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Abstract

In real-world dialogue, first-person visual in-
formation about where the other speakers are
and what they are paying attention to is crucial
to understand their intentions. Non-verbal re-
sponses also play an important role in social in-
teractions. In this paper, we propose a visually-
grounded first-person dialogue (VFD) dataset
with verbal and non-verbal responses. The
VFD dataset provides manually annotated (1)
first-person images of agents, (2) utterances of
human speakers, (3) eye-gaze locations of the
speakers, and (4) the agents’ verbal and non-
verbal responses. We present experimental re-
sults obtained using the proposed VFD dataset
and recent neural network models (e.g., BERT,
ResNet). The results demonstrate that first-
person vision helps neural network models cor-
rectly understand human intentions, and the
production of non-verbal responses is a chal-
lenging task like that of verbal responses. Our
dataset is publicly available1.

1 Introduction

In recent years, visually-grounded dialogue sys-
tems have attracted increasing attention (Zhu et al.,
2016; Ben-Youssef et al., 2017; Liao et al., 2018;
Kottur et al., 2018). For example, Huber et al.
(2018) developed an image-grounded conversa-
tional agent that uses visual sentiment, facial ex-
pression, and scene features, and Mostafazadeh
et al. (2017) constructed the publicly available IGC
dataset, which comprises image-grounded conver-
sations.

Although these studies and resources have been
shown to be useful, there are currently two limi-
tations. First, in image-grounded dialogue tasks,

1https://randd.yahoo.co.jp/en/softwaredata

U:これのＬはないのかしら
V:同じ服がたくさんあるからどれかはLじゃないかな
N:同じ服のサイズをチェックする
————————————————————————–
U: I wonder if there is an L for this.
V: We have a lot of the same clothes, so I’m guessing one of
them is an L.
N: Check out the same clothing size.

Figure 1: Example of proposed VFD dataset. “U”, “V”,
and “N” denote a human utterance, the agent’s verbal
response, and the agent’s non-verbal response (i.e., ac-
tion), respectively. All utterances and responses are
represented in Japanese. English translations are added
below for easier understanding. The red line links the
eyes to the gaze location.

human speakers do not appear in the agents’ vision
because images are used as the topic of conversa-
tion, and the speakers are required to discuss the
input image. However, in real-world dialogue sce-
narios, first-person visual information about where
the human speaker is and what they are paying at-
tention to is crucial for agents to understand human
intentions. To understand this, we show an exam-
ple in Figure 1. Without the first-person image, it
is difficult for the agent to recognize that the pro-
noun “this” in the human utterance (U) refers to
the article of yellow clothing rather than any other
products (e.g., brown clothes).

Another important limitation is that, although
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Dataset Type Perspective Response Size
VisDial (Das et al., 2017) Task oriented Third-person Verbal 120K
MMD (Saha et al., 2018) Task oriented Third-person Verbal 150K
TalkTheWalk (de Vries et al., 2018) Task oriented Third-person Verbal 10K
AVSD (Alamri et al., 2019) Task oriented Third-person Verbal 11K
IGC (Mostafazadeh et al., 2017) Task & Non-task oriented Third-person Verbal 4K
SDG (Hu et al., 2016) Non-task oriented Third-person Verbal & Non-verbal 50
VFD (ours) Task & Non-task oriented First-person Verbal & Non-verbal 308K

Table 1: Comparison of existing visually-grounded dialogue datasets in terms of dialogue types (task-oriented or
non-task-oriented), visual perspectives, response types, and the dataset size.

previous studies considered non-verbal input in-
formation (e.g., human facial expressions), they
did not consider the agents’ non-verbal responses
(i.e., actions). Non-verbal responses often play
an important role in dialogue systems. For exam-
ple, a museum tour-guide robot should use non-
verbal gestures to explain things to the audience
better. Even in ordinary conversation, non-verbal
responses such as “making a smile” or “helping to
lift luggage” are often crucial for social interactions
in conjunction with verbal responses.

Thus, we propose a visually-grounded first-
person dialogue (VFD) dataset with verbal and non-
verbal responses. As shown in Figure 1, the VFD
dataset comprises (1) first-person images of agents,
(2) utterances of human speakers, (3) eye-gaze loca-
tions of the speakers, and (4) the agents’ verbal and
non-verbal responses to the utterances. Here, hu-
man utterances and agents’ verbal and non-verbal
responses were manually annotated for first-person
images (with eye-gaze locations) in the GazeFollow
dataset (Recasens et al., 2015) using crowdsourcing
with carefully-designed settings, resulting in 308K
verbal and 81K non-verbal dialogues. This paper
also presents experimental results obtained using
the VFD dataset and recent neural network models,
e.g., BERT (Devlin et al., 2019) and ResNet (He
et al., 2016).

