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Abstract

We propose a generative framework for joint
sequence labeling and sentence-level classi-
fication. Our model performs multiple se-
quence labeling tasks at once using a single,
shared natural language output space. Unlike
prior discriminative methods, our model natu-
rally incorporates label semantics and shares
knowledge across tasks. Our framework is
general purpose, performing well on few-
shot, low-resource, and high-resource tasks.
We demonstrate these advantages on popular
named entity recognition, slot labeling, and
intent classification benchmarks. We set a
new state-of-the-art for few-shot slot label-
ing, improving substantially upon the previ-
ous 5-shot (75.0% ! 90.9%) and 1-shot
(70.4% ! 81.0%) state-of-the-art results. Fur-
thermore, our model generates large improve-
ments (46.27% ! 63.83%) in low-resource
slot labeling over a BERT baseline by incor-
porating label semantics. We also maintain
competitive results on high-resource tasks, per-
forming within two points of the state-of-the-
art on all tasks and setting a new state-of-the-
art on the SNIPS dataset.

1 Introduction

Transfer learning has been the pinnacle of recent
successes in natural language processing. Large
pre-trained language models are powerful back-
bones that can be fine-tuned for different tasks to
achieve state-of-the-art performance in wide-raging
applications (Peters et al., 2018; Devlin et al., 2019;
Radford et al., 2019; Lewis et al., 2019; Yang et al.,
2019; Liu et al., 2019).

While these models can be adapted to perform
many tasks, each task is often associated to its own
output space, which limits the ability to perform
multiple tasks at the same time. For instance, a
sentiment analysis model is normally a binary clas-
sifier that decides between class labels “positive”

and “negative”, while a multi-class entailment sys-
tem classifies each input as “entail”, “contradict”,
or “neither”. This approach presents difficulty
in knowledge sharing among tasks. That is, to
train the model for a new task, the top-layer classi-
fier is replaced with a new one that corresponds to
novel classes. The class types are specified implic-
itly through different indices in the new classifier,
which contain no prior information about the la-
bel meanings. This discriminative approach does
not incorporate label name semantics and often re-
quires a non-trivial amount of examples to train
(Lee et al., 2020). While this transfer learning ap-
proach has been immensely successful, a more effi-
cient approach should incorporate prior knowledge
when possible.

Conditional generative modeling is a natural way
to incorporate prior information and encode the out-
put of multiple tasks in a shared predictive space.
Recent work by Raffel et al. (2019) built a model
called T5 to perform multiple tasks at once using
natural language as its output. The model differ-
entiates tasks by using prefixes in its input such as

“classify sentiment:”, “summarize:”, or “translate
from English to German:” and classify each input
by generating natural words such as “positive” for
sentiment classification or “This article describes
...” for summarization.

However, the appropriate output format for im-
portant sequence labeling applications in NLP, such
as named entity recognition (NER) and slot label-
ing (SL) is not immediately clear. In this work, we
propose an augmented natural language format for
sequence labeling tasks. Our format locally tags
words within the sentence (Figure 1) and is eas-
ily extensible to sentence-level classification tasks,
such as intent classification (IC).

Our highlighted contributions and main findings
are as follows:
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(( AddToPlaylist )) Add [ Kent James | artist ] to the [ Disney | playlist ] soundtrack. 

Sentence Add Kent James to the Disney soundtrack
Slot labels O B-artist I-artist O O B-playlist O

Intent = AddToPlaylist

Figure 1: The conversion between the canonical BIO
tagging format and our augmented natural language for-
mat.

1) We propose an effective new output format to
perform joint sequence labeling and sentence
classification through a generation framework.

2) We demonstrate the ability to perform mul-
tiple tasks such as named entity recognition,
slot labeling and intent classification within a
single model.

3) Our approach is highly effective in low-
resource settings. Even without incorporat-
ing label type semantics as priors, the genera-
tive framework learns more efficiently than a
token-level classification baseline. The model
improves further given natural word labels,
indicating the benefits of rich semantic infor-
mation.

