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Abstract

In the task of Visual Question Answering
(VQA), most state-of-the-art models tend to
learn spurious correlations in the training
set and achieve poor performance in out-of-
distribution test data. Some methods of gen-
erating counterfactual samples have been pro-
posed to alleviate this problem. However, the
counterfactual samples generated by most pre-
vious methods are simply added to the train-
ing data for augmentation and are not fully uti-
lized. Therefore, we introduce a novel self-
supervised contrastive learning mechanism to
learn the relationship between original sam-
ples, factual samples and counterfactual sam-
ples. With the better cross-modal joint embed-
dings learned from the auxiliary training objec-
tive, the reasoning capability and robustness
of the VQA model are boosted significantly.
We evaluate the effectiveness of our method by
surpassing current state-of-the-art models on
the VQA-CP dataset, a diagnostic benchmark
for assessing the VQA model’s robustness.

1 Introduction

To develop human-like visual and language under-
standing of AI, the task of answering a question
about the given visual content has been proposed,
i.e., Visual Question Answering (VQA) (Antol
et al., 2015). Although the current state-of-the-art
methods (Fukui et al., 2016; Anderson et al., 2018;
Cadene et al., 2019a) can achieve good results on
the VQA benchmarks such as VQA v2 (Goyal et al.,
2017), recent researches (Agrawal et al., 2016;
Kafle and Kanan, 2017; Agrawal et al., 2018) have
found that these methods tend to explore superficial
correlations in the training set and perform poorly
when transferred to real world setting. Specifically,
given a question “What color is the banana?”, the
models prefer to take the shortcut and “assume”
that the answer should be “yellow” since it is the
most common answer in the training set, rather
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Figure 1: An informal examples of original sam-
ple (I,Q), factual sample (I+, Q+) and counterfactual
sample (I−, Q−) generated by the counterfactual sam-
ple synthesizing algorithm (Chen et al., 2020).

than be grounded on the image. To overcome the
language bias problems in VQA, (Agrawal et al.,
2018) have proposed a dataset named VQA-CP,
where the answer distribution of the training set
differs from the test set vastly. The performance
of most current state-of-the-art models (Andreas
et al., 2016; Teney et al., 2018; Shrestha et al.,
2019) drop significantly on the VQA-CP due to the
language bias. Hence, it has become the standard
out-of-distribution benchmark for VQA.

A successful robust and unbiased VQA system
is supposed to be able to deduce the right answer
from the right area of the image. Lately, some
studies have proposed to synthesize counterfactual
samples to improve the robustness of VQA mod-
els. (Agarwal et al., 2019; Pan et al., 2019) apply
GAN (Goodfellow et al., 2014) to generate images.
CSS algorithm proposed by (Chen et al., 2020)
generates counterfactual samples by masking the
critical objects in images or words in questions, as
shown in Figure 1. The critical objects or words
can be obtained from CSS as by-products. Nev-
ertheless, the counterfactual samples are simply
added to the training data for augmentation, ignor-
ing that the relationship between original samples
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and counterfactual samples are vital for the reason-
ing of VQA models. Specifically, the model should
be able to learn why the correct answer cannot be
inferred after changing the original sample to the
counterfactual sample. We posit that modeling the
relationship between original samples, factual sam-
ples and counterfactual samples can bring more
self-supervised signals to improve the reasoning
ability of the model.

In order to enable the VQA model to understand
the impact of the samples changing from original
to counterfactual, we introduce a novel contrastive
learning mechanism into the training with counter-
factual samples, which is first proposed in the field
of learning with counterfactual samples. The auxil-
iary contrastive training objective model the rela-
tionship between original samples, factual samples
and counterfactual samples in the cross-modal joint
embedding space. With the better cross-modal rep-
resentations, both the reasoning ability and robust-
ness of the VQA model are improved efficiently.

Overall, the contributions of this paper are as
follows:

• We are the first to introduce a self-supervised
contrastive learning mechanism for counter-
factual samples in VQA. Our method not only
helps the VQA model learn the relationship
between original samples, factual samples
and counterfactual samples but also improves
the generalization ability of the model signifi-
cantly.

• Experiment results show that our method
brings significant improvements and achieves
state of the art on VQA-CP dataset. Further-
more, the effectiveness of contrastive mecha-
nism in counterfactual sample learning is not
limited to the form of contrastive loss.

2 Related Work

2.1 Language Bias in VQA

As the issue of language bias in VQA models
is pointed out (Agrawal et al., 2016; Jabri et al.,
2016; Goyal et al., 2017), creating a more balanced
dataset is a simple way to alleviate it. To this end,
the VQA v2 dataset (Goyal et al., 2017) rearranges
the sample distribution so that it contains at least
one different answer when given a same question
and a similar image. Since the statistical bias prob-
lem remains, (Agrawal et al., 2018) introduce the
VQA-CP dataset where the answer distributions are
re-distributed in the training and test splits, making

it become the standard benchmark for evaluating
the robustness of VQA models.