Our primary contributions are summarized as
follows. (1) We present a new multimodal dialogue
dataset that contains visually-grounded first-person
dialogues with human speakers’ eye-gaze locations.
(2) We provide the manually-annotated non-verbal
responses of agents, which are often crucial for
social communication in the real world. (3) Our
experimental results demonstrate that first-person
vision helps recent neural network models under-
stand human intentions accurately and that the pro-
duction of non-verbal responses is a challenging
task like that of verbal responses.

2 Related Work

Table 1 summarizes the related visually-grounded
dialogue datasets.

Several multimodal dialogue datasets have in-
vestigated task-oriented situations. For example,
MMD dataset (Saha et al., 2018) contains dia-
logues between shoppers of fashion products and
sales agents. TalkTheWalk dataset (de Vries et al.,
2018) aims to guide tourists to their destinations.
In VisDial dataset (Das et al., 2017) and AVSD
dataset (Alamri et al., 2019), an agent must answer
questions about an input image (or video) given
dialogue history. Unlike these datasets, which can
only work in some limited scenarios, we aim to
cover both task-oriented and non-task-oriented dia-
logue systems.

As shown in Table 1, IGC dataset (Mostafazadeh
et al., 2016), like our VFD dataset, assumes
both task-oriented and non-task oriented situations.
However, in IGC, images are used as a conversa-
tion topic, and the human speakers do not appear
in the agents’ vision. In contrast, VFD dataset con-
tains dialogues based on “first-person” images (and
eye-gaze information), which are useful for figur-
ing where the human speaker is and what he or she
is focusing on.

Like our VFD dataset, SDG dataset (Hu et al.,
2016) contains dialogues with non-verbal actions.
However, SDG focuses on gestures (or body lan-
guages), e.g., “making a cup shape with the right
hand”, which are categorized into 271 gesture
classes. In contrast, VFD dataset represents non-
verbal responses as text (typically sentences) to
cover a wider range of gestures, e.g., “Check out
the same clothing size”, “Buy one of the pumpkins
a girl has”, etc.

In addition, our VFD dataset is large in compar-
ison to other datasets. It is twice the size of the
MMD dataset and approximately 75 times the size
of the IGC dataset. IGC dataset is small because it
provides only validation and test sets.



3301

3 VFD Dataset

3.1 Task Definition

In this paper, we define the visually-grounded first-
person dialogue as to produce an utterance or take
action given a human utterance and the agent’s
first-person vision.

Formally, the input to the system can be repre-
sented as a tuple of a human utterance u and the
agent’s first-person vision v. The first-person vi-
sion v is assumed to be used to understand human
intentions. Thus, v can be factorized into first-
person image i and more explicit visual hints for
the human intentions g, i.e., v = (i, g). We use
eye-gaze locations for the explicit hints g. For the
input triplet (u, i, g), an agent is assumed to pro-
duce a verbal response rv and non-verbal response
(i.e., actions) rn. Here, we use textual descriptions
to represent non-verbal responses, as shown in Fig-
ure 1.

The VFD dataset can be interpreted as a col-
lection of quintuples, i.e., {(u, i, g, rv, rn)}. We
describe how we collected these five elements in
the following.

3.2 Dataset Construction

First-person Images & Eye-gaze Locations.
We used the 34,775 first-person images with eye-
gaze annotations in the GazeFollow dataset (Re-
casens et al., 2015). Here, eye-gaze locations are
represented as coordinates (x, y)eye and (x, y)gaze.
In Figure 1, the eye location and the gaze location
are linked by a red line.

Human Utterances. Following Le Minh et al.
(2018), who collected English utterances for first-
person images using Amazon Mechanical Turk
(AMT), we first translated their English instruc-
tions into Japanese. Then, we used a crowdsourc-
ing platform similar to AMT called Yahoo! Crowd-
sourcing, operated by Yahoo Japan Corporation. It
can be safely assumed that Yahoo! Crowdsourcing
participants will be proficient in Japanese because
such proficiency is required to sign up, navigate the
user interface, and participate in the microtask mar-
ket. In the annotation instructions, we showed an
image with a single person marked with a red dot
and asked the participants to imagine this person is
speaking. We then asked the participants to submit
what they think the speaker is likely saying.

The following notes were included in the instruc-
tions to avoid unexpected or trivial annotations.

