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Abstract

Vision-and-language navigation requires an
agent to navigate through a real 3D envi-
ronment following natural language instruc-
tions. Despite significant advances, few pre-
vious works are able to fully utilize the strong
correspondence between the visual and textual
sequences. Meanwhile, due to the lack of inter-
mediate supervision, the agent’s performance
at following each part of the instruction cannot
be assessed during navigation. In this work,
we focus on the granularity of the visual and
language sequences as well as the traceability
of agents through the completion of an instruc-
tion. We provide agents with fine-grained an-
notations during training and find that they are
able to follow the instruction better and have
a higher chance of reaching the target at test
time. We enrich the benchmark dataset Room-
to-Room (R2R) with sub-instructions and their
corresponding paths. To make use of this data,
we propose effective sub-instruction attention
and shifting modules that select and attend
to a single sub-instruction at each time-step.
We implement our sub-instruction modules in
four state-of-the-art agents, compare with their
baseline models, and show that our proposed
method improves the performance of all four
agents.

We release the Fine-Grained R2R dataset
(FGR2R) and the code at https://github.
com/YicongHong/Fine-Grained-R2R.

1 Introduction

Creating an agent that can navigate through an
unknown environment following natural language
instructions has been a dream of human-beings
for many years. Such an agent needs to possess
the ability to perceive its environment, understand
the instructions and learn the relationship between
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Figure 1: Visual navigation with sub-instruction and
sub-path pairs. We enrich the R2R dataset by pro-
viding fine-grained matching between sub-instructions
and viewpoints along the ground-truth path.

these two streams of information. Recently, An-
derson et al. (2018b) proposed the vision-and-
language navigation (VLN) task that formalized
such requirements through an evaluation of an
agent’s ability to follow natural language instruc-
tions in photo-realistic environments.

Despite the significant progress made by recent
approaches, there is little evidence that agents learn
the correspondence between observations and in-
structions. Hu et al. (2019) found that a modified
self-monitoring agent (Ma et al., 2019a), could
achieve similar performance with (success rate
40.5%) and without (success rate 39.7%) visual
information. Among other reasons, such as dataset
bias, the result suggests that this agent gains little
from having the two streams of information.

We argue that one of the main reasons be-

https://github.com/YicongHong/Fine-Grained-R2R
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hind this is that current methods are not ade-
quately teaching agents the relationship between
perception—things that the robot is observing—
and parts of the instructions. Since datasets do not
provide such information agents can only use the
ground-truth trajectory as a learning signal. More-
over, given the lack of fine-grained annotation, cur-
rent methods cannot evaluate the (perceptual or
linguistic) grounding process at each step as there
is no ground truth signal to indicate which part of
the instruction has been completed.

To address this problem, we enhance the R2R
dataset (Anderson et al., 2018a) to acquire interme-
diate supervision for the agents, providing a fine-
grained matching between sub-instructions and
the agent’s visual perception, as illustrated in Fig-
ure 1, to produce our Fine-Grained Room-to-Room
dataset (FGR2R). We argue that the granularity of
the navigation task should be at the level of these
sub-instructions, rather than attempting to ground
a specific part of the original long and complex in-
struction without any direct supervision or measure
navigation progress at word level.

Our work aims to make the navigation process
traceable and encourage the agent to run precisely
on the described path rather than just focusing on
reaching the target. We hypothesize that the agent
should reach the target with higher success rate by
following a detailed instruction with richer infor-
mation, and in practice, the agent could complete
some additional tasks on its way to the target.

In light of this, we propose a novel sub-
instruction attention mechanism to better learn the
correspondence between visual features and lan-
guage features. Our agent first segments the long
and complicated instruction into short and easier-
to-understand sub-instructions using a heuristic
method based on the grammatical relations pro-
vided by the Stanford NLP Parser (Qi et al., 2018).
Moreover, we propose a shifting module that infers
whether the current sub-instruction has been com-
pleted. Hence, only one sub-instruction is available
to the agent at each time step for textual grounding.
These modules can be easily applied to previous
VLN models.

We conduct experiments to compare the perfor-
mance of four state-of-the-art agents to evaluate
with or without our sub-instruction module, for
agents based on imitation learning (Anderson et al.,
2018b; Fried et al., 2018; Ma et al., 2019a) and re-
inforcement learning (Tan et al., 2019). Analyzing

the results we find that the intermediate supervi-
sion and our proposed modules help the agents to
better follow the instructions. Furthermore, we
demonstrate the traceability of the navigation pro-
cess through qualitative and quantitative analysis.

2 Related Work

Visual and textual grounding. Visual grounding
aims to infer the relationship between a text de-
scription and a spatial or temporal region in an
image or video, respectively. It is an essential com-
ponent for a variety of tasks in vision-and-language
research such as visual question answering (VQA)
(Schwartz et al., 2017; Anderson et al., 2018a; Hud-
son and Manning, 2019), image captioning (Xu
et al., 2015; Anderson et al., 2018a; Cornia et al.,
2019; Ma et al., 2020), video understanding (Gao
et al., 2017; Ma et al., 2018; Rodriguez et al., 2020)
and phrase localization (Engilberge et al., 2018; Yu
et al., 2018). In the case of vision-and-language
navigation, at each navigational step, the agent at-
tends to the relevant part of the instruction accord-
ing to visual clues to direct the future action. Mean-
while, the agent attends the visual inputs at differ-
ent directions as described by text to perceive the
environment (Fried et al., 2018; Ma et al., 2019a).

