the range of entities to attend,
depending on the characteristics of a given dialog.

Lastly, one should note that it is practically hard
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Figure 1: Path decoding process of AttnIO. By propagating attention values at each step rather than selecting one
node to traverse, AttnIO can choose between focusing on small number of entities or attending to multiple relevant
neighbors, depending on the dialog context.

to gather a large-scale dialog-KG path parallel cor-
pus, fully annotated with all entities and relations
comprising each path. Retrieving the initial, and
final entities of the KG path is relatively easier,
as it only requires post-processing the {query, re-
sponse} pairs in dialog. Therefore, it would be
more desirable if a model could be trained to tra-
verse a proper knowledge path, only with the desti-
nation nodes provided as label.

To this end, we propose AttnIO (Attention In-
flow and Out-flow), a novel KG path traversal
model that overcomes all challenges stated above.
Aside to the conventional textual encoder which
encodes dialog history and user utterance, AttnIO
models the KG traversal mechanism into two sub-
processes: incoming attention flow, and outgoing
attention flow. Inspired by Attention Flow (Xu
et al., 2018), the two attention flows explore KG
by propagating the attention value at each node to
its reachable neighbor nodes, as shown in Figure 1.
The attention propagation mechanism enables our
model to start exploring KG from multiple entities
(A.I., and The Truman Show), then find out an inter-
mediate node Drama relevant to both movies, and
end the multi-hop reasoning by arriving at Catch
me if you can. Such a complex interaction between
entities cannot be modeled by a greedy decoder,
limited to consider only an optimal node at each
decoding step. In addition, our model provides bet-
ter interpretation of its path reasoning process, by
visualizing the attention distribution of nodes and
edges at each step. Lastly, we consider our model
in a more challenging, but more realistic setting of
path retrieval task, where no ground-truth path is
available for supervision, but only the final desti-

nation nodes are given. Even in this setting, we
find that AttnIO can be trained to infer a proper
knowledge path for the input dialog.

In summary, our contributions are as follows: (1)
We suggest a novel path traversal model AttnIO,
achieving state-of-the-art performance in dialog-
conditioned knowledge path retrieval task on the
OpenDialKG dataset. (2) We demonstrate that At-
tnIO can be trained even in a challenging setting
where only the destination nodes are given, and
show through both qualitative and quantitative anal-
ysis that the quality of paths generated from this
setting does not fall behind that of the all-path su-
pervision setting. (3) Through visualizing the at-
tention distribution at each decoding step, we show
that our model possesses better interpretability over
the path reasoning process.

2 Related Works

Recently, lots of research effort have been de-
voted to grounding dialogue systems on structured-
knowledge embedded in knowledge graphs. These
works can be broadly classified into two categories,
depending on the range of exploration over candi-
date knowledge. The first line of works, namely
breadth-centric approaches, tend to focus on aug-
menting dialog context with entity representations,
by aggregating their shallow (i.e., 1-hop or 2-hop)
neighborhood information from an external knowl-
edge graph (Young et al., 2018; Liu et al., 2018;
Parthasarathi and Pineau, 2018; Chen et al., 2019).
Zhou et al. (2018) suggest to encode an auxiliary
knowledge vector by attentively reading all 1-hop
relations of each initial entity that appears in user’s
utterance. Zhang et al. (2019) extends the previous
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work’s knowledge encoding scheme to 2-hop rela-
tions, encoding all initial entities and their 1-hop
neighbors with two independent attention mecha-
nisms. While these works are successful in contex-
tualizing each entity with various relations in KG,
they lack in retrieving small set of focused knowl-
edge paths relevant to the dialog, or generalizing to
multi-hop relations. We extend these approaches
by suggesting a new framework that can be general-
ized to an arbitrary length of traversal, and dynami-
cally updating entity features at each decoding step
to facilitate multi-hop relational inference.