Note 1: “Never use the same lines again. Please
write a different sentence every time.” Note 2: “Do
not put a commentary from a third-party perspec-
tive.” Note 3: “Please do not write something peo-
ple would not usually say in this situation. Please
avoid lines that contain abuse and prejudice, words
likely to cause a quarrel, and over-familiar tone.
Please do not assume that the talking person has an
extreme personality. As it is not a comedy, you do
not have to write a funny line.”

Verbal and Non-verbal Responses. The partic-
ipants were shown the images and the utterances
collected in the previous step. Then, they were
asked to enter what to say (i.e., a verbal response)
and what to do (i.e., a corresponding non-verbal
action). To focus on dialogues requiring visual
grounding, we also asked the participants the fol-
lowing question: “Whenever possible, please try to
use some additional information found in the image
to frame your response, so that your response is not
entirely predictable from the utterance.” We also
asked the participants to enter a special dummy
response “x” if it is inappropriate to respond. For
a single utterance, five participants were asked to
enter a response and an action.

After conducting this pilot task, we examined the
results and selected promising participants (com-
prising a whitelist) for future task requests. Only
participants on the whitelist could perform the next
task. We also used the whitelist from our previ-
ous study for text entry tasks. We repeated this
selection process until the final whitelist included
approximately 1,600 participants. Here, approxi-
mately 200-250 of these participants regularly par-
ticipated in the actual VQA collection task. Note
that we allocated tasks in small batches over the
course of a few months to prevent participants from
working long hours.

Despite the above measures, however, the re-
sulting 327,884 data instances contained noisy or
trivial responses. To eliminate such undesirable
responses automatically, we created a list of er-
roneous patterns manually via visual inspection,
and responses matching the patterns were removed.
The dummy responses “x” were also removed. Fi-
nally, the total number of verbal and non-verbal
responses were 308,793 and 81,867, respectively.
The gap between the number of verbal and non-
verbal responses is due to the fact that non-verbal
responses contained more dummy responses than
verbal responses.
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Figure 2: Dialogue topics in VFD dataset. Each dialogue is represented using BERT-based vectors and colored
according to the associated cluster, i.e., food, photo, music, or sports. The dialogue topics are widely distributed.

Quality Evaluation. To assess the quality of the
resulting dataset, we qualitatively inspected 1,000
randomly-sampled data instances. Of those 1,000
samples, there was only one sample that was clearly
as bad as spam. In addition, the percentage of
slightly inappropriate samples was only 2% of the
total. Therefore, we considered the quality of the
VFD dataset to be sufficient for our purposes.

Among those 2% noisy samples, we found the
following erroneous patterns: For utterances, some
were for the person who took the photo rather than
the person appearing in the photo. One utterance
was very comedic. For the images, there were
two images without people, e.g., a mannequin or
food. In addition, there was one image that did
not show the speaker’s face and one image that
shows many people. These errors mainly stem from
the original GazeFollow dataset (Recasens et al.,
2015). For verbal or non-verbal responses, one
response ignored the human utterance. In addition,
some responses ignored the images or were not
from the robot’s perspective, and some responses
were offensive to the speakers. Some non-verbal
responses were not actionable, e.g., ”Nice Shot!”
and ”That’s tough.”

We did not remove these noisy samples in the
current version because it was difficult to remove
them all automatically, and the noisy samples rep-
resent only 2% of the total.

3.3 Dataset Analysis
We perform a more detailed analysis of the VFD
dataset.

We explore the topical diversity of the dataset.

Response
Utterance Verbal Non-verbal

Text length 7.6 6.8 3.5
Unique words 13,352 23,880 7,711

Table 2: Linguistic statistics of utterances, and verbal
and non-verbal responses in VFD dataset. Verbal re-
sponses tend to be diverse, and non-verbal responses
tend to be much simpler.

Specifically, we use a Japanese BERT model pre-
trained on Japanese Wikipedia from HuggingFace’s
Transformers library (Wolf et al., 2019) and project
each word in dialogue text (i.e., utterance, ver-
bal response, and non-verbal response) to 768-
dimensional vectors. Then, we average the word
embeddings to obtain a vector representation of the
dialogue text (utterance + two responses). Finally,
we use agglomerative clustering (Karypis et al.,
2000) to obtain 70 clusters for the dialogues. We
select 4 of the 70 clusters and visualize them by
principal component analysis (PCA), as shown in
Figure 2. These 4 clusters, i.e., food, photo, mu-
sic, and sports, represent typical dialogue topics in
the VFD dataset. Figure 2 shows that the dialogue
topics are widely distributed in the VFD dataset.