Vision and language navigation. Anderson et al.
(2018b) formalized the vision-and-language nav-
igation task in a photo-realistic environment, and
proposed a benchmark Room-to-Room (R2R)
dataset and a sequence-to-sequence agent as a base-
line model. Other datasets in real environments,
such as R4R (Jain et al., 2019), which is an ex-
tended version of R2R with longer instruction-path
pairs, and Touchdown (Chen et al., 2019) for navi-
gation on streets have also been proposed for study.

Researchers have addressed the R2R task
through a great variety of approaches. Wang et al.
(2018) propose a look-ahead model that combines
model-based and model-free reinforcement learn-
ing, predicts the agent’s next state and reward
during navigation. Fried et al. (2018) proposed
the Speaker-Follower model which generates aug-
mented samples for training and makes use of the
panoramic action space to ground and navigate
efficiently. Later, Ma et al. (2019a) introduced
the Self-Monitoring agent which includes a vision
and language co-grounding network and a progress
monitor. The progress monitor estimates a normal-
ized distance to the target and guides the transition
of the textual attention. Wang et al. (2019) applied
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the REINFORCE algorithm (Williams, 1992) to
improve the agent’s generalizability and proposed
a Self-Supervised Imitation Learning (SIL) method
to facilitate lifelong learning in a new environment.
The Back Translation agent (Tan et al., 2019) ap-
plied the A2C algorithm (Mnih et al., 2016) and
made use of a speaker module with environmental
dropout for data augmentation. Landi et al. (2019)
applied dynamic convolutional filters for image
feature extraction for low-level grounding of vi-
sual inputs and Hu et al. (2019) grounded multi-
ple modalities using a mixture-of-experts approach
and applied joint training strategy. Besides, the
Regretful agent (Ma et al., 2019b) and the Tactical
Rewind agent (Ke et al., 2019) are models which
focus on path-scoring and backtracking methods.
Very recently, Zhu et al. (2020a) introduces multi-
ple auxiliary losses in training to help exploring the
semantic meaning of visual features, Huang et al.
(2019) and Hao et al. (2020) apply pre-trained
encoders to generate generic visual and textual rep-
resentations for the agent.

In contrast to all previously mentioned methods
that ground the complete instruction, we propose
to divide the instruction into meaningful semantic
sub-instructions, and teach the agent to complete
each one at a time before reading the next sub-
instruction. In that spirit, our method is similar to
the image captioning work by Cornia et al. (2019).
They design a shifting gate over the image regions
to control the visual features that feed into each
time step of the caption module. We differ from
their work in the modality that is attended. Our
method works in the language domain, and the
shifting depends only on local context rather than
looking over all the sub-instructions. BabyWalk
(Zhu et al., 2020b) is a concurrent work to ours, it
uses sub-instructions for curriculum learning which
trains the agent to complete shorter navigation tasks
before trying to solve the longer ones. Comparing
the sub-instruction and sub-path pairs in FGR2R
and BabyWalk, BabyWalk aligns the textual and vi-
sual sequences by solving a dynamic programming
problem, whereas FGR2R employs human annota-
tion, which is more fine-grained and accurate.

3 Sub-instruction Aware VLN

In this section, we first introduce the VLN problem
and the general architecture of the agent. Then,
we discuss about the proposed chunking function
for producing the sub-instructions and the novel

Figure 2: Our sub-instruction attention and shifting
modules built into the self-monitoring agent pipeline.
We replace the original textual attention module with
our sub-instruction modules that select and attend a sin-
gle sub-instruction at each time-step.

sub-instruction module for enabling sub-instruction
attention and transition.

The VLN task requires the agent to navigate
through a real environment to a target location
following a natural language instruction. For-
mally, an instruction w is a sequence of words
〈w1, w2, . . . , wl〉 provided to the agent at the be-
ginning of its navigation, where wi denotes the i-th
word in the sequence. The environment is defined
as set of viewpoints {pj} denoting all the navigable
locations. At time step t, the agent at viewpoint pt
receives a panoramic view V t composed of n sin-
gle view images 〈vt,1,vt,2, . . . ,vt,n〉. Using the
given instructionw and the current observation V t,
the agent needs to infer an action at which triggers
a transition signal from pt to pt+1. The episode
ends when the agent output a STOP action or the
maximum number of steps allowed is reached.

3.1 Base Agent Model

We build our sub-instruction module based on the
current state-of-the-art VLN agents, as shown in
Figure 2. Those agents share a similar pipeline,
a sequence-to-sequence architecture with textual
and visual attentions. In this section, we refer to
the Self-Monitoring Agent (Ma et al., 2019a) to
present the flow of information in the network.

Visual and textual encoding. Before the start
of navigation, the agent first encodes the given
instruction, using an LSTM with a learned em-
bedding as ŵj= Embed(wj) and u1,u2, . . . ,ul=
LSTM(ŵ1, ŵ2, . . . , ŵl), where uj is the hidden
state of word wj in the instruction. In the case of
the panoramic view, the agent encodes the images
using a ResNet-152 model (He et al., 2016) pre-
trained on ImageNet (Russakovsky et al., 2015)
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for each navigable direction. A 4-dimensional vec-
tor [sinψ, cosψ, sin θ, cos θ] is concatenated with
the image encoding to represent the direction of
visual features, where ψ and θ are the heading and
elevation angles, respectively.