On the other hand, the second line of works re-
sort to depth-centric search over candidate knowl-
edge paths. Rather than augmenting entity repre-
sentation with shallow but wide range of knowl-
edge, they concentrate on traversing only a specific
range of entities and relations directly usable for
response generation. Liu et al. (2019) formulate
the knowledge selection problem as Partially Ob-
served Markov Decision Process, employing a pol-
icy network to traverse KG. Meanwhile, Moon et al.
(2019) suggest a recurrent path decoder that relies
on a hidden state vector to choose the next entity
among reachable nodes. Although these models
are competent at inferring multi-hop relations, their
discrete selection mechanism neglects rich rela-
tional information of nodes and edges they did not
explicitly choose to traverse. To complement the
weakness, AttnIO does not select an optimal node
in advance; rather, it first propagates attention to
all reachable entities, and then decode an optimal
path from the output attention distribution.

Our work is also closely motivated from re-
cent techniques suggested in the domain of knowl-
edge graph completion tasks. To compensate for
weak representation power of translative embed-
ding (Bordes et al., 2013; Trouillon et al., 2016)
and convolution-based embedding (Dettmers et al.,
2018; Nguyen et al., 2018), several models have
adopted graph neural networks (GNN), encod-
ing structural information into entity embedding
(Shang et al., 2019; Nathani et al., 2019). Other
works perform traversal-based inference in node-
prediction tasks based on reinforcement learning
(Das et al., 2018; Lin et al., 2018), or attention
propagation (Xu et al., 2018). We extend these pre-
vious works by adopting graph neural network and
attention propagation for the dialog-conditioned
path generation problem.

Figure 2: AttnIO Model Overview

3 Proposed method

3.1 Overview
We denote the external knowledge graph as
GKG = VKG × RKG, with nodes as entities and
edges as relations between a pair of entities. We
denote Gv,n ⊆ GKG as a subgraph containing all
nodes and edges reachable in less then or equal to
n-hops, starting from vertex v. Also, we define−→
N i as a set of incoming neighbor nodes of vi, i.e.
nodes possessing edges toward vi, and

←−
N i as a set

of outgoing neighbor nodes of vi.
Figure 2 illustrates the overview of AttnIO’s

path generation process. Given the input multi-
turn dialog sequence {s1, · · · , sn} and the set of
entities Vinit = {e1, · · · , em} appearing in the
user’s last utterance sn, AttnIO starts from encod-
ing the input dialog into a fixed-size context vec-
tor. It also constructs the dialog-relevant subgraph
Ginput =

⋃
iGei,T , where T is a hyperparameter

indicating the maximal length of path to traverse.
At each decoding step t = 1, · · · , T , the in-

coming attention flow iteratively updates the KG
entity features by attentively aggregating rich re-
lational features from their incoming neighbor
nodes. Then, the outgoing attention flow propa-
gates the attention value of each node to its out-
going neighbor nodes, yielding the node attention
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distribution ati and edge attention distribution atij
as step t’s output. We show that each candidate en-
tity path Pv = {P (0)

v , · · · , P (T )
v } and the relation

path Pr = {P (1)
r , · · · , P (T )

r } can easily be ranked
from these output attention distributions, in Section
3.4.1.

3.2 Dialog Encoder

AttnIO encodes the input multi-turn dialog into a
fixed-size contextual representation. Specifically,
we employ state-of-the-art textual representation
from ALBERT (Lan et al., 2019), to effectively cap-
ture the context and intent of the user’s utterance.
We concatenate maximum of 3 last utterances in
the dialog, and put it as input to the pretrained
ALBERT. We use the final layer’s hidden represen-
tation of [CLS] token, as it is typically considered
to be an approximation of the sequence context. We
denote this context vector as C, in the following
section.

Note that our architecture does not require a spe-
cific type of textual encoder, and ALBERT can be
replaced with any sequence encoder such as bidi-
rectional RNN. For a fair comparison with previous
work, we conduct an ablation study on ALBERT by
replacing it with bidirectional GRU (Section 4.1).