2.2 Counterfactual Samples for VQA

Recently, employing insights from causal infer-
ence (Neuberg, 2003), some researches synthesize
counterfactual samples to augment the training of
VQA models (Agarwal et al., 2019; Pan et al., 2019;
Chen et al., 2020). Similar to our work, (Teney
et al., 2020a) have proposed a training objective
named Gradient Supervision (GS) to use the rela-
tion information between original training samples
and additional counterfactual samples. The GS en-
courages the gradient of the model to align with
a “ground truth” gradient, which is the translation
from original sample to counterfactual sample in
the input space. In contrast, we employ a novel con-
trastive learning strategy to simultaneously learn
the triplet relationship between the original train-
ing samples, factual samples and counterfactual
samples.

2.3 Contrastive Learning

Contrastive learning techniques have achieved
great success in unsupervised learning (Oord et al.,
2018; He et al., 2019). The main idea of unsu-
pervised contrastive learning is to maximize the
mutual information between the input samples and
positive samples so as to learn better representa-
tions. Inspired by this, we apply the contrastive
mechanism to learn the self-supervision informa-
tion from counterfactual samples for the first time
and improve the robustness of VQA models.

3 Methodology

In this section, we introduce our technical real-
ization. The flowchart of our proposed method
is illustrated in Figure 2. Our method consists of
three parts: (1) A base VQA model (2) A factual
and Counterfactual Samples Synthesizing (CSS)
module (3) A Contrastive Learning (CL) objective.

3.1 Baseline VQA Model

We adopt the Bottom-Up Top-Down (UpDn) (An-
derson et al., 2018) model into our method, which
considers the common formulation of VQA task
as a multi-class classification problem. Given a set
consisting of N triplets of images Ii ∈ I, ques-
tion Qi ∈ Q and answer ai ∈ A, we denote as
D = {Ii, Qi, ai}Ni=1. The task aims to learn a map-
ping function fvqa : I × Q → [0, 1]|A|, producing
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Figure 2: The flowchart of our proposed method. Optimizing the contrastive loss can pull up the original sample
(I or Q) and factual sample (I+ or Q+) and push away the original sample and counterfactual sample (I− or Q−)
in the joint embedding space. The example here is the case of (I, I+, I−).

an answer distribution of the given image and ques-
tion. In the following sections, we will omit the
subscript i for simplicity. For each question Q, the
UpDn uses a question encoder eq to extract a set of
word embeddings Q. For each image I , the UpDn
uses an object detector ev to extract a set of visual
object embeddings V . Then both Q and V are fed
into attention and fusion modules to generate the
joint embeddingmm(Q,V ). The joint embedding
is then fed into classifier C to predict the answer:

Pvqa(a|I,Q) = fvqa(V ,Q) = C(mm(Q,V ))
(1)

3.2 Synthesizing Counterfactual Samples

There are several ways to synthesize the counter-
factual samples of the given image-question pairs
in our pipeline. For instance, (Teney et al., 2020a)
build counterfactual samples using annotations of
human attention (Das et al., 2016). Basically, they
generate the counterfactual image by masking the
features whose bounding boxes overlap with the
human attention map past a certain threshold. In
contrast to using extra manual annotations, CSS al-
gorithm proposed by (Chen et al., 2020) calculates
the critical objects (I+) in image or words (Q+)
in question by the modified Grad-CAM (Selvaraju
et al., 2017) and masks them to generate the coun-
terfactual samples. Since the latter is more practi-
cal, we adopt the CSS algorithm into our pipeline
and obtain the factual (I+, Q+) and counterfactual
(I−, Q−) samples:

(I+, I−, Q+, Q−) = CSS(fvqa, (I,Q, a)) (2)

3.3 Contrastive Learning Objective
With the causal triplets (I, I+, I−) and
(Q,Q+, Q−) obtained from CSS, we can ap-
ply the contrastive learning mechanism. We take a
specific triplet (I, I+, I−) as an example shown
in Figure 2 to illustrate the contrastive learning
method. First, the I , I+ and I− paired with the Q
are fed into the VQA model to generate the joint
embeddings of them. Then, we denote the joint
embedding mm(Q,V ) of the original sample as
the anchor a, the embedding mm(Q,V +) of the
factual sample as the positive p and the embedding
mm(Q,V −) of the counterfactual sample as the
negative n.