We also calculate the linguistic statistics of the
texts. Here, we use MeCab morphological ana-
lyzer (Kudo et al., 2004) to tokenize the dialogue
text into tokens. Table 2 summarizes the results.
The average numbers of tokens (or text length) in
the utterances and verbal and non-verbal responses
are 7.6, 6.8, and 3.5, respectively. The number
of uniques words (i.e., vocabulary size) in the ut-
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U:大きいね
V:一つ買っていこうか？
N:女の子が持っているかぼちゃを一つ
買う
—————————————————–
U: It’s a big one.
V: Do you want me to buy you one?
N: Buy one of the pumpkins a girl has.

U1: Place near my house is getting ready for
Halloween a little early.
V1: Don’t you think Halloween should be
year-round, though?
U2: That’d be fun since it’s my favorite hol-
iday!
V2: It’s my favorite holiday as well!
U3: I never got around to carving a pump-
kin last year even though I bought one.
V3: Well, it’s a good thing that they are start-
ing to sell them early this year!

Figure 3: Comparison of VFD dataset (left) and IGC
dataset (Mostafazadeh et al., 2017) (right). U, V, and
N denote an utterance, a verbal response, and a non-
verbal response, respectively.

terances and verbal and non-verbal responses are
13,352, 23,880, and 7,711, respectively. These
facts imply that verbal responses tend to be diverse,
which is desirable for training well-generalized ma-
chine learning models. In contrast, the textual
description of the non-verbal responses is much
simpler than the utterances and verbal responses,
which is desirable when building a model to per-
form actual actions from a textual description of a
given non-verbal response.

3.4 Comparison
Here, we emphasize the characteristics of the
VFD dataset by comparing it to the IGC
dataset (Mostafazadeh et al., 2016), which is most
similar to the VFD dataset. Figure 3 compares
two examples each from the VFD dataset (left) and
IGC dataset (right). In the IGC dataset, an image
is used as a topic of conversation, and the human
speaker does not appear in the agent’s vision. In
contrast, our VFD dataset uses an image as taken
from the agent’s first-person camera as a dynamic
visual environment. In addition, the VFD dataset
contains manually-annotated non-verbal responses
and human eye-gaze locations.

4 Experiments

4.1 Task Setting
In this section, we perform experiments with the
task of selecting a verbal response and a non-verbal
response from candidate response sets given a hu-
man utterance, a first-person image, and eye-gaze
locations. Although it is possible to train a response
generator using VFD dataset, the selection task was

chosen for ease of evaluation and simplicity. It is
worth noting that, in our experiments, the eye-gaze
locations are given to the input as an oracle during
validation and testing. In the real world, this infor-
mation can be given by automatic gaze-estimation
techniques (Chong et al., 2018; Wei et al., 2018)
developed in computer vision.

4.2 Data

For the verbal response selection task, VFD dataset
is split into training, validation, and test sets each
containing 569K, 12K, and 12K dialogues. For the
non-verbal response selection task, the training, val-
idation, and test sets consist of 151K, 3K, and 3K
dialogues. The images are completely separated
across the training/validation/test sets. For the train-
ing data, we sample negative responses randomly
from the training set and fix them throughout the
epochs. For the validation and test data, we per-
form the same negative sampling across the models
for a fair comparison. The data splits and the nega-
tive samples used for validation and testing will be
provided along with the VFD dataset.

4.3 Metrics

Following Lowe et al. (2015), we use Recall@k
(denoted Rn@k) for response-selection evaluation.
Here, the model selects the k most likely responses
from n available candidates. Note that only one
response among the n candidates is true, and the
others are sampled randomly from the same set.
The prediction is correct if the true response is
among the top k list. We report R10@1, R10@2,
R10@5, and R2@1.

4.4 Baseline Models

Figure 4 shows the architecture of the baseline
models. We follow the same ranking strategy of
Lowe et al. (2015) to develop the baseline neural
network models for our selection-based dialogue
task. That is, the response-selection problem in
our experiments is to find a verbal (or non-verbal)
response with the highest score for an input triplet
x = (u, i, g), i.e.,

r∗ = argmax
r∈C

Score(x, r), (1)

where Score(x, r) ∈ R denotes a real-valued score
of the response r for the input utterance u, input
image i, and input eye-gaze locations g.
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Figure 4: Overview of the baseline architecture for the
response scoring. Given an input triplet of (utterance
u, image i, eye-gaze locations g) and a candidate re-
sponse r, the baseline model calculates the matching
score between the input and the response.

We define the scoring function in Eq.(1) as fol-
lows:

Score(x, r) = v>xWvr + b, (2)

where vx and vr denote the feature vectors for
x = (u, i, g) and r. W and b are a weight matrix
and a bias vector, respectively.