3.3 Incoming Attention Flow

In order to find better entity representation, the
Incoming Attention Flow iteratively updates each
entity feature hj for all vj ∈ Ginput, by aggre-
gating vj’s neighbor information. Recently sug-
gested message-passing mechanism of graph atten-
tion networks (GAT) from Veličković et al. (2018)
is suitable for this, as it learns to encode each node
by selectively attending over its neighbors. Since
GAT does not take account of edge features and
hence may lose useful relational information inte-
gral in KG, we extend the attention-based message
passing scheme of GAT into relational graphs. At
each decoding step t, the Incoming Attention Flow
computes message from entity vi to vj as follows:

mij = Wm [hi + rij ] (1)

where hi denotes the feature of vi at step t, and rij
denotes the relation feature assigned to the edge
between vi and vj . Then, the new node feature
h̃′j for the next time step t + 1 is computed as an
attention-based weighted sum of messages from all

incoming neighbor nodes of vj :

h̃′j =
∑
i∈
−→
Nj

aijmij (2)

The attention aij is computed by applying softmax
over vj’s all incoming neighbor nodes:

aij = softmax
i∈
−→
Nj

(αij),

αij = σ
(
(WQhj)

T (Wk(hi + rij))
) (3)

where σ denotes LeakyReLU non-linearity.
In addition, we extend our attentive aggrega-

tion scheme to multi-headed attention, which helps
to jointly attend to information from different
representation subspaces of incoming messages
(Vaswani et al., 2017). Thus our message aggrega-
tion mechanism in Eq.2 is transformed into:

h̃′j =
K∥∥
k=1

∑
i∈
−→
Nj

akijm
k
ij (4)

where K denotes the number of attention heads.
The attention heads perform independent self-
attention over neighborhood features, then are con-
catenated to form the new node feature h̃′j .

Another crucial step in Incoming Attention Flow
is to fuse entity features with dialog context, such
that even if a same set of initial entities are given,
the decoder could traverse possibly different paths
according to the dialog context. We achieve this
fusion by concatenating the dialog context vector
with entity feature computed from Eq.4 and then
linear-transforming back to the entity embedding
dimension:

h′j = Wh

[
h̃′j ‖C

]
(5)

3.4 Outgoing Attention Flow
At the core of AttnIO lies the Outgoing Attention
Flow, which defines path traversal on KG as an
attention propagation mechanism. In the beginning
of the decoding step, it starts from computing the
initial attention value a0i of nodes in Vinit, i.e. the
set of entities appearing in the user’s last utterance.

a0i = softmax
i∈Vinit

(
(WinitC)Thi

)
(6)

The relevance of each candidate node is scored as
the dot-product with the dialog context vector. In
case of entities not in Vinit, we initialize the node
attention value to zero.
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Hereafter, the decoder iterates for step 1 to T ,
where T denotes the maximal possible path length.
We add self-loops to each node in Ginput, in or-
der to indicate that a traversal ended before step
T . Given the context-fused entity feature ht

i for
all vi ∈ Ginput at each step t, Outgoing Atten-
tion Flow essentially computes how much attention
value to propagate from vi to its outgoing neighbor
vj , as follows:

ãt+1
ij = T t+1

ij ati, a
t+1
j =

∑
i∈
−→
Nj

ãt+1
ij

s.t.
∑
i

at+1
i = 1,

∑
ij

ãt+1
ij = 1

(7)

A key here is the transition probability Tij , which
can be derived from a function of two relevant node
features, hi and hj . In this work, we formulate the
process as averaging the multi-headed attentions
computed over all outgoing neighbor nodes:

Tij =
1

K

K∑
k=1

softmax
j∈
←−
Ni

(τkij),

τkij = σ
(
(WQh

k
i )

T (Wk(h
k
j + rkij))

) (8)

3.4.1 Scoring candidate paths
Given the output of Outgoing Attention Flow at
each decoding step i.e. the node attention distri-
bution a0i , · · · aTi and the edge attention distribu-
tion ã1ij , · · · ãTij , we can score each candidate entity
paths with the product of respective node attention
value at each step:

score(Pv) =
T∏
t=0

at
P

(t)
v

(9)

Likewise, the score of the relation path Pr asso-
ciated with Pv can be retrieved by the product of
respective edge attention value at each step:

score(Pr) =
T∏
t=1

ãt
P

(t)
r

(10)