Policy module and co-grounding. We define the
agent’s state at time t as a combination of the at-
tended textual representation ût, the attended vi-
sual representation v̂t and the previous selected
action at−1, encoded by an LSTM as

ht,mt = LSTM([v̂t;at−1], (ût,mt−1)). (1)

We refer to h andm as the agent’s state and mem-
ory, respectively.
The attended textual representation is obtained
by performing soft-attention over the language
features U=〈u1,u2, . . . ,ul〉 with the agent’s
state at the previous time step. The atten-
tion weights over all the words are calculated
as ztext

t,j =(Wuht−1)
Tuj and αt= Softmax(ztext

t ),
obtaining the attended textual representation
by ût=αt

TU . Similarly, we perform soft-
attention over the single-view visual features Vt

as zvis
t,i=(Wvht−1)

T g(vt,i) where g(·) is a multi-
layer perceptron (MLP), and the attention weight
βt= Softmax(zvis

t ). The attended visual represen-
tation is v̂t=βt

TVt. The previous selected action
at−1 is represented by the visual features at the pre-
viously selected action direction. Finally, the agent
decides an action by finding the visual features at
a navigable direction with the highest correspon-
dence to the attended language features û and the
agent’s current state ht. The probability at each
navigable direction is computed as:

ot,i = (W a[ht, ût])
T g(vt,i) (2)

and
pt = Softmax(ot) (3)

where g(·) is the same MLP as in visual attention
for feature projection. Then, the agent moves in
a panoramic action space (Fried et al., 2018), so
that it jumps directly to an adjacent viewpoint in
the selected direction.

All baseline agents in our experiments are vari-
ants of this pipeline. For instance, the Speaker-
Follower agent (Fried et al., 2018) encodes the
agent’s state with only the previous action and the
attended visual features. In the case of the Back-
Translation agent (Tan et al., 2019), it attends the
language features by the agent’s current state.

3.2 Chunking
To encourage the learning of vision and language
correspondences, we provide short and easier-to-
learn sub-instructions to the agent at each time
step. Formally, for each instruction w, there ex-
ists a set of sub-instructions X=〈x1,x2, ...,xL〉,
where xi=〈wj〉 and L is the total number of sub-
instructions. The sub-instructions are ordered, mu-
tually exclusive and cover the entire w.

We propose a chunking function to break the
original instruction into several sub-instructions,
where each sub-instruction is an independent nav-
igation task and usually requires the agent to per-
form one or two actions to complete. To achieve
this automatically, we design chunking rules based
on the grammatical relations between words in the
instruction, where the relations are produced by the
Stanford NLP Parser (Qi et al., 2018), a pre-trained
natural language analysis tool. First, we pass the
entire instruction into the StanfordNLP Parser for
extracting the dependency and the governor of
each word, denoted as η(wj) and ρ(wj), respec-
tively. Then, using the two attributes, we formulate
a heuristic as shown in Algorithm 1.

Algorithm 1 Chunking Function
Initialize empty lists lconj , lx, lη , lX . Count k = 0.
# Find index of the word that satisfies condition (2)
for wj in w do

if η(wj) is conj && ρ(wj) is 1 then
Save word index j into lconj

end if
end for
for wj in w do

# Condition (1)
if η(wj) is root && (root in lη or parataxis

in lη) then
lX ← Check(lx)
# Condition (2)

else if k ≤ len(lconj)− 1 && ρ(wj) is lconj [k] then
lX ← Check(lx), k = k + 1
# Condition (3)

else if η(wj) is parataxis && (root in lη or
parataxis in lη) then

lX ← Check(lx)
# Save the word into temporary chunk

else if η(wj) is not punct then
Save wj into lx, save η(wj) into lη

end if
end for

The chunking function considers words in the
instruction that meet one of the following three con-
ditions as the beginning of a new sub-instruction:
(1) its dependency is root and all the words before
belong to the previous chunk, (2) its dependency
is conj and its governor is the previous root, (3)
its dependency is parataxis and all the words
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before belong to the previous chunk. If any one
of the three conditions is met, a Check(·) function
will be performed on the temporary chunk to de-
cide whether to save the temporary chunk into the
final sub-instruction list lX . Here, the Check(·)
function examines if the temporary chunk meets
two conditions: (1) the chunk length should ex-
ceed the minimum length of two words, and (2) the
temporary chunk should not only contains a single
action-related phrase which is following the previ-
ous chunk or is leading the next chunk (e.g. “go
straight then ...”), if it happens, then the temporary
chunk should be appended to the previous chunk
or added to the next chunk respectively.

We provide an illustrative example here. Our
chunking function breaks the given instruction “En-
ter through the glass door. Go up the wooden
plank stairs on the right. Enter the doorway next
to the bear head and wait there.” into 1 “Enter
through the glass door”, 2 “Go up the wooden
plank stair on the right”, 3 “Enter the doorway
next to the bear head” and 4 “And wait there”,
as shown in Figure 1. In the third and the fourth
sub-instructions, the words “Enter” and “Wait” sat-
isfy the conditions (1) and (2), respectively. Notice
that the governor of conjunction word “And” is
“Wait”, so it has been assigned to the fourth sub-
instruction.

3.3 Sub-Instruction Module

To encourage the agent to learn the correspondence
between visual and language features in a sub-
instruction, we modify the base agents to include a
sub-instruction module, which enables the agent to
focus on a particular sub-instruction at each time
step, as shown in Figure 2. It contains two main
components: the sub-instruction attention and the
sub-instruction shifting module.

Sub-instruction attention. The module attends
the words inside the selected sub-instruction xi

through a soft-attention mechanism. Formally, at
each time step, we calculate the distribution of
weights over each word in xi as:

ztext
t,j = (Wuht−1)

Txi,j , (4)

αt = Softmax(ztext
t )

where ht−1 is the previous state of the agent and
Wu is the learned weights. The grounded represen-
tation of the sub-instruction is hence x̂i = αt

Txi.