We first apply two neural encoders, fu and fi, to
extract feature vectors from the input utterance u
and the input image i:

vu = fu(u), vi = fi(i). (3)

We also represent the coordinates of eye-gaze loca-
tions as a four-dimensional vector, vg ∈ R4. We
concatenate these feature vectors to get vx:

vx = [vu; vi; vg], (4)

where [ · ; · ] denotes concatenation of vectors.
The feature vector of a candidate response r is also
calculated using a different text encoder fr:

vr = fr(r). (5)

For training, we minimize the binary cross-
entropy loss by applying a sigmoid function to the
predicted scores.

In the following subsection, we describe the text
encoders (i.e., fu and fr) and the image encoder
(i.e., fi) we used in our experiments.

Text Encoder: We employ two neural network
variants for encoding utterances and responses:
Long Short-Term Memory (LSTM) (Hochreiter

and Schmidhuber, 1997) and Bidirectional Encoder
Representations from Transformers (BERT) (De-
vlin et al., 2019). With the LSTM model, we use
the last hidden state as the utterance or response
features. With the BERT model, we insert a [CLS]
token before and a [SEP] token after the utterance
(or response) and use the hidden state of [CLS] to-
kens in the last layer of BERT as the feature vector.
It is worth noting that we develop two different text
encoders for fu and fr, which are optimized during
the training.

Image Encoder: We employ two neural network
models for image encoding: VGGNet (Simonyan
and Zisserman, 2015) and ResNet (He et al., 2016),
which are used widely for image classification and
have proven to be effective methods. We use the
16-layer VGGNet and replace the last linear layer
named fc6 with a learnable linear layer whose
output dimensionality is 4096. We use the 4096-
dimensional vector as the image features. We also
use the 50-layer ResNet. We use the last fully
connected layer as the image features.

4.5 Other Settings

We used the Adam (Kingma and Ba, 2015) opti-
mizer for training. The learning rate was fixed at
0.0001, and the mini-batch size was fixed at 64.
The training was terminated when validation ac-
curacy drops more than 1.5 points compared to
the highest validation accuracy. The training typ-
ically converged in approximately 3 days for the
verbal response selection task and 1 day for the
non-verbal response selection task on an Nvidia
GeForce GTX 1080 GPU. For the LSTM-based
text encoding, we used MeCab (Kudo et al., 2004)
for tokenization and used fastText (Bojanowski
et al., 2017) for word embeddings, which were pre-
trained on Japanese Common-Crawl and Wikipedia
articles. The word-embedding and LSTM dimen-
sions were set to 300 and 100, respectively. For
the BERT-based encoding, we used a BERT model
named “bert-base-japanese-whole-word-masking”
from Hugging Face’s (Wolf et al., 2019) library,
which was pre-trained on Japanese Wikipedia using
Whole-Word-Masking. For data augmentation, we
applied random cropping, random horizontal flip-
ping, and normalization transformations to the orig-
inal images during training. The baseline models
were trained separately for verbal and non-verbal
response selection tasks.
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Encoders Verbal Response Non-verbal Response
Input Text Image R10@1 R10@2 R10@5 R2@1 R10@1 R10@2 R10@5 R2@1

U LSTM - 50.0 69.2 91.1 84.8 35.6 56.3 84.9 78.6
U BERT - 50.1 67.4 89.7 84.3 42.3 60.1 86.2 80.6
U+I LSTM VGGNet 49.1 68.9 92.1 85.1 41.5 61.5 89.7 82.0
U+I LSTM ResNet 49.4 69.9 92.4 85.3 40.0 61.4 89.7 81.6
U+I BERT VGGNet 52.7 71.1 91.9 86.1 44.8 65.7 89.7 82.6
U+I BERT ResNet 52.5 71.1 91.9 86.0 43.4 64.5 89.1 82.1
U+I+G LSTM VGGNet 50.2 69.5 92.0 85.2 39.6 61.2 89.1 81.8
U+I+G LSTM ResNet 49.1 69.3 92.1 85.1 39.6 61.0 89.8 81.7
U+I+G BERT VGGNet 53.6 72.1 92.5 86.6 46.2 66.3 90.7 82.9
U+I+G BERT ResNet 53.2 71.8 92.6 86.5 43.7 65.7 89.7 82.2

Table 3: Comparison results of the baseline models in verbal and non-verbal response selection tasks. U, I, and
G denote that we use utterances, images, and eye-gaze locations for inputs, respectively. First-person images and
eye-gaze locations improve the performance for almost all encoder combinations.

4.6 Quantitative Results
We report the evaluation scores of the baseline mod-
els in the verbal and non-verbal response selection
tasks. We summarize the results in Table 3. U, I,
and G denote that we use utterances, images, and
eye-gaze locations for inputs, respectively.