4) We show that supervised training on related
sequence labeling tasks acts as an effective
meta-learner that prepares the model to gen-
erate the appropriate output format. Learning
each new task becomes much easier and re-
sults in significant performance gains.

5) We set a new state-of-the-art for few-shot slot
labeling, outperforming the prior state-of-the-
art by a large margin.

6) We plan to open source our implementation.
Please visit https://arxiv.org/abs/2009.
13272 for the release updates.

2 Model

Sequence Labeling as Generation

Most work on sequence labeling uses token-level
classification frameworks. That is, given a list of to-
kens ` = {`i}ni=1, we perform a prediction on every
token `i to obtain y0 = {y0i}ni=1 = {f(`i; `)}ni=1
where f(·) is a token-level prediction function. The
prediction is accurate if it matches the original se-
quence label y = {yi}ni=1.

In contrast to this convention, we frame sequence
labeling as a conditional sequence generation prob-
lem where given the token list `, we generate an out-
put list o = g(`) where g is a sequence-to-sequence

model. A “naive” formulation for this task would
be to directly generate o = y given `. However,
this approach is prone to errors such as word mis-
alignment and length mismatch (see supplementary
materials Section A.2 for discussion).

We propose a new formulation for this gener-
ation task such that, given the input sequence `,
our method generates output o in augmented nat-

ural language. The augmented output o repeats
the original input sequence ` with additional mark-
ers that indicate the token-spans and their associ-
ated labels. More specifically, we use the format
[ `j , . . . , `j+t í L ] to indicate that the token se-
quence `j , . . . , `j+t is labeled as L.

Fig. 1 depicts the proposed format and its equiv-
alent canonical BIO format for the same input sen-
tence. The conversion between the BIO format and
our augmented natural language format is invert-
ible without any information loss. This is crucial
so that the generated output from model predic-
tion can be converted back for comparison without
uncertainty.

There are other formats which can encapsulate
all the tagging information but are not invertible.
For instance, outputting only the token spans of
interest with tagging patterns [ `j , . . . , `j+t í L ]
without repeating the entire sentence results in the
invertibility breaking down when there are dupli-
cate token spans with different labels. We discuss
this further in the appendix Section A.3.

Joint Sequence Classification and Labeling

Our sequence to sequence approach also supports
joint sentence classification and sequence labeling
by incorporating the sentence-level label in the aug-
mented natural language format. In practice, we
use the pattern (( sentence-level label )) in the be-
ginning of the generated sentence, as shown in Fig.
1. The use of double parentheses is to prevent con-
fusion with a single parenthesis that can occur in
the original word sequence `.

Training and Evaluation

We train our model by adapting the pre-trained T5
with the sequence to sequence framework. Addi-
tionally, we prefix the input with task descriptors
in order to simultaneously perform multiple classi-
fication and labeling tasks, similar to the approach
by Raffel et al. (2019). This results in a seamless
multi-task framework, as illustrated in the top part
of Fig. 2. To evaluate, we convert the generated
output back to the canonical BIO format and calcu-
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He is [ John Wethy | person ] from [ NBC News | org ]

O B-artist I-artist O O B-playlist O

Add Kent James to the Disney soundtrack He is John Wethy from NBC News

(( AddToPlaylist )) Add [ Kent James | artist ] to the [ Disney | playlist ] 

 Task 1: Add Kent James to the Disney soundtrack. Task 2: He is John Wethy from NBC News

Task 1: Slot Labeling and Intent Classification Task 2: Named entity recognition
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Token-level classifier for task 2
Transformers

Token-level classifier for task 1
Transformers

O O B-person I-person O B-org I-org 

Figure 2: Comparison between our generative-style sequence labeling model (top) and the conventional token-level
classification model (bottom).

late the F1 score for sequence labeling or accuracy
for sentence classification.