With the sub-instruction attention, the agent is
forced to attend the most relevant part of the instruc-
tion and prevent the agent from “getting distracted”
by the other part of the instruction that has been
completed or to be completed in the further steps.

Sub-instruction shifting. At each time step, the
agent needs to decide whether the current sub-
instruction will be completed by the next action
or not. We enable this functionality by designing
a shifting module that estimates the probability of
proceeding to the next sub-instruction.

The module uses a recurrent neural architecture
to encode a representation that reflect the vision
and language co-grounded features:

hc
t = σ(Wc1[Wc0(ht),v

a
t , x̂i])� tanh(mt) (5)

where ht and mt is the agent’s current state and
memory, vat is the visual feature at the selected
action direction, σ represents a sigmoid function,
Wc1 and Wc0 are the learned weights and � de-
notes the Hadamard product.

The module then computes the shifting proba-
bility from hc

t and a one-hot encoding et of the
number of sub-instructions left to be completed, as:

pst = σ(Wc2[Wc3(et),h
c
t ]) (6)

where Wc2 and Wc3 are the learned parameters.
Here, et introduces a learnable prior on when to
shift before viewing the scene. This prior is then
modified by taking into account the visual evidence,
which is essential for efficient navigation. If the
shifting probability exceed a certain threshold, a
shift signal st=1 (st∈{0, 1}) of reading the next
sub-instruction will be produced. We only enable
the module to do a single step uni-directional shift-
ing, which agrees with the fact that instructions
and trajectory in the R2R dataset are monotoni-
cally aligned.

3.4 Training

In the training stage, for each instruction w,
there exists a corresponding ground-truth path
pg = 〈pg(1), pg(2), ..., pg(M)〉. In the case of sub-
instructions, we partition the path into sub-paths,
one for each sub-instruction.

The binary cross-entropy loss compares the esti-
mated shifting probabilities pst to the target shifting
signals yst , where the target is either 1 or 0 depend-
ing on the distance between the agent’s current
position and the ending viewpoint of the current
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sub-path. In summary, the agent’s parameters are
learned to optimized

L =−
∑
t

yat log p
a
t− (7)∑

t

yst log p
s
t + (1− yst ) log(1− pst )

where pat is the predicted action, yat and yst are the
ground-truth action and shifting signal respectively
at time step t.

During training, we apply student-forcing super-
vision to the action to encourage exploration, but
use teacher-forcing for the sub-instruction shift-
ing (Williams and Zipser, 1989; Anderson et al.,
2018b). In early stages of training, the ground-
truth shifting signal will have a large number of
zeros since the agent has a high probability of de-
viating from the desired path. We prevent the sub-
instruction shifting module from converging to an
undesirable local minimum by forcing the shifting
loss to consider an equal number of randomly se-
lected shift and do-not-shift samples in each time
step.

4 The FGR2R Dataset

To acquire the matching between vision and lan-
guage sub-sequences, we introduce a Fine-Grained
Room-to-Room (FGR2R) dataset which enriches
the benchmark Room-to-Room dataset by dividing
the instructions into sub-instructions and pairing
each of those with their corresponding viewpoints
in the path.
Dataset collection. We first apply the chunking
function introduced in Section 3.2 to generate the
sub-instructions automatically from the original
R2R data. We demonstrate the quality of the gen-
erated sub-instructions by comparing the output
sub-instructions against a manually annotated sub-
set of 300 samples, obtaining a smoothed BLEU-4
score of 0.84. Then, we add annotations of sub-
path corresponding to each sub-instruction using
the Amazon Mechanical Turk (AMT)2. We refer
the readers to Appendix A.1 for more information
about the data collection interface and the qualifi-
cation process of the annotators that we designed
to ensure the quality of the collected data.
Dataset statistics. The original R2R possesses
21,567 navigation instructions and 7,189 paths in
91 real-world environments, where 3 or 4 different
natural language instructions describe each path.

2Amazon Mechanical Turk: https://www.mturk.com/

The R2R data has been split for learning proposes,
with 4,675 paths for training and 340 paths for seen
validation in 61 scenes, 783 paths in 11 scenes for
unseen validation and the remaining 1,391 paths
in 18 scenes for testing3. Based on the original
R2R data, FGR2R divides the instructions for the
training and validation set in an average of 3.6 sub-
instructions. Each sub-instruction has 7.2 words on
average. Sub-instructions are paired on average 2.4
viewpoints, and with a minimum and maximum
of 1 and 7 viewpoints, respectively. We refer the
readers to Appendix A.1 for more dataset statistics.

5 Experiments

5.1 Experiment Setup

We experiment with four state-of-the-art VLN
agents with and without our sub-instruction mod-
ule and compare their performance on the original
R2R validation unseen split.