3.4.2 Training Objective
We train the whole model in an end-to-end manner
by directly supervising on the attention distribution
at each step. In a default setting where the whole
ground-truth paths are available, we use a negative
log-likelihood loss on each step’s attention distri-
bution (left), and in the target-supervision setting

where only the final entity labels are given, we su-
pervise with the same loss only at the final step’s
attention distribution (right):

L =
∑
t

−log atlabel, or − log aTlabel (11)

3.4.3 Dialog-KG Alignment by Initialization
AttnIO’s training phase tends to be unstable in the
beginning, as the model has to deal with two com-
pletely different modalities: KG entities, and the di-
alog. In order to align the two different features, we
find that initializing each entity feature as the rep-
resentation from pretrained ALBERT helps. Just
as the dialogue context representation, we put each
entity phrase as input with [CLS] token. We then
take the hidden representation of [CLS] token from
the last layer of ALBERT, and linear-transform it
to create initial entity feature h0

i . Note that we do
not fine-tune ALBERT, but back-propagate to h0

i

during training. This additional process not only
narrows down the gap between feature space of
entities and dialog contexts, but also helps better
understand each entity in several cases, as some
entities span a lengthy phrase of natural language
tokens (e.g. Grammy Award for Best Pop Collabo-
ration with Vocals).

4 Experiments and Results

Dataset We evaluate our proposed method on
OpenDialKG (Moon et al., 2019), a dialog - KG
parallel corpus designed for knowledge path re-
trieval task. The dataset consists of 91k multi-turn
conversations in form of either task-oriented (rec-
ommendation) dialog, or chit-chat on a given topic.
Each pair of utterances in the conversations is an-
notated with a KG path, where its initial entity
is mentioned in the former turn, and its destina-
tion entity is mentioned in the latter turn. As the
train/valid/test partitions of OpenDialKG are not
publicly available, we create our own split by ran-
domly partitioning into train (70%), valid (15%),
and test set (15%).

Baselines We take 4 models suggested by Moon
et al. (2019) as baselines. These models include Di-
alKG Walker, a state-of-the-art model designed to
traverse a dialogue conditioned knowledge path.
Other 3 models are Seq2Seq (Sutskever et al.,
2014), Extended Encoder-Decoder (Parthasarathi
and Pineau, 2018), Tri-LSTM (Young et al., 2018)
all modified to fit the entity path retrieval task.
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Recall@k
Model path@1 path@3 path@5 path@10 path@25 tgt@1 tgt@3 tgt@5 tgt@10 tgt@25

Seq2Seq 3.1 18.3 29.7 44.1 60.2 - - - - -
Tri-LSTM 3.2 14.2 22.6 36.3 56.2 - - - - -
EXT-ED 1.9 5.8 9.0 13.3 19.0 - - - - -

DialKG Walker 13.2 26.1 35.3 47.9 62.2 - - - - -
Seq2Path 14.92 24.95 31.1 38.68 48.15 15.65 27.04 33.86 42.52 53.28
AttnFlow 17.37 24.84 30.68 39.48 51.4 18.97 36.23 45.48 58.84 71.35

AttnIO (GRU) 22.36 36.72 42.98 51.22 61.91 23.45 42.31 51.71 64.33 77,64
AttnIO (no context) 7.27 25.12 31.03 40.39 54.72 14.33 33.3 43.26 58.32 76.49

AttnIO (no alignment) 21.84 35.19 41.19 48.85 59.08 22.99 41.3 50.63 64.01 78.02
AttnIO-AS 23.72 37.53 43.57 52.17 62.86 24.98 43.78 53.49 65.48 78.79
AttnIO-TS 12.09 23.65 30.5 39.48 51.68 22.82 40.01 49.86 61.04 74.49

Table 1: Performance of AttnIO in OpenDialKG, in comparison with baselines and ablation models. Results of
the above 4 baselines (from Seq2Seq to DialKG Walker) are directly taken from Moon et al. (2019), as their code
or implementation details are not available. Our model trained with all path supervision (AttnIO-AS) significantly
outperforms all baselines.