Natural Labels

Labels are associated to real-world concepts that
can be described through natural words. These
words have rich information, but are often ig-
nored in traditional discriminative approaches.
In contrast, our model naturally incorporate la-
bel semantics directly through the generation-as-
classification approach.

We perform label mapping in order to match the
labels to its natural descriptions and use the natu-
ral labels in the augmented natural language out-
put. Our motivation is as follows: (1) Pre-trained
conditional generation models which we adapt on
have richer semantics embedded in natural words,
rather than dataset-specific label names. For in-
stance, “country city state” contains more semantic
information compared to “GPE”, which is an origi-
nal label in named entity recognition tasks. Using
natural labels should allow the model to learn the
association between word tokens and labels more
efficiently, without requiring many examples. (2)
Label knowledge can be shared among different
tasks. For instance, after learning how to label
names as “person”, given a new task in another
domain which requires labeling “artist”, the model
can more easily associate names with “artist” due
to the proximity of “person” and “artist” in embed-
dings. This is not the case if the concept of “person”
was learned with other uninformative words.

3 Related Work

Sequence to sequence learning has various appli-
cations including machine translation (Sutskever
et al., 2014; Bahdanau et al., 2015), language mod-
eling (Radford et al., 2018; Raffel et al., 2019),

abstractive summarization (Rush et al., 2015), gen-
erative question answering (Dong et al., 2019), to
name a few. However, the sequence-to-sequence
framework is often not a method of choice when
it comes to sequence labeling. Most models for
sequence labeling use the token-level classification
framework, where the model predicts a label for
each element in the input sequence (Baevski et al.,
2019; Li et al., 2019b; Chen et al., 2019). While
select prior work adopts the sequence-to-sequence
method for sequence labeling (Chen and Moschitti,
2018), this approach is not widely in use due to the
difficulty of fixing the output length, output space,
and alignment with the original sequence.

Multi-task and multi-domain learning often ben-
efit sequence labeling performance (Changpinyo
et al., 2018). The archetypal multi-task setup
jointly trains on a target dataset and one or more
auxiliary datasets. In the cross lingual setting, these
auxiliary datasets typically represent high-resource
languages (Schuster et al., 2018; Cotterell and Duh,
2017). While in a monolingual scenario, the aux-
iliary datasets commonly represent similar, high-
resource tasks. Examples of similar multi-task
pairs include NER and slot labeling (Louvan and
Magnini, 2019) as well as dialogue state tracking
and language understanding (Rastogi et al., 2018).

A recent series of works frame natural language
processing tasks, such as translation, question an-
swering, and sentence classification, as conditional
sequence generation problems (Raffel et al., 2019;
Radford et al., 2019; Brown et al., 2020). By unify-
ing the model output space across tasks to consist
of natural language symbols, these approaches re-
duce the gap between language model pre-training
tasks and downstream tasks. Moreover, this frame-
work allows acquisition of new tasks without any
architectural change. The GPT-3 model (Brown
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Task & Dataset
Intent Clas. Slot Labeling

SNIPS ATIS SNIPS ATIS CoNLL Onto
SL

/IC
Bi-Model (Wang et al., 2018) 98.99 96.89

Joint BERT (Chen et al., 2019) 98.60 97.50 97.00 96.10
ELMO+BiLSTM (Siddhant et al., 2019) 99.29 97.42 93.90 95.62

N
ER

Cloze-CNN (Baevski et al., 2019) 93.50

BERT-MRC (Li et al., 2019a) 93.04 91.11
BERT-MRC + DSC (Li et al., 2019b) 93.33 92.07

BERT Base (Devlin et al., 2019) 92.40 88.95

Ours: Individual 99.00 96.86 97.43 96.13 90.70 90.24

Ours: SNIPS+ATIS 99.29 97.20 97.21 95.83
Ours: CoNLL+Ontonotes 91.48 89.52
Ours: SNIPS+ATIS+CoNLL+Ontonotes 99.14 97.08 96.82 96.65 91.48 89.67