The agents are chosen to include the most com-
mon network architectures, training strategies and
inference methods among the previous VLN agents.
They include the Sequence-to-Sequence (Seq2Seq)
(Anderson et al., 2018b) model which does not
apply panoramic action space, two visual-textual
co-grounding models, the Speaker-Follower (Fried
et al., 2018) and the Self-Monitoring agent (Ma
et al., 2019a), as well as the Back-Translation
model (Tan et al., 2019) which applies reinforce-
ment learning. For all agents, we implement
our sub-instruction module in their network based
on their officially released code. For the self-
monitoring agent, we remove the progress monitor
since it requires the attention weight over the entire
instruction for estimating the navigation progress.
Implementation details. To obtain the word rep-
resentations in each sub-instruction, the entire in-
struction is first passed to a unidirectional LSTM,
then we implement chunking on the language hid-
den states to obtain the word representations of the
selected sub-instructions. The ground-truth shift-
ing signal at each time-step is dependent on the
distance between the agent’s current position and
the end viewpoint of the selected sub-instruction. If
the distance is smaller than or equal to 0.5 meters,
the ground-truth shift signal st will be 1, and 0 oth-
erwise. For the Back-Translation model (Tan et al.,
2019), we only apply chunk shifting loss to the

3More information about R2R can be found in the Mat-
terport3D dataset(Chang et al., 2017) and the R2R dataset
(Anderson et al., 2018b)
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	(a)	Self-Monitoring	agent	without	sub-instruction	module:					Error:	2.81m					nDTW:	0.68					Stop:	by	reaching	the	maximum	steps

Instruction:	Take	a	right	and	then	take	a	left	and	walk	out	of	the	bathroom.	Wait	on	the	carpet	in	the	room	to	the	left.

Sub-instruction	1:	
Take	a	right.

Sub-instruction	2:	
And	then	take	a	left.

Sub-instruction	3:	
And	walk	out	of	the	bathroom.

Sub-instruction	4:	
Wait	on	the	carpet	in	the	room	to	the	left.

= 1�� = 0��= 1�� = 1�� = 0��

(b)	Self-Monitoring	agent	with	sub-instruction	module:					Error:	0.00m					nDTW:	1.00					Stop:	by	predicting	a	STOP	action

Figure 3: Qualitative comparison of a successful case without and with sub-instruction module. Without sub-
instruction module, the agent fails to follow the instruction and stops next to the target by chance. With sub-
instruction module, the agent navigates on the described path and eventually stops right at the target location. For
panoramic visualization and more examples please refer to the supplementary material.

R2R Validation Unseen

# Model PL ↓ NE ↓ OSR ↑ SR ↑ SPL ↑ nDTW ↑

1 Seq2Seq (Anderson et al., 2018b) 8.34 (8.71) 7.85 (7.92) 29.2 (29.5) 22.9 (21.8) 0.20 (0.18) 0.58 (0.57)
2 Speaker-Follower (Fried et al., 2018) 13.57 (16.66) 6.66 (7.12) 44.8 (41.1) 34.7 (29.8) 0.28 (0.22) 0.59 (0.54)
3 Self-Monitoring (Ma et al., 2019a) 13.95 (15.02) 6.16 (6.29) 53.7 (53.0) 42.4 (40.7) 0.32 (0.30) 0.61 (0.58)
4 Back-Translation (Tan et al., 2019) 9.81 (9.62) 5.67 (5.61) 54.8 (54.9) 46.7 (46.6) 0.43 (0.43) 0.69 (0.70)

Table 1: Comparison on the validation unseen split with and without the sub-instruction module. Values not in
brackets are with sub-instructions, values in brackets are without sub-instructions.

teacher-forcing imitation learning branch, so that
the agent navigates on the ground-truth path and
learns the chunk-shifting with less noise. We train
all agents on a single NVIDIA Tesla K80 GPU,
using the same hyperparameters as the baselines.

Evaluation metrics. We follow the standard met-
rics that previous work employed for evaluating
the agent’s performance on the R2R dataset (An-
derson et al., 2018b), which include Path Length
(PL) of the agent’s trajectory, average Navigation
Error (NE) for the distance between agent’s final
position and the target, Oracle Success Rate (OSR)
for the ratio of agents which the shortest distance
between the target and the trajectory is within 3m,
Success Rate (SR) for the ratio of agents which
the distance between agent’s final position and the
target is within 3m, and Success Rate Weighted by
Path Length (SPL). Furthermore, we also consider
the normalized Dynamic Time Warping (nDTW)
score (Magalhaes et al., 2019), which is a metric
that measure the overall performance of the agent
with a focus on the similarity between the ground-
truth and the actual trajectories.

6 Results and Analysis

We compare the performance of the four agents
on the R2R unseen validation set. We also present
the traceability of the navigation process resulting
from our FGR2R data.

6.1 Comparisons

Quantitative results. Table 1 shows the results
of the four agents in unseen environments. The
performance of the imitation learning agents (Row
1–3) with our sub-instruction attention module out-
performs the base agents. In terms of the success
rate, the Seq2Seq, Speaker-Follower and the Self-
Monitoring agents achieve an absolute increase of
1.1%, 4.9% and 1.7% respectively. The improve-
ment is consistent in most of the other metrics, e.g.
for the Self-Monitoring agent, its SPL improves
from 0.30 to 0.32 and its nDTW score grows from
0.58 to 0.61. The overall improvement on Path
Length and nDTW score for the first three agents
indicates that using sub-instructions improves the
agent’s ability to navigate on the described path. As
for the Back-Translation agent (Row 4), the perfor-
mance with sub-instruction attention is very similar
to the baseline, one possible reason could be that
the introduction of sub-instruction shifting perturbs
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# Model with sub-instructions SR TP TN FP FN Accuracy Precision Recall F1-Score
1 Seq2Seq (Anderson et al., 2018b) 22.9 608 36344 1602 4796 0.852 0.275 0.113 0.160
2 Speaker-Follower (Fried et al., 2018) 34.7 963 9966 452 4878 0.672 0.681 0.165 0.265
3 Self-Monitoring (Ma et al., 2019a) 42.4 1130 10619 363 4686 0.699 0.757 0.194 0.309
4 Back-Translation (Tan et al., 2019) 46.7 1256 8086 303 4765 0.648 0.806 0.209 0.331

Table 2: Statistics of the shifting signal on the unseeen validation set.

the learning of action during for the reinforcement
learning scheme which the agent could deviate far
from the ground-truth path.