Also, we implement another baseline model named
Seq2Path, by modifying attention based Seq2Seq
model to decode entity paths. On the contrary
with Seq2Seq baseline in Moon et al. (2019) which
added zero-shot learning layer on KG embedding
as decoder, Seq2Path explicitly traverses along the
graph structure by masking unreachable nodes at
each decoding step. Lastly, in order to find the
importance of neighbor node encoding over each
entity, we suggest AttnFlow, where Incoming At-
tention Flow is excluded (hence node features are
not updated at each step) and the Outgoing Atten-
tion Flow directly generates knowledge path from
dialog context and initial entity features.

Implementation Details Our model depends
heavily on message passing scheme of graph neural
networks, which may lead to excessive memory us-
age whenGinput is large. To further scale AttnIO to
larger graphs, we reduce the size of the input graph
through edge-sampling on Ginput during training.
Detailed explanation on this edge-sampling is pre-
sented in Appendix A.

As all ground-truth paths in OpenDialKG are ei-
ther 1-hop or 2-hop, we set the maximal path length
T = 2. We search for the best set of hyperparameters
using grid-based search, choosing value with the
best path accuracy with all other hyperparameters
fixed. We implemented our model using PyTorch
(Paszke et al., 2019) and DGL (Wang et al., 2019).
Additional implementation details including hyper-
parameter search bounds and the best configuartion
are provided in Appendix E.

4.1 Results

Table 1 presents the overall evaluation results of
AttnIO, and its comparison to baseline models.
In addition to the recall@k of ground-truth paths
(path@k), we report recall@k on the target nodes
(tgt@k), as the destination node can be considered
as the most important component in knowledge
path to generate response.

As can be seen in the table, our model outper-
forms all baselines in both path@k and tgt@k,
when supervised with all entities in each path as
label (AttnIO-AS). Especially, AttnIO-AS shows
significantly better performance in metrics with
small k. We also report our model in a more chal-
lenging setting of target supervision, assuming that
only the destination node of each path is available
(AttnIO-TS). In this case, our model shows a com-
parable target prediction performance (tgt@k) to
AttnIO-AS, while its path@k is relatively poor in
small ks.

Recurrent decoder based models, such as Di-
alKG Walker and Seq2Path, relies only on a single
state vector to model the transition between each
decoding step. Therefore, once the model chooses
to traverse a sub-optimal entity, it is hard to get back
onto the right track without help of an aggressive
beam search. In our method, on the contrary, the
state of the decoder is essentially distributed into
all the walkable entities’ feature vectors; therefore,
the transition is modeled alongside all the entities
with nonzero attention value at each step, making
the model more robust to ‘misleading’ hops. Also,
note that AttnFlow shows consistent performance
drop of about 30% then AttnIO-AS in all metrics,
indicating the importance of neighborhood encod-
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Dialog

A: Fiona Stafford wrote Emma. It’s a romance
novel. Are you into that genre?
B: Any other books that might fall under
comedy? I’m in the mood for something light.
A: [RESPONSE]

AttnIO-AS Comedy⇒ subject of⇒ The War of the Worlds⇒
written by⇒ Arthur. C. Clarke

AttnIO-TS Comedy⇒ subject of⇒ The War of the Worlds⇒
subject⇒ Comedy

AttnFlow Comedy⇒ parent genre⇒ Slapstick
GT Comedy⇒ subject of⇒ One Crazy Summer

Table 2: Sample paths generated from each model,
along with the ground-truth path. More examples are
provided in Appendix D.

Model Relation Path Accuracy
AttnIO-AS 0.403
AttnIO-TS 0.365

Table 3: Relation Path Accuracy at all path su-
pervision (AttnIO-AS), and target supervision setting
(AttnIO-TS).

ing step for knowledge path retrieval.