Table 1: Results of our models trained on combinations of datasets. Results for Ours: individual are from models
trained on a single respective dataset. We underline scores of our models that exceed previous state-of-the-art
results in each domain. Scores in boldface are the best overall scores among our models, or among the baselines.
We use the boldface and underline notation for the rest of the paper.

et al., 2020) demonstrates the promise of this frame-
work for few-shot learning. Among other suc-
cesses, GPT-3 outperforms BERT-Large on the
SuperGLUE benchmark using only 32 examples
per task. To the best of our knowledge, we are the
first to apply this multi-task conditional sequence
generation framework to sequence labeling.

The conditional sequence generation framework
makes it easy to incorporate label semantics, in the
form of label names such as departure city, exam-
ple values like San Francisco, and descriptions like

“the city from which the user would like to depart
on the airline”. Label semantics provide contex-
tual signals that can improve model performance
in multi-task and low-resource scenarios. Multiple
works show that conditioning input representations
on slot description embeddings improves multi-
domain slot labeling performance (Bapna et al.,
2017; Lee and Jha, 2019). Embedding example
slot values in addition to slot descriptions yields fur-
ther improvements in zero-shot slot labeling (Shah
et al., 2019). In contrast to our work, these ap-
proaches train slot description and slot value em-
bedding matrices, whereas our framework can in-
corporate these signals as natural language input
without changing the network architecture.

4 Experimental Setup and Results

4.1 Data

Datasets We use popular benchmark data SNIPS
(Coucke et al., 2018) and ATIS (Hemphill et al.,

1990) for slot labeling and intent classification.
SNIPS is an SLU benchmark with 7 intents and
39 distinct types of slots, while ATIS is a bench-
mark for the air travel domain (see appendix A.4
for details). We also evaluate our approach on
two named entity recognition datasets, Ontonotes
(Pradhan et al., 2013) and CoNLL-2003 (Sang and
Meulder, 2003).

Construction of Natural Labels We preprocess
the original labels to natural words as follows. For
Ontonotes and CoNLL datasets, we transform the
original labels via mappings detailed in Table 9 and
5 in the appendix. For instance, we map “PER” to
“person” and “GPE” to “country city state”. For
SNIPS and ATIS, we use the following rules to
convert intent and slot labels: (1) we split words
based on “.”, “ ”, “/”, and capitalized letters. For
instance, we convert “object type” to “object type”
and “AddToPlaylist” to “add to playlist”. These
rules result in better tokenization and enrich the
label semantics. We refer to these as the natural

label setting and use is as our default.

4.2 Multi-Task Sequence Classification and

Slot Labeling

We first demonstrate that our model can perform
multiple tasks in our generative framework and
achieve highly competitive or state-of-the-art per-
formance. We consider 4 sequence labeling tasks
and 2 classification tasks: NER on Ontonotes and
CoNLL datasets; and slot labeling (SL) and in-
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tent classification (IC) on SNIPS and ATIS dialog
datasets. For comparison, we provide baseline re-
sults from the following models:

SL and IC: Bi-Model (Wang et al., 2018) uses
two correlated bidirectional LSTMs to perform
both IC and SL. Joint BERT (Chen et al., 2019)
performs joint IC and SL with a sequential classi-
fier on top of BERT, where the classification for
the start-of-sentence token corresponds to intent
class. ELMO+Bi-LSTM (Siddhant et al., 2019)
uses a Bi-LSTM with CRF as a classifier on top of
pre-trained ELMO (Peters et al., 2018).

NER: Cloze-CNN (Baevski et al., 2019) fine-
tunes a Bi-LSTM with CRF model Peters et al.
(2018) on a pre-trained model with a cloze-style
word reconstruction task. BERT MRC (Li et al.,
2019a) performs sequence labeling in a question an-
swering model to predict the slot label span. BERT

MRC + Dice Loss (Li et al., 2019b) improves upon
BERT MRC with a dice loss shown to be suitable
for data with imbalanced labels. BERT (Devlin
et al., 2019) refers to a token-level classification
with BERT pre-trained model. Note that the re-
sults for BERT with Ontonotes are from our own
implementation.