For almost all encoder combinations (e.g., BERT
× VGGNet), first-person images improve the ver-
bal and non-verbal response-selection performance
by up to 5.6 points (See U vs. U+I). In addition,
especially when using BERT, eye-gaze locations al-
ways improve the performance further by up to 1.4
points (See U+I vs. U+I+G). These results indicate
that the eye-gaze information from the agents’ first-
person perspective is effective in understanding the
human intentions.

Overall, the BERT scores are higher than the
LSTM scores for all input variations: U, U+I,
U+I+G. This is consistent with results in other NLP
tasks. As for image encoders, VGGNet achieves
higher scores than ResNet, which is often observed
in multimodal tasks (Wang et al., 2017; Ouyang
et al., 2017; Yudistira and Kurita, 2017). BERT ×
VGGNet using all the input modalities achieves the
highest R10@1 score of 53.6%.

Interestingly, the best R10@1 score for non-
verbal response selection is about 7 points worse
than the score for verbal-response selection. This
fact indicates that producing non-verbal responses
is more difficult than producing conventional ver-
bal responses and there is room for improvement.

4.7 Qualitative Analysis

Here, we inspect the verbal and non-verbal re-
sponses selected by the baseline model, BERT ×
VGGNet. Figure 5 (a) shows the selected verbal
responses. The selected non-verbal responses are
shown in Figure 5 (b). The other examples can also
be found in the supplemental material.

In the leftmost example of Figure 5 (a), the
model cannot understand what the pronoun “this”
in the human utterance refers to without the im-
age. By using the image information (U+I), the
model wrongly focuses on the human face in the
image and responds, “You have a funny face.” By
using the eye-gaze locations (U+I+G), the model
understands that the person is paying attention to
the green apple and succeeds in finding the correct
response.

In the second example from the left in Figure 5
(a), the human utterance, “What do you think?”, is
too ambiguous. By using the image information
(U+I), we can see that the model wrongly focuses
on the speaker, as in the previous example. The
eye-gaze locations (U+I+G) allow the model to
understand that the speaker asks about the painting
and finds the correct response.

The right two examples in Figure 5 (a) show the
failure cases. In the third example from the left, it is
difficult for the model to select the correct response,
“You can’t do that with your bare hands”, because it
requires the world knowledge that fish are hard to
catch without tools. In the rightmost example, the
woman’s gaze is on the computer, which wrongly
lets the model focus on the computer instead of the
next “hospital room.”
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U:これを見て!
V(U):それは望遠鏡だよ 7
V(U+I):面白い顔だね 7
V(U+I+G):まだ青いけど旨そうだね3
V*: まだ青いけど旨そうだね
————————————————–
U: Look at this!
V(U): It’s a telescope. 7
V(U+I): You have a funny face. 7
V(U+I+G): It’s still green, but it looks de-
licious. 3
V*: It’s still green, but it looks delicious.

U:どうかしら?
V(U):画面に映っているのは何でしょう 7
V(U+I):おばあちゃんに似ているわ 7
V(U+I+G):雲のもくもくとした自然な感じ
とか良く描けてますね 3
V*: 雲のもくもくとした自然な感じとか良
く描けてますね
———————————————————
U: What do you think?
V(U): What’s that on the screen? 7
V(U+I): It looks just like my grandma. 7
V(U+I+G): You drew the cloudy, natural feeling
well. 3
V*: You drew the cloudy, natural feeling well.

U:これから魚を捕まえます
V(U):中華料理ですか 7
V(U+I):いい波が来るといいね 7
V(U+I+G):いい波が来るといいね 7
V*: 素手で無理じゃない
——————————————————
U: I’m going to catch some fish.
V(U): Will you cook Chinese food? 7
V(U+I): I hope we get some good waves. 7
V(U+I+G): I hope we get some good waves.
7
V*: You can’t do that with your bare hands.

U:ここで管理してるのよ
V(U): どんな野菜やハーブを植えてい
るんですか? 7
V(U+I):病室のすぐ横なんですね 3
V(U+I+G): パソコンならもう少し大き
い画面なんだけどね 7
V*: 病室のすぐ横なんですね
—————————————————–
U: I manage it here.
V(U): What vegetables and herbs are you
planting? 7
V(U+I): So it’s right next to the hospital
room. 3
V(U+I+G): If it was a computer, it would
have a bit bigger screen. 7
V∗: So it’s right next to the hospital room.

(a) Verbal Response

U:誰が作ったんだろう?
N(U):料理を食べてみる 7
N(U+I):見る 7
N(U+I+G):正面から雪だるまを見る 3
N*: 正面から雪だるまを見る
—————————————————–
U: I wonder who made it.
N(U): Try the food. 7
N(U+I): Look at it. 7
N(U+I+G): Looking at the snowman from
the front. 3
N∗: Looking at the snowman from the
front.