Ablation Study We conduct ablation study with
three different configurations. First, we put GRU
(Cho et al., 2014) as dialog encoder in replace of
ALBERT, for a fairer comparison with baseline
models. As shown in Table 1, we find that although
the performance of AttnIO with GRU slightly de-
grades from that with ALBERT, it still outperforms
all existing models. Next, in order to find out the
value of dialog context in the traversal, we train our
model with only the initial entities given as input
(with uniform attention prior assigned to each ini-
tial entity), but not the dialog context. Recall@1
significantly drops in this case, while metrics with
large k relatively stays moderately. This implies
that although information on initial nodes appear-
ing in last utterance might be sufficient to prune
improbable paths, the dialog context is essential
in finding an optimal path among probable ones.
We also find in the third ablation model where no
dialog-KG alignment is applied (Section 3.4.3),
that ALBERT initialization of node embedding
helps, leading to performance gain of about 2%
in path@1.

4.2 Analysis

Relation Accuracy The poor entity path accu-
racy of AttnIO-TS may seem natural, as the initial
node and intermediate node (in case of multi-hop)
are not given as label in target supervision setting.
However, one should note that there can be a vari-

vs. GT
Model Win Tie Lose

AttnIO-AS 11.2% 55.2% 33.6%
AttnIO-TS 17.6% 55% 27.4%

Table 4: Pairwise human evaluation results between
model-generated paths, and ground-truth paths.

ety of entity paths that match human sense in nat-
uralness and coherence for a specific dialog. For
an example shown in Table 2, any film of comedy
genre shall replace One Crazy Summer in GT-path,
without loss of naturalness. The generated path
from AttnIO-AS could even be an answer, giving
more information on the chosen film. The inherent
one-to-many relationship between dialog context
and probable knowledge, makes it hard to correctly
assess the performance of knowledge retrieval mod-
els. Relation path accuracy could be one way to
relieve this problem, as relations represent impor-
tant attributes shared by similar entities.

The relation path accuracy of AttnIO in both
supervision setting is as shown in Table 3. The
relation path accuracy under both setting is clearly
higher than the entity path accuracy, implying the
generalization capability of our model based on
reasoning over relations, rather than depending on
specific entities. Notably, AttnIO-TS shows only
about 10% relative difference from AttnIO-AS, un-
like in entity path@1 in Table 1. This indicates
that our model can learn to competently perform
relational reasoning, even in this in-the-wild setting
of target supervision.

Human Evaluation In order to further examine
the quality of paths from the two supervision set-
ting, we conduct a human evaluation. We randomly
sample 100 dialogues from test set, then generate
knowledge paths for half of the dialogues from
AttnIO-AS, and half of the dialogues from AttnIO-
TS. We then perform a pairwise comparison be-
tween the path generated from AttnIO, and the
ground-truth path actually used in the dataset. For
each dialogue, we ask 5 crowd-source workers to
evaluate which knowledge path is more suitable for
response generation among the two.

We report the win/tie/lose statistics of the model
generated paths against ground-truth paths in Table
4. In both all-path supervision and target supervi-
sion setting, more than half of the paths from our
model tied with the actual paths. The result attests
to the quality of the generated paths, even including
those marked as wrong in quantitative measures.
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Figure 3: Node attention visualization from the case study. Each figure represents the node attention at the initial
state (Top), after the first decoding step (Center), and after the second decoding step (Bottom). We omit the edge
attention to avoid visual cluttering. Best viewed in color.

AttnIO-TS especially performs much more compa-
rably to AttnIO-AS than in Table 1, indicating that
the destination nodes can function as an adequate
guidance to our model, in replace of the whole path
label.

Case Study We resort to a case study, for a clear
presentation of AttnIO’s path reasoning process.
Figure 3 presents the visualization of output atten-
tion distribution from our model, when the dialog
context is given as follows:

A: Can you recommend some films by
Dan Scanlon?
B: [RESPONSE]

Note that there are hundreds of neighbor nodes
connected to each entity in the external KG, but for
the sake of clarity, we pruned most of them in the
visualization leaving only entities relevant to the di-
alog. Intuitively, there could be diverse knowledge
paths as response to the user’s question. Before the
initial step, AttnIO starts from assigning an atten-
tion value of 1.0 to the only entity mentioned in
the utterance, Dan Scanlon. In the first propaga-
tion step, our model finds from the dialog context,
that the most relevant relation in this case is wrote,

propagating most attention in Dan Scanlon to two
movie entities, Monster’s University and Cars. In
the second step, AttnIO understands that most of
the entities directly connected to these two movies,
can be a good option for the destination node. As
a consequence, AttnIO chooses to propagate a fair
amount of attention value evenly to all reachable
entities, resulting in the distribution visualized at
the third figure. Finally, an optimal path can be
retrieved as Dan Scanlon ⇒ wrote ⇒ Monster’s
University⇒ starred actor⇒ Steve Buscemi.