In Table 1, we report a summary of the results
for our method and the baselines. Our proposed
model achieves highly competitive results for ATIS,
Ontonotes, and CoNLL datasets, as well as state-
of-the-art slot labeling and intent classification per-
formance on the SNIPS dataset. Unlike all the
baseline models, which can perform a single task
on a specific dataset, our model can perform all
the tasks considered at once (last row of Table 1).
For the multi-task models, our results show that
different sequence labeling task can help mutually
benefit each other, where ATIS slot labeling re-
sult improves from 96.13 to 96.65 and CoNLL im-
proves from 90.70 to 91.48. While there are other
approaches that perform better than our models in
some tasks, we highlight the simplicity of our gen-
eration framework which performs multiple tasks
seamlessly. This ability helps the models transfer
knowledge among tasks with limited data, which
are demonstrated through the rest of the paper.

4.3 Limited Resource Scenarios and

Importance of Label Semantics

In this section, we show that our model can use
the semantics of labels to learn efficiently, which is
crucial for scenarios with limited labeled data. To

demonstrate this effect, we use our model with the
following variants of labels which differ semantic
quality: (1) natural label, (2) original label and
(3) numeric label.

The natural label version is our default setting
where we use labels expressed in natural words.
The original label case uses labels provided by the
datasets, and the numeric label case uses numbers
0, 1, 2, ... as label types. In the numeric version,
the model does not have pre-trained semantics of
the label types and has to learn the associations
between the labels and the relevant words from
scratch. We also compare with the BERT token-

level classification model. Similar to the numeric
label case, the label types for BERT do not ini-
tially have associated semantics and are implicit
through indices in the classifier weights. We use
the SNIPS dataset to conduct our experiments due
to its balanced domains (see Table 7 in Appendix).
We experiment with very limited resource scenar-
ios where we use as low as 0.25% of training data,
corresponding to roughly one training sentence per
label type on average.

Figure 3a shows the sequence labeling perfor-
mance for varying amount of training data (see
Table 10 in the appendix for numeric results). We
observe that label semantics play a crucial role
in the model’s ability to learn effectively for lim-
ited resource scenarios. Our model with natural
labels outperforms all other models, achieving an
F1 score of 60.4± 2.7% with 0.25% training data,
and giving a slight boost over using original la-
bels (57.5 ± 2.4%). We believe that the improve-
ment can be more dramatic in other datasets where
the original labels have no meanings (such as in
the numeric case), are heavily abbreviated, or con-
tain rare words. With the numeric model, the
performance suffers significantly in low-resource
settings, achieving only 50.1 ± 5.3%, or 10.3%
lower than the natural label model, with 0.25%
data. This result further supports the importance of
label semantics in our generation approach. Inter-
estingly, we also observe that the numeric model
still outperforms BERT token-level classification
(44.7± 6.4%), where neither model contains prior
label semantics. This result indicates that even in
the absence of label meanings, the generation ap-
proach seems more suitable than the token-level
framework.
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(a) (b) (c)

Figure 3: Model performance on limited amount of training data. The error bars indicate the standard deviation
over 4 random trials. Ours-o is our model with its original labels. Ours-n is our model with numeric labels.

4.4 Teaching Model to Generate via

Supervised Transfer Learning

While we train our model in limited data scenarios,
we are asking the model to generate a new format
of output given small amount of data. This is chal-
lenging since a sequence generation framework typ-
ically requires large amount of training (Sutskever
et al., 2014). Despite this challenge, our model is
able to outperform the classical token-level frame-
work with ease. This section explores a clear un-
tapped potential – by teaching our model how to
generate the augmented natural language format be-
fore adapting to new tasks, we show that the perfor-
mance on limited data significantly improves. This
result contrasts with the BERT token-level model
where supervised transfer learning hurts overall per-
formance compared to BERT’s initial pre-training
due to possible overfitting.