Before defining the contrastive loss, we first de-
fine a scoring function s that outputs high values
for the positive sample and low values for the neg-
ative sample. We take the cosine similarity of the
representations in the joint embedding space as our
scoring function because it implicitly normalizes
the embeddings. The score between the anchor and
the positive s(a, p) can be described as:

s(a, p) =
aT · p
‖a‖ · ‖p‖

(3)

Similarly, the score between the anchor and the
negative is defined as s(a, n). Then, following
recent work in unsupervised learning (Oord et al.,
2018), the contrastive loss is formulated as:

Lc = E
a,p,n

[
− log

(
es(a,p)

es(a,p) + es(a,n)

)]
(4)

For each synthesized triplet, minimizing this loss
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Model Expl.
VQA-CP v2 test

Overall Y/N Number Other

SAN (Yang et al., 2016) 24.96 38.35 11.14 21.74
GVQA (Agrawal et al., 2018) 31.30 57.99 13.68 22.14

Unshuffling (Teney et al., 2020b) 42.39 47.72 14.43 47.24
+CF (Teney et al., 2020a) HAT 46.00 61.30 15.60 46.00
+CF+GS (Teney et al., 2020a) HAT 46.80 64.50 15.30 45.90

UpDn (Anderson et al., 2018) 39.74 42.27 11.93 46.05
+AReg (Ramakrishnan et al., 2018) 41.17 65.49 15.48 35.48
+GRL (Grand and Belinkov, 2019) 42.33 59.74 14.78 40.76
+RUBi (Cadene et al., 2019b) 44.23 67.05 17.48 39.61
+LMH (Clark et al., 2019) 52.01 72.58 31.12 46.97
+LMH+CSS∗ (Chen et al., 2020) 57.74 83.18 47.59 47.19
+LMH+CSS+GS∗ (Teney et al., 2020a) 57.37 79.71 50.85 47.45
+LMH+CSS+CL(ours) 59.18 86.99 49.89 47.16

+HINT (Selvaraju et al., 2019) HAT 47.70 70.04 10.68 46.31
+SCR (Wu and Mooney, 2019) HAT 49.17 71.55 10.72 47.49

Table 1: Performance (%) comparison with SoTA on
VQA-CP v2 dataset. ∗indicates the results of our reim-
plementation. Expl. denotes the extra annotations that
the model has used. HAT is the human attention (Das
et al., 2016).

can maximize a lower bound on mutual informa-
tion between factual sample and original sample,
enabling the model to learn the relationship be-
tween them and predict the right answer from a
more causal aspect. The weighted sum of this con-
trastive loss and the base VQA classification loss
Lvqa make up the overall loss:

L = λvqaLvqa + λcLc (5)

where λvqa and λc are the loss weight for each loss.

4 Experiments

4.1 Datasets

The VQA-CP dataset1 (Agrawal et al., 2018) is
the standard benchmark for evaluating the robust-
ness of VQA models, where the answer distribution
of the training set differs from the test set vastly.
The VQA-CP v1 train consists of ∼118K images,
∼245K questions and ∼2.5M answers (∼121K im-
ages, ∼438K questions and ∼4.4M answers for
VQA-CP v2 train). The VQA-CP v1 test consists
of ∼87K images, ∼125K questions and ∼1.3M
answers (∼ 98K images, ∼220K questions and
∼2.2M answers for VQA-CP v2 test).

4.2 Settings and Comparisons with SoTA

We validate the effectiveness of our method in the
VQA-CP (both v1 and v2) datasets (Agrawal et al.,
2018). Results on the VQA v2 are also reported in
appendices for completeness. We use the standard

1https://www.cc.gatech.edu/ aagrawal307/vqa-cp/

VQA evaluation metric (Antol et al., 2015) for ac-
curacy report. All our implementation details are
in appendices.

4.3 Performance on VQA-CP v2
Table 1 shows the result comparison with the state-
of-the-art models on the VQA-CP v2. According to
the backbone of these models, we group them into:
1) SAN based methods, including GVQA. 2) Un-
shuffling based methods, including CF, CF+GS.
3) UpDn based methods, including AReg, GRL,
RUBi, LMH, CSS, HINT and SCR. The results
show that our Contrastive Learning (CL) building
on top of UpDn+LMH+CSS outperforms these
previous results, improving the overall accuracy
from 57.74% to 59.18% (+1.44%). In contrast,
the Gradient Supervision (GS) for the counterfac-
tuals brings smaller gain (+0.80%) from Unshuf-
fling+CF. We further explore the performance of
Gradient Supervision when applied with the same
set of counterfactual samples (CSS). From Table 1,
we can observe that our method still outperforms
the LMH+CSS+GS by 1.88%, indicating that our
method can bring more self supervision from the
counterfactual samples than the GS.

4.3.1 Performance on VQA-CP v1
Table 2 shows performance comparisons with the
existing state-of-the-art methods on the VQA-CP
v1 test split. We achieves a new state-of-the-art per-
formance on VQA-CP v1 test split, improving the
UpDn+LMH+CSS method from 59.63% to 61.27%
(+1.64%). Particularly, our method outperforms the
Gradient Supervision(GS) by 3.22%.