U:今できるからね
N(U):子供がジャンプするのを見守る 7
N(U+I): 男性が掃除の作業をしているの
を見る 7
N(U+I+G):皿を出す 3
N*: 皿を出す
——————————————————
U: It’s almost done.
N(U): Watch a child jump 7
N(U+I): See a man cleaning. 7
N(U+I+G): Put out a plate. 3
N*: Put out a plate.

U:ちょっと外行ってくるわ
N(U):玄関へいく 7
N(U+I):テントの下に行く 7
N(U+I+G):テントの下に行く 7
N∗: 上着を渡す
—————————————————–
U: I’m going to go out for a minute.
N(U): Go to the front door. 7
N(U+I): Go under the tent. 7
N(U+I+G): Go under the tent. 7
N∗: Give you the jacket.

U:作業してるあいだ犬がいたずらしな
いか見張っていてくれ
N(U):犬を見張る 3
N(U+I):犬を見張る 3
N(U+I+G): ペンキ塗りしているところ
を眺める 7
N∗: 犬を見張る
—————————————————–
U: While I’m working, keep an eye out for
any mischief from the dogs.
N(U): Keep an eye on the dog. 3
N(U+I): Keep an eye on the dog. 3
N(U+I+G): Watch the paint job. 7
N∗: Keep an eye on the dog.

(b) Non-verbal Response

Figure 5: Verbal and non-verbal responses selected by the baseline model, BERT × VGGNet. U, V, N denote
the human utterance and the selected verbal and non-verbal response, respectively. V∗ and N∗ indicates the gold-
standard responses. We show the input modalities (U, I, G) used to produce the response in parentheses. We mark
the correct responses by 3, while the incorrect responses are marked 7.

Similar phenomena can be observed for non-
verbal response selection. In the left two examples
in Figure 5 (b), it is hard to identify the human
intentions from the utterances alone. The images
(U+I) provide important contextual information,
but it is still not sufficient for properly understand-
ing the intentions of the utterances. The eye-gaze
locations (U+I+G) enable the models to identify
the human intentions and respond more accurately.
For instance, in the second example from the left,
it is hard to understand what the man is doing due
to the mess in the room; however, if you look at
the tip of the man’s gaze, you can see that he is cut-
ting vegetables with a kitchen knife. In such cases,
eye-gaze information works particularly well when
many objects are present.

We also show the failure examples for non-
verbal response selection. We consider that the
third example from the left is difficult because the
agent has to be thoughtful just like preparing a
jacket. In the rightmost example, the man is asking
someone to keep an eye on the dog; however, he is
not looking at it, so it appears that his gaze has a
negative effect.

In summary, we found that first-person images
and eye-gaze information are effective in the fol-
lowing cases: (1) when the utterance is ambigu-
ous, e.g., when it contains indicative pronouns like
”this”, and (2) when there are many objects in the
image, and it is difficult to identify what the speaker
is talking about. These are very common in every-
day conversation. Thus, we consider that it would
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be effective and beneficial to develop social robots
that interact with first-person visual information,
including gaze, in real-world applications.

5 Conclusion

In this paper, we have presented the VFD dataset
with verbal and non-verbal responses. We manually
annotated 308K human utterances and 308K verbal
and 81K non-verbal responses of agents, which are
grounded in the agents’ first-person images with
human eye-gaze locations. We confirmed the valid-
ity of the first-person view in the experiments for
the response selection tasks; however, this task (es-
pecially, non-verbal response production) remains
challenging, and improvements are required.
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U:こんな感じでいいかな
V(U): もう開店の準備が整ったんですね
7
V(U+I): 問題ないかレコーディングしよ
うか 3
V(U+I+G): 問題ないかレコーディングし
ようか 3
V*: 問題ないかレコーディングしようか
——————————————————-
U: How about this?
V(U): So you’re ready for the opening
already. 7
V(U+I): Let’s record it, see if everything’s ok.
3
V(U+I+G): Let’s record it, see if everything’s
ok. 3
V*: Let’s record it, see if everything’s ok.

U:一発で入れるからね
V(U):一ついただきます 7
V(U+I):雪の上だから難しいと思うよ3
V(U+I+G): 雪の上だから難しいと思う
よ 3
V*: 雪の上だから難しいと思うよ
—————————————————–
U: I’ll get in one shot.
V(U): I’ll take one. 7
V(U+I): I think it is hard because it’s on
snow. 3
V(U+I+G): I think it is hard because it’s on
snow. 3
V*: I think it is hard because it’s on snow.