To conduct this experiment, we train our model
with the Ontonotes NER task in order to teach it the
expected output format. Then, we adapt it on an-
other task (SNIPS) with limited data, as in Section
4.3. We compare the results with the token-level
BERT model, which also uses the BERT model
trained on Ontonotes for supervised pre-training.
We demonstrate the results in Figure 3b as well as
highlight the improvement due to supervised pre-
training in Figure 3c. We also provide full numeric
results in the appendix Table 11 for reference.

Our model demonstrates consistent improve-
ment, achieving an F1 score of 63.8 ± 2.6% us-
ing 0.25% of the training dataset, compared to
60.4± 0.27% without supervised transfer learning.
The improvement trend also continues for other
data settings, as shown in Figure 3c. The benefits
from transfer learning is particularly strong for the
numeric label model, achieving 57.4± 2.9% com-
pared to 50.1± 5.3% for 0.25% data. This results
suggests that the initial knowledge from supervised
pre-training helps the model associate its labels

(without prior semantics) to the associated words
more easily.

The supervised transfer learning can also be seen
as a meta-learner, which teaches the model how to
perform sequence labeling in the generative style.
In fact, when we investigate the model output with-
out adapting to the SNIPS dataset, in addition to
the output having the correct format, it already con-
tains relevant tagging information for new tasks.

For instance, a phrase “Onto jerry’s Classical
Moments in Movies” from the SNIPS dataset re-
sults in the model output “Onto jerry’s [ Classical
Moments in Movies í work of art ]”. This predic-
tion closely matches the true label “Onto [ jerry’s
í playlist owner ] [ Classical Moments in Movies
í playlist ]” where the true class of “Classical Mo-
ments in Movies” is playlist. Intuitively, the clas-
sification as work of art is in agreement with the
true label playlist, but simply needs to be refined
to match the allowed labels for the new task.

In contrast to our framework where the super-
vised transfer learning helps teach the model an
output style, the transfer learning for the token-
level classification simply adapts its weights and
retains the same token-level structure (albeit with a
new classifier). We observe no significant improve-
ment from supervised pre-training for the BERT
token-level model, which obtains an F1 score of
46.3 ± 3.6% compared to 44.7 ± 6.4% without
supervised pre-training (with 0.25% SNIPS data).
The improvements are also close to zero or nega-
tive for higher data settings (Figure 3c), suggesting
that the pre-training of the token-level classification
might overfit to the supervised data, and results in
lower generalization on other downstream tasks.
Overall, the final result on the BERT model lags
far behind our framework, performing 17.5% lower
than our model’s score for 0.25% training data.

In addition, our model with numeric labels per-
forms much better than the BERT token-level
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model and further highlights the suitability of our
generative output format for sequence labeling, re-
gardless to the label semantics. Possible explana-
tions are that the sequence to sequence label is less
prone to overfitting compared to the classification
framework. It could also be the case that locally
tagging words with labels in the word sequence
helps improve attention within the transformers
model, and improve robustness to limited data.

4.5 Few-Shot Sequence Labeling

4.5.1 Few-Shot Learning

In few-shot learning, we seek to train models such
that given a new task, the models are able to learn
efficiently from few labels. Different tasks are sam-
pled from various data domains which differ in
terms of allowed labels and other nuances such as
input styles.