Learning when the agent needs to read a new
sub-instruction is a difficult task, the same view-
point in a specific environment can be considered
as a shifting point or not depending on the sub-
instruction that the agent follows. In Table 2, we
show the confusion matrix of the shifting signals
and we compute accuracy, precision, recall and F1-
score to evaluate the performance of our proposed
shifting module. Results show that all the agents
have huge room for improvement for shifting, since
the best F1-Score obtained is only 0.331. But we
can see from the four agents that, as the success
rate increases, the precision, recall and F1-score
also improve. We propose to consider these results
to be useful baselines for future methods that apply
sub-instructions. Notice that agents visit a different
number of viewpoints due to the maximum number
of steps allowed, the use of panoramic action space
and the ability to stop. In the case of Seq2Seq
model, since the agent is not using a panoramic
view, it performs many actions to change the cam-
era orientation.
Qualitative performance. We illustrate a quali-
tative example in Figure 3 to show how the sub-
instruction module works in the agent. In the exam-
ple, both the baseline model and the model with the
sub-instruction module completes the task success-
fully. However, unlike the baseline model which
fails to follow the instruction and stops within 3
meters of the target by chance, our model correctly
identifies the completeness of each sub-instruction,
guides the agent to walk on the described path and
eventually stops right at the target position. We
refer the readers to Supplementary Materials for
visualization of more trajectories.

6.2 Traceability

With the FGR2R data, we reveal the navigation
process of the agent working on specific sub-
instructions. For each sub-instruction, we mea-
sure the similarity between the ground-truth path

rank d nDTW f s Representative sub-instruction
1 2.22 0.72 7 2.8 head down the stair
2 2.52 0.57 5 4.6 wait near the first open door
3 2.58 0.73 8 2.5 go into the bedroom
4 2.66 0.73 21 2.6 exit the bedroom
5 2.77 0.65 10 2.1 turn right at the entry
...

...
...

...
...

...
96 6.33 0.55 35 3.8 stop behind the table at the far end
97 6.56 0.43 8 2.0 walk past the sink, fridge, oven
98 6.86 0.46 11 3.2 go through the wooden archway
99 6.88 0.51 20 3.0 walk along the grass until you reach ...
100 7.36 0.52 38 3.4 walk into the room which have a ...

Table 3: Performance on different sub-instruction clus-
ters in validation unseen split. d, f and s denote the
mean distance, the frequency and the mean number of
viewpoints of a cluster.

and the actual trajectory using nDTW as well as
the distance between the end viewpoint of the sub-
instruction and the predicted shift viewpoint. As
a result, we can estimate the performance of the
agent in each sub-task.

We cluster the sub-instructions into 100 clusters
using complete-linkage hierarchical agglomerative
clustering algorithm. Instead of using a standard
metric of distance such as the Euclidean distance,
we compute a similarity matrix of sub-instructions
using the BLEU-4 metric. We experiment with the
Self-Monitoring agent on validation unseen split
and present a summary of the top five and the bot-
tom five clusters ranked by the mean distance, as
shown in Table 3.

We can see from the table that the clusters which
the agent performs better consist of simple and di-
rect sub-instructions which refer to a single action,
such as “head down the stair” and “exit the bed-
room”. On the other hand, with sub-instructions
that refer to specific objects such as “walk past
the sink, fridge, oven” or express an action which
is conditioned on the completion of another ac-
tion, such as “walk along the grass until you reach
...”, the agent deviates far from the described path.
Moreover, the ranking does not show a strong cor-
relation with the frequency or the number of view-
points of each sub-instruction. These results sug-
gest that agent is incapable of understanding com-
plex natural language instructions or ground to spe-
cific objects with a high accuracy.
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7 Conclusion

In this paper we introduce a novel sub-instruction
module and the Fine-Grained R2R Dataset to en-
courage the learning of correspondences between
vision and language. The sub-instruction mod-
ule enables the agent to attend to one particu-
lar sub-instruction at each time-step and decides
whether the agent needs to proceed to the next sub-
instruction. Our experiments show that by imple-
menting the sub-instruction module in state-of-the-
art agents, most of the agents are able to follow the
given instruction more closely and achieve better
performance. We also show that, with the sub-
instruction annotations, the entire navigation trajec-
tory is trackable. We believe that the idea of sub-
instruction module and a sub-instruction annotated
dataset can benefit future studies in the VLN task
as well as other vision-and-language problems.
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A Appendices