Through the case study, we find that AttnIO di-
rectly reflects human intuition regarding an open
question. It learns to perform relation-centric rea-
soning, and assign even amount of attention to
equally likely reachable entities. In contrast, given
a closed question such as “Who direced movie
Cars?”, AttnIO focuses on a small set of relevant
entities and relations. A detailed analysis on the
contrasting example is provided in Appendix C.

5 Conclusion

In this work, we suggest AttnIO, a novel path traver-
sal model that reasons over KG based on two direc-
tions of attention flows. The empirical evaluations
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on OpenDialKG dataset show the strength of At-
tnIO in knowledge retrieval compared to baselines.
AttnIO can also be trained to generate proper paths
even in a more affordable setting of target super-
vision. Lastly, we show through case study that
our model enjoys from transparent interpretation of
path reasoning process, and is capable of intuitively
modeling knowledge exploration depending on the
dialog characteristics.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
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Figure 4: Out-degree distribution of all nodes in
GKG. Both axis are in log scale.

A Subgraph Sampling

We explain in more detail the subgraph sampling
method adopted by AttnIO, as mentioned in Sec-
tion 4.

As shown in Figure 4, the out-degree distribution
of GKG follows an extreme power-law distribu-
tion, which is typical in relational graphs. Among
100K nodes inGKG, about 31K nodes possess only
one incoming neighbor node, making the graph ex-
tremely sparse. Meanwhile, a node with the highest
in-degree has more than 21K incoming neighbor
nodes, connecting the node to about 20% of all
entities in the whole graph.

We find that the small number of hub nodes with
high in/out degrees are the major factor that in-
creases the size of input graph Ginput. Therefore,
we choose to limit the maximal number of neigh-
bors to sample from each entity, while constructing
Ginput in the training time. We denote this limit as
Nmax.

The effect of subgraph sampling with different
Nmax is shown in Figure 5. Setting Nmax to 100,
subgraph sampling effectively reduces down the
number of edges in the input graph to only 5.67%
of the originalGinput on average, while losing only
about 1.0 absolute performance in path@1. In all
our experiments, we set Nmax = 1000, leaving
only 32.4% of the edges originally in Ginput, while
not compromising for the retrieval accuracy.

Figure 5: Effect of subgraph sampling. Blue bar de-
notes path@1 for each Nmax, while red bar denotes
the average relative size of the sampled subgraph com-
pared to the original Ginput.

B Dataset Statistics

Dialog KG
# of dialogues: 15,673 |V |: 100,813

# of turns: 91,209 |E|: 1,190,658

Table 5: Dataset Statistics of OpenDialKG.

The statistics of OpenDialKG dataset is as shown
in Table 5. There are 1358 distinct types of rela-
tions comprising 1M+ edges.
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Figure 6: Node attention visualization for the additional case study. Each figure represents the node attention
at the initial state (Top), after the first decoding step (Center), and after the second decoding step (Bottom). The
center and bottom figure might look similar, due to the slight difference of node attention distribution between the
two steps. The attention is focused on small number of entities, on the contrary with the even distribution at the
former case study.

C Additional Case Study

We provide an additional visualization of node at-
tention distribution for a given dialogue in Figure
6. This time, the model is given a dialogue context
as following:

A: Someone suggested the Northanger
Abbey book to me. Do you know who
the author is?
B: [RESPONSE]

The dialogue is of a similar topic with the case
study provided in Section 4.2, but the query in this
case is a closed question that specifically asks for
the author of a book.