We define a data domain D as a set of labeled
examples D = {(xi, yi)}ND

i=1 which has its set of
allowed label types YD 3 yi. Few-shot learning
approaches are evaluated over many episodes of
data, which represent a variety of novel tasks. Each
episode (S,Q) consists of a support set S contain-
ing K-shot labeled samples, as well as a query
set Q used for evaluation. Data from the evalua-
tion episodes are drawn from the target domains
{DT

1 ,DT
2 , . . .}, which the model has not previously

seen.
To learn such models, we typically have access

to another set of domains called the source domains
{DS

1 ,DS
2 , . . .}, which can be used as the training

resources. In order to train the model to learn multi-
ple tasks well, many few-shot learning approaches
use meta-learning, or a learning to learn approach,
where the model is trained with many episodes
drawn from the source domains in order to mimic
the evaluation (Vinyals et al., 2016; Snell et al.,
2017; Sung et al., 2018; Finn et al., 2017). We
refer to this as the episodic training.

Another approach, called fine-tuning, trains the
model on a regular training set from the source
domains: [mDS

m. Given an episode (S,Q) at eval-
uation time, the model fine-tunes it on the support
S, typically with a new classifier constructed for
the new task, and evaluates on Q.

4.5.2 Few-Shot Baselines

TransferBERT trains a token-level classification
model by fine-tuning. Matching Net (MN) +

BERT Vinyals et al. (2016) Given a word xi, the
model classifies by finding the most similar word

xSj in the support set and predicts ySj as the label
of xi. The model also adapts the backbone model
with episodic training. Warm Proto Zero (WPZ)

+ BERT Fritzler et al. (2019) uses token-level pro-
totypical network (Snell et al., 2017), which clas-
sifies by comparing a word xi to each class cen-
troid rather than individual sample embeddings.
L-TapNet + CDT Hou et al. (2020) uses a CRF
framework and leverages label semantics in repre-
senting labels to calculate emission scores and a
collapsed dependency transfer method to calculate
transition scores. We note that all baselines ex-
cept for TransferBERT uses episodic meta-training
whereas TransferBERT uses fine-tuning. All base-
line results are taken from Hou et al. (2020).

Our model performs fine-tuning with the gener-
ation framework. The major difference between
our model and a token-level classification model
such as TransferBERT is that we do not require a
new classifier for every novel task during the fine-
tuning on the support set. The sequence generation
approach allows us to use the entire model and
adapt it to new tasks, where the initial embeddings
contain high quality semantics and help the model
transfer knowledge efficiently.

4.5.3 K-shot Episode Construction

Traditionally, the support set S is often constructed
in K-shot formats where we use only K instances
of each label type. In sequence labeling problems,
this definition is challenging due to the presence of
multiple occurrences or multiple label types in a
single sentence. We follow Hou et al. (2020) by us-
ing the following definition of a K-shot setting: All
labels within the task appears at least K times in S
and would appear less than K times if any sentence
is removed. We sample 100 episodes from each
domain according to this definition. Note that Hou
et al. (2020)’s episodes are similar to ours, but pre-
process the sentences by lowercasing and removing
extra tokens such as commas (see details in Section
A.6). Our model is flexible and can handle raw
sentences; we therefore use the episodes from the
original SNIPS dataset without any modifications.

4.5.4 Data

We perform few-shot experiments on the 7 do-
mains {D1, . . . ,D7} of the SNIPS dataset, namely,
Weather (We), Music (Mu), Playlist (Pl), Book
(Bo), ScreeningEvent (Se), Restaurant (Re), Cre-
ativeWork (Cr). To evaluate a model on domain Di,
we meta-train the model on D0

i = {D1, . . . ,D7}�
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We Mu Pl Bo Se Re Cr Ave.

1-
sh

ot

TransferBERT 55.82 38.01 45.65 31.63 21.96 41.79 38.53 39.06
MN + BERT 21.74 10.68 39.71 58.15 24.21 32.88 69.66 36.72
WPZ + BERT 46.72 40.07 50.78 68.73 60.81 55.58 67.67 55.77
L-TapNet+CDT 71.53 60.56 66.27 84.54 76.27 70.79 62.89 70.41

Ours + SNIPS 82.62 77.46 71.33 85.49 83.22 84.23 82.92 81.04

Ours + Onto 56.39 67.10 53.49 71.94 66.21 69.04 28.80 59.00
Ours + No Meta 46.42 59.02 47.47 63.79 49.42 64.45 17.60 49.74