U:始まった
V(U):それが終わったら次は料理だね 7
V(U+I):机の上を整理しましょうか 7
V(U+I+G): 机の上を整理しましょうか
7
V*: パソコン使わないなら貸してくだ
さい
—————————————————–
U: It began.
V(U): After you’ve done it, it’s time to start
cooking. 7
V(U+I): Let’s clear out your desk. 7
V(U+I+G): Let’s clear out your desk. 7
V*: If you don’t use a laptop, let me borrow
it.

U:昼なに食べる?
V(U):がっつりしたものが食べたいね 3
V(U+I): いつも運転してる時のようにお
願いします 7
V(U+I+G): いつも運転してる時のように
お願いします 7
V*: がっつりしたものが食べたいね
——————————————————
U: What do you want for lunch?
V(U): I’d like to eat something chunky. 3
V(U+I): Like when you’re always driving,
please. 7
V(U+I+G): Like when you’re always driving,
please. 7
V*: I’d like to eat something chunky.

(a) Verbal Response

U:これって結構難しいわ
N(U):パソコンの操作を教える 7
N(U+I):合奏を聞く 3
N(U+I+G):合奏を聞く 3
N*: 合奏を聞く
—————————————————–
U: This one is pretty hard.
N(U): Teach how to use a computer. 7
N(U+I): Listen to a symphony. 3
N(U+I+G): Listen to a symphony. 3
N*: Listen to a symphony.

U:そろそろ行くわよ
N(U):仕事に向かう 7
N(U+I):ボートに乗り込む 3
N(U+I+G):ボートに乗り込む 3
N*: ボートに乗り込む
—————————————————–
U: We should get going.
N(U): Go to work. 7
N(U+I): Get on the boat. 3
N(U+I+G): Get on the boat. 3
N*: Get on the boat.

U:そろそろ帰んなきゃ
N(U):自転車を見送る 7
N(U+I):男性の隣りに座る 7
N(U+I+G):男性の隣りに座る 7
N*: 立ち上がってトレーを片付ける
—————————————————–
U: I’d better get home.
N(U): See off a bicycle. 7
N(U+I): Sit next to the man. 7
N(U+I+G): Sit next to the man. 7
N*: Stand up and put the tray away.

U:新しい靴買おうかな
N(U):買うのを勧める 3
N(U+I):応援する 7
N(U+I+G):靴を差し出す 7
N*: 買うのを勧める
—————————————————
U: I’m thinking about getting new shoes.
N(T): Suggest him buy it. 3
N(T/I): Cheer him up. 7
N(T/I/G): Offer him my shoes. 7
N*: Suggest him buy it.

(b) Non-verbal Response

Figure 6: Additional verbal and non-verbal responses selected by the baseline model, BERT × VGGNet. U, V, N
denote the human utterance and the selected verbal and non-verbal response, respectively. V∗ and N∗ indicates the
gold-standard responses. We show the input modalities (U, I, G) used to produce the response in parentheses. We
mark the correct responses by 3, while the incorrect responses are marked 7.

A Supplemental Material

Here, we show additional examples for verbal
and non-verbal responses selected by the baseline
model, BERT × VGGNet.

What these examples have in common is that the
intentions of the utterances are ambiguous in iso-
lation, which is common in everyday conversation.
For instance, in the leftmost example of Figure 6
(a), it is hard for machines to identify what the
pronoun “this” refers to.

We show four successful examples on the left
side of Figure 6 (a), (b). By using first-person per-
spective visual information (U+I or U+I+G), the
models can understand the intentions correctly. For
instance, in the leftmost example of Figure 6 (a),
the model correctly understands that the speaker is

asking about his playing. In the second example
from the left in Figure 6 (a), the visual information
allows the model to understand that the speaker
is talking about the golf game. Also, in the left
two examples in Figure 6 (b), the models success-
fully utilize the visual information to understand
the human intentions.

We also show four failure examples on the right
side of Figure 6 (a), (b). In the third example from
the left in Figure 6 (a), it is difficult to choose
the ground truth response (V∗) because the human
speaker is watching TV and talking about it, while
the ground truth one is talking about the laptop
on the desk. In the rightmost example in Figure 6
(a), the visual information is not useful because
the utterance is not sufficiently related to the given
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image. The third example from the left in Figure 6
(b) is also difficult because the agent has to have
the common knowledge that we must put away
the used trays before we leave in a cafe. In the
rightmost example in Figure 6 (b), we consider that
the visual information wrongly lets the models take
actions related to more specific information about
players or shoes rather than the more general action
of suggesting to buy the shoes.