A.1 FGR2R Dataset

Data collection. We build a web interface to col-
lect FGR2R data using Amazon Mechanical Turk
(AMT), as shown in Figure 5. In the interactive
window, each viewpoint on the ground-truth path
is highlighted with a large cylinder and an index of
the viewpoint. Besides each sub-instruction, there
is a drop-down list for assigning the start and end
viewpoints of the corresponding sub-path. The
annotators can click in the interactive window to
freely move on the ground-truth path and freely ro-
tate the camera to observe its surroundings. Before
the start of labelling, we first ask the annotators
to watch the automatic trajectory run-through to
get familiar with the environment. Then, we ask
them to partition the ground-truth path and assign
a sub-instruction to those partitions. Once the la-
belling is completed, a function will automatically
check if the annotation disobeys any rules (e.g., the
start viewpoint of a sub-path should be the same as
the end viewpoint of the previous sub-path) before
approval for submission.
Annotator qualification. To ensure the quality of
the annotation returned by the annotators, we anno-
tated a subset of 300 samples as ground-truths and
we exam each annotator with 15 ground-truth sam-
ples before approval for labelling. In total, there
are 126 participants. We reject workers with a low
agreement to the ground-truth. The qualification
process leaves us 58 qualified annotators to com-
plete the annotation task.
Dataset statistics. Apart from the FGR2R statis-
tics mentioned in the paper, we present the dis-
tribution of sub-instructions in an instruction and
the distribution of viewpoints for a sub-instruction
in Figure 4. As we can see, most of the instruc-
tions are broken down into more than one sub-
instruction and the frequency of more than seven
sub-instructions is very low. Also, notice that about
15% of the sub-instructions are paired with only
one viewpoint, as a result of the sub-instructions
that only refer to camera rotation such as “rotate
slightly to the left” or stopping command such as

Figure 4: Distribution of sub-instructions in an instruc-
tion and distribution of viewpoints for a sub-instruction
in the FGR2R dataset.

“wait by the sink”.
Training with FGR2R. During training, consider
that more coherent motion could be beneficial for
the agent to learn the textual-visual correspon-
dence. We combine the sub-instructions which
are only paired with one viewpoint to the next sub-
instruction (and combine with the previous sub-
instruction if it is the last one). The sub-instructions
in validation sets remain in their original format so
that the ground-truth trajectories are kept unknown.
In this work, we only enable the sub-instruction
module with a single step uni-directional shift-
ing, which agrees with the observation that in-
structions and trajectory in the R2R dataset are
monotonically aligned. However, different rules
could be designed. For example, one can allow the
agent to shift for more than one step or enable the
agent to read the previous sub-instructions once it
backtracks to the visited viewpoint. Our proposed
FGR2R make all these research directions possible.
We leave these ideas to future research.

A.2 Extension to Fine-Grained R4R
R2R to R4R The R4R dataset is created by con-
catenating two trajectories in R2R, which the first
path ends within three meters from the start of the
second path (Jain et al., 2019). We enrich the R4R
data with sub-instructions annotations by joining
two sequences of sub-instructions corresponding to
the two trajectories. However, for some trajectories
in R4R, there exist several additional viewpoints
for connecting the two paths, which has no sub-
instruction annotation. Therefore, we assign those
additional viewpoints to the first sub-instruction of
the second path.
Evaluation We further experimented the four
agents on the R4R dataset, with and without sub-
instruction modules. As shown in Table 4, the
performance of the first three agents are very sim-
ilar. For agents with sub-instruction modules, the
SR of Seq2Seq and Speaker-Follower are slightly
lower, whereas the SR of Self-Monitoring agent
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R4R Validation Unseen

# Model PL NE ↓ OSR ↑ SR ↑ SPL ↑ nDTW ↑

1 Seq2Seq (Anderson et al., 2018b) 9.40 (10.85) 9.35 (9.20) 32.8 (35.5) 21.2 (22.3) 0.11 (0.11) 0.42 (0.43)
2 Speaker-Follower (Fried et al., 2018) 26.64 (25.68) 8.46 (8.09) 42.1 (40.7) 26.4 (27.4) 0.12 (0.13) 0.41 (0.41)
3 Self-Monitoring (Ma et al., 2019a) 28.01 (23.41) 8.07 (8.46) 46.2 (40.6) 27.4 (25.8) 0.10 (0.09) 0.42 (0.41)
4 Back-Translation (Tan et al., 2019) 7.78 (39.66) 9.33 (7.90) 38.1 (53.5) 21.5 (31.2) 0.17 (0.14) 0.48 (0.39)

Table 4: Comparison on the R4R validation unseen split with and without the sub-instruction module. Values not
in brackets are with sub-instructions, values in brackets are without sub-instructions.

Figure 5: The web interface for FGR2R data collection. The displayed photo of the environment is an interactive
window, cylinders are the viewpoints on the ground-truth path. “Play / Replay” shows an automatic run-through
of the entire trajectory. “Return” brings the agent back to the first viewpoint. “Instruction #” switches among the
three instructions that described the same path. “Submit” checks and submits the annotations.

is 1.6% higher. As for the Back-Translation, the
agent experiences a large OSR and SR drop after
applying sub-instructions, but the SPL and nDTW
are increased by 3% and 9%. This result indicates
that although the agent with sub-instruction mod-
ules has a lower chance to reach the target (stop
within 3m), it follows the instruction much better.

However, we argue that a large performance gain
has not been obtained in R4R mainly for two rea-
sons: (1) The additional viewpoints created for
linking the two trajectories have no corresponding
sub-instructions. Hence, agents trained to follow
each sub-instructions strictly have no guidance for
those steps. (2) The last sub-instruction of the first
trajectory is very confusing to the agent, as it usu-
ally refers to the STOP action, but the navigation

does not end. This prevents the agent from learn-
ing a good stopping policy since the ground-truth
action requires the agent to keep moving.

In conclusion, we believe that it is inappropriate
to apply FGR2R data directly for FGR4R task. To
obtain FGR4R data, our suggestion is to remove the
final sub-instruction about the STOP action from
the first trajectory, and use a Speaker module (Fried
et al., 2018) to generate a new sub-instruction for
the additional viewpoints for linking the two trajec-
tories. We will leave this idea for future work.