5-
sh

ot

TransferBERT 59.41 42.00 46.70 20.74 28.20 67.75 58.61 46.11
MN + BERT 36.67 33.67 52.60 60.09 38.42 33.28 72.10 47.98
WPZ + BERT 67.82 55.99 46.02 72.17 73.59 60.18 66.89 63.24
L-TapNet+CDT 71.64 67.16 75.88 84.38 82.58 70.05 73.41 75.01

Ours + SNIPS 91.35 86.73 87.20 95.85 92.71 91.23 91.55 90.95

Ours + Onto 83.15 86.15 80.36 90.27 84.87 85.89 68.08 82.68
Ours + No Meta 73.14 82.02 78.82 84.86 83.14 86.63 52.56 77.31

Table 2: Our few-shot slot labeling results on 7 domains of SNIPS dataset. Ours + SNIPS perform meta-training
on the leave-one-out SNIPS data, similar to other baselines. Ours + Onto is our model trained on Ontonotes. Ours
+ No Meta involves no meta-training.

Di. We refer to this as the leave-one-out meta-
training sets. All other baselines also use this meta-
training data setup.

We note that the training set D0
i has data distri-

butions that closely match Di since they are both
drawn from the SNIPS dataset. We investigate
more challenging scenarios where we use an alter-
native source as a meta-training set, as well as no
meta-training. In particular, we choose Ontonotes
NER task as the alternative source domain. The
benefits of using this setup is such that it establishes
a single meta-trained model that works across all
evaluation domains, which we offer as a challeng-
ing benchmark for future research.

4.5.5 Few-Shot Results

Table 2 demonstrates the results for few-shot ex-
periments. Our model outperforms previous state-
of-the-art on every domain evaluated. In the 5-shot
case, our model achieves an average F1 score of
90.9%, exceeding the strongest baseline by 15.9%.
Even without meta-training, the model is able to
perform on par with state-of-the-art models, achiev-
ing an F1 score of 77.3% versus 75.0% for the
baseline. Training on an alternative source (NER
task) also proves to be an effective meta-learning
strategy, performing better than the best baseline
by 7.7%. These results indicate that our model is
robust in its ability to learn sequence tagging on
target domains that differ from sources. In the 1-

shot case, our model achieves an average F1 score
of 81.0%, outperforming the best baseline signifi-
cantly (10.6% improvement).

We note that the average support sizes are around
5 to 40 sentences for the 5-shot case, and one to
8 sentences for the 1-shot case (see Table 12 and
13 for details). The results are particularly impres-
sive given that we adapt a large transformer model
based on such limited number of samples. In com-
parison to other fine-tuning approaches such as
TransferBERT, our model performs substantially
better, indicating that our generative framework is a
more data-efficient approach for sequence labeling.

5 Discussion and Future Work

Our experiments consistently show that the gener-
ation framework is suitable for sequence labeling
and sets a new record for few-shot learning. Our
model adapts to new tasks efficiently with limited
samples, while incorporating the label semantics
expressed in natural words. This is akin to how
humans learn. For instance, we do not learn the
concept of “person” from scratch in a new task, but
have prior knowledge that “person” likely corre-
sponds to names, and refine this concept through
observations. The natural language output space
allows us to retain the knowledge from previous
tasks through shared embeddings, unlike the token-
level model which needs new classifiers for novel
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tasks, resulting in a broken chain of knowledge.
Our approach naturally lends itself to life-long

learning. The unified input-output format allows
the model to incorporate new data from any domain.
Moreover, it has the characteristics of a single, life-
long learning model that works well on many levels
of data, unlike other approaches that only perform
well on few-shot or high-resource tasks. Our sim-
ple yet effective approach is also easily extensible
to other applications such as multi-label classifi-
cation, or structured prediction via nested tagging
patterns.
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