AttnIO first starts from the only initial entity
Northanger Abbey, and finds from the context that
the most relevant relation here is written by. There-
fore in the first decoding step, AttnIO propagates
more than half of the attention value (0.63) from
Northanger Abbey to its writer, Jane Austen. In
the second propagation step, AttnIO chooses not to
propagate much attention to any of Jane Austen’s

neighbor nodes, preserving most of the attention
value (0.59) by traversing a self-loop. (We omitted
self-loops in the visualization for clarity.)

Note that there are a variety of neighbor nodes
walkable from Jane Austen, just as in the former
case study. However, AttnIO understands the intent
of user’s utterance requiring for a specific answer,
concentrating most of the attention to the nodes
and edges directly related to the dialogue context.
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D Generation Examples

In Table 6, we present more path generation exam-
ples along with ground-truth paths for the given
dialogues. Note that we only sampled cases where
the paths generated from our model are different
from the ground-truth paths. Dialogs are partially
shown to meet the spatial constraints.

Dialog

A: I’m not sure who else was in it, but
Ralph Fiennes also starred in Wrath of the
Titans.
B: Wrath of the Titans, I didn’t know
Ralph Fiennes was in that movie. Tell me
more about that movie and the stars in it.
A: [RESPONSE]

MODEL-AS
Wrath of the Titans ⇒ starred ⇒ Liam
Neeson

MODEL-TS
Wrath of the Titans ⇒ starred ⇒ Liam
Neeson

AttnFlow
Ralph Fiennes ⇒ starred ⇒ The hurt
Locker

GT
Ralph Fiennes⇒ starred⇒Wrath of the
Titans⇒ written by⇒ Greg Berlanti

Dialog

A: I think Tiger Woods is a good golf
player, but is he retired right now?
B: No he is actually still playing. Is he half
asian?
A: [RESPONSE]

MODEL-AS Asian⇒ ethnicity of⇒ Tiger Woods

MODEL-TS Asian⇒ ethnicity of⇒ Tiger Woods

AttnFlow
Asian ⇒ language ⇒ Vietnamese Lan-
guage

GT
Asian ⇒ includes ⇒ Vietnamese Ameri-
can

Dialog
A: Could you recommend books written by
Aldous Huxley?
B: [RESPONSE]

MODEL-AS
Aldous Huxley⇒ wrote⇒ The doors of
perception & heaven and hell

MODEL-TS
Aldous Huxley ⇒ wrote ⇒ Brave new
world

AttnFlow
Aldous Huxley ⇒ cause of death ⇒ La-
ryngeal Cancer

GT Aldous Huxley⇒ wrote⇒ Island

Dialog

A: Drew Brees is a quarterback for the
new orleans saints. I don’t follow football
but I hear he is pretty good.
B: I like movies more than football. I actu-
ally liked the american football movies.
A: [RESPONSE]

MODEL-AS
American Football⇒ subject of⇒ Wild
Cats⇒ starred actor⇒ Goldie Hawn

MODEL-TS
American Football⇒ subject of⇒ Wild
Cats⇒ has genre⇒ Football

AttnFlow
American Football ⇒ sports played ⇒
Troy Aikman

GT
American Football⇒ subject of⇒ Rudy
⇒ has genre⇒ Football

Table 6: Generated path examples, along with the
ground-truth paths.
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E Additional Implementation Detail

Computing Infrastructure Tesla V100 GPU
Search Strategy Manual Tuning

Best Validation path@1 23.72 (AS), 12.18 (TS)
Training Time (per epoch) ≈ 64min

Hyperparameter Search Bound Best Setting
max path length T 2 2

subgraph sampling limit Nmax choice[100, 500, 1000, 5000, 10000] 1000
max dialog history choice[3, 4, 5, 6] 3

entity feature dimension choice[60, 80, 100, 120] 80
number of attention heads choice[3, 4, 5, 6] 5

number of epochs 20 20
batch size choice[4, 8, 16] 8
optimizer Adam Adam

learning rate loguniform-float[5e-2, 5e-5] 5e-4
lr scheduler reduce on plateau reduce on plateau

lr reduction factor 0.1 0.1
gradient clip norm uniform-integer[3, 10] 5

Table 7: Additional implementation detail of AttnIO. We follow the specification from Dodge et al. (2019) by
reporting hyperparameter search spaces and experimental details.