A.3 Visualization of Navigation
We visualize the navigation trajectories of the Self-
Monitoring agent with and without our proposed
sub-instruction module in the following pages.
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Sub-instruction	1:	Go	in	the	doorway	on	the	left.
.

Instruction:	
Go	in	the	doorway	on	the	left.	Turn	right	into	the	hallway	and	stop
by	the	front	door.

Sub-instruction	2:	Turn	right	into	the	hallway.

Sub-instruction	3:	And	stop	by	the	front	door.

Error:	5.11m					nDTW:	0.61					Stop:	by	predicting	a	STOP	action

Error:	0.00m					nDTW:	1.00					Stop:	by	predicting	a	STOP	action

(a)	Self-Monitoring	agent	without	sub-instruction	attention

(b)	Self-Monitoring	agent	with	sub-instruction	attention

Figure 6: A positive example of sub-instruction aware navigation. Without sub-instruction module, the agent wan-
ders between rooms and decides to stop at a wrong location. With sub-instruction module, the agent successfully
leaves the room, finds the way to the target and stops at the right location.
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Sub-instruction	1:	Take	a	right.

Instruction:	
Take	a	right	and	then	take	a	left	and	walk	out	of	the	bathroom.	Wait
on	the	carpet	in	the	room	to	the	left.

Sub-instruction	2:	And	then	take	a	left.

Sub-instruction	3:	And	walk	out	of	the	bathroom.

Error:	2.81m					nDTW:	0.68					Stop:	by	reaching	the	maximum	steps

Error:	0.00m					nDTW:	1.00					Stop:	by	predicting	a	STOP	action

Sub-instruction	4:	Wait	on	the	carpet	in	the	room	to	the	left.

(a)	Self-Monitoring	agent	without	sub-instruction	module

(b)	Self-Monitoring	agent	with	sub-instruction	module

Figure 7: A positive example of sub-instruction aware navigation. Without sub-instruction module, the agent fails
to follow the instruction and stops next to the target by chance. With sub-instruction module, the agent navigates
on the described path and eventually stops right at the target location.
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Sub-instruction	1:	With	the	door	lead	outside	behind	you,	walk
forward.
.

Instruction:	
With	 the	 door	 leading	outside	behind	you,	walk	 forward	 and	 turn
left	to	go	down	the	corridor	with	the	eye	chart	towards	your	right.
Continue	 past	 the	 half	 bath	 on	 your	 left	 and	 the	 kitchen	 on	 your
right,	 then	 turn	 left.	Enter	 the	bedroom	ahead	of	your	 through	 the
leftmost	door	on	the	opposite	wall.

Sub-instruction	2:	And	turn	left	to	go	down	the	corridor	with	the
eye	chart	towards	your	right.

Sub-instruction	3:	Continue	past	the	half	bath	on	your	left	and	the
kitchen	on	your	right.

Error:	1.40m					nDTW:	0.85					Stop:	by	reaching	the	maximum	steps

Error:	0.00m					nDTW:	0.95					Stop:	by	predicting	a	STOP	action

Sub-instruction	4:	Then	turn	left.

(a)	Self-Monitoring	agent	without	sub-instruction	attention

(b)	Self-Monitoring	agent	with	sub-instruction	attention

Text

Sub-instruction	5:	Enter	the	bedroom	ahead	of	you	through	the
leftmost	door	on	the	opposite	wall.

Figure 8: A positive example of sub-instruction aware navigation. Without sub-instruction module, the agent loops
around the target and doesn’t know how to stop. With sub-instruction module, the agent falls into the same loop
but quickly escapes from it and stops at the correct location.
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Sub-instruction 1: Turn right and go up the wood stair.
.

Instruction: 
Turn right and go up the wood stairs. At the top walk forward and turn
right. Then walk halfway up the stairs covered in carpet and stop.

Sub-instruction 2: At the top walk forward.

Sub-instruction 3: And turn right.

Error: 0.61m     nDTW: 0.68     Stop: by reaching the maximum steps

Error: 0.00m     nDTW: 1.00     Stop: by predicting a STOP action

Sub-instruction 4: Then walk halfway up the stairs covered in
carpet.

(a) Self-Monitoring agent without sub-instruction attention

(b) Self-Monitoring agent with sub-instruction attention

Text

Sub-instruction 5: And stop.

Figure 9: A positive example of sub-instruction aware navigation. Without sub-instruction module, the agent loops
around the target and doesn’t know how to stop. With sub-instruction module, the agent navigates on the described
path and eventually stops right at the target location.
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Sub-instruction	1:	Turn	right	and	go	down	the	long	hall.
.

Instruction:	
Turn	right	and	go	down	the	long	hall.	Turn	left	toward	the	bar.	Turn
right	into	the	kitchen	and	stop	by	the	fridge.

Sub-instruction	2:	Turn	left	toward	the	bar.

Sub-instruction	3:	Turn	right	into	the	kitchen.

Error:	0.00m					nDTW:	0.94					Stop:	by	predicting	a	STOP	action

Error:	3.95m					nDTW:	0.82					Stop:	by	predicting	a	STOP	action

Sub-instruction	4:	And	stop	by	the	fridge.

(a)	Self-Monitoring	agent	without	sub-instruction	attention

(b)	Self-Monitoring	agent	with	sub-instruction	attention

Text

Figure 10: A negative example of sub-instruction aware navigation. Without sub-instruction module, the agent
completes the navigation task without making any mistake. With sub-instruction module, although the agent
performs sub-instruction shifting perfectly, it overlooks the target object and walks away from the target, eventually
decides to stop at a wrong location.