Model
VQA-CP v1 test

Overall Y/N Number Other

UpDn (Anderson et al., 2018) 37.87 42.58 14.16 42.71
+AReg (Ramakrishnan et al., 2018) 45.69 77.64 13.21 26.97
+GRL (Grand and Belinkov, 2019) 44.09 75.01 13.40 25.67
+RUBi (Cadene et al., 2019b) 44.81 69.65 14.91 32.13
+LMH (Clark et al., 2019) 55.27 76.47 26.66 45.68
+LMH+CSS∗ (Chen et al., 2020) 59.63 86.62 28.93 45.12
+LMH+CSS+GS∗ (Teney et al., 2020a) 58.05 78.50 37.24 46.08
+LMH+CSS+CL(ours) 61.27 88.14 34.43 45.34

Table 2: Performance comparison on VQA-CP v1 test.
∗indicates the results of our reimplementation.

4.4 Different Forms of Contrastive Loss
To explore whether different forms of contrastive
loss are effective in learning the counterfactual
samples in VQA, we conduct experiments on the
VQA-CP v2 using the varient of Margin-based Con-
trastive Loss (MarginCL) proposed by (Hadsell
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Model Overall Y/N Number Other

UpDn (Anderson et al., 2018) 39.74 42.27 11.93 46.05
UpDn∗ 38.85 42.60 11.51 44.38
+CSS∗ 39.77 42.80 12.55 45.66
+CSS+GS∗ 40.02 41.97 11.94 46.70
+CSS+MarginCL(ours) 40.15 42.38 12.45 46.57
+CSS+CL(ours) 40.49 42.90 12.44 46.93

LMH (Clark et al., 2019) 52.01 72.58 31.12 46.97
LMH∗ 52.66 73.47 34.21 46.81
+CSS∗ 57.74 83.18 47.59 47.19
+CSS+GS∗ 57.37 79.71 50.85 47.45
+CSS+MarginCL(ours) 58.68 85.54 51.60 46.54
+CSS+CL(ours) 59.18 86.99 49.89 47.16

Table 3: Effectiveness of different supervision of coun-
terfactual samples on different architectures on VQA-
CP v2 test. ∗indicates the results of our reimplementa-
tion.

et al., 2006), which is formulated as:

LMC = D(a, p) + max (0,m−D(a, n)) (6)

where the D(a, p) = 1− s(a, p) (cosine distance
between a and p). The m is the margin between
a and n, which is set to 0.3. Table 3 shows the
experimental results. The improvements on two
different VQA models demonstrate that our method
is generic.

4.5 Performance of counterfactual samples
and factual samples

To further explore whether our method improves
the generalization capability of the VQA model,
we conduct the experiments about the VQA perfor-
mance of the counterfactual samples and factual
samples on the VQA-CP v2 and report the result in
Table 4. Comparing with the CSS and the CSS+GS,
our method achieves the best performance, which
demonstrates that the VQA model benefits from the
contrastive learning mechanism and accordingly
generalizes better on the counterfactual samples
and factual samples.

Model Original Samples Factual Samples Counterfactual Samples

CSS 57.74 46.41 48.96
CSS+GS∗ 57.37 45.83 50.09
CSS+CL(ours) 59.18 46.73 50.12

Table 4: The VQA performance (%) of the counter-
factual samples and factual samples on VQA-CP v2
dataset. ∗indicates the results of our reimplementation.

4.6 Case Study

To validate the effects of our contrastive training
objective, we visualize the joint embeddings of
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Q: What color is the tennis ball?

Q: What is the cat doing? LHM+CSS

LHM+CSS LHM+CSS+CL(ours)

LHM+CSS+CL(ours)Most Critical Object

Most Critical Object

Figure 3: t-SNE visualizations of the cross-modal joint
embedding space of the causal triplet generated by the
CSS algorithm. mm(Q,V ) is the joint embedding of
original input. mm(Q,V +) and mm(Q,V −) are the
embeddings of the input with only the most critical ob-
ject and without the most critical object respectively.

two examples and their synthesized samples by em-
ploying the t-SNE (Maaten and Hinton, 2008). As
Figure 3 shows, compared with the LMH+CSS, our
auxiliary training objective helps to not only pull
up the original sample and factual sample but also
push away the original sample and counterfactual
sample in the embedding space, which may build a
better causal VQA model.

5 Conclusion

In order to fully utilize the supervision informa-
tion of synthesized counterfactual samples in ro-
bust VQA, we introduce a self-supervised con-
trastive learning mechanism to learn the relation-
ship between factual samples and counterfactual
samples. The experimental results demonstrate that
our method improves the reasoning ability and ro-
bustness of the VQA models.
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F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems
32, pages 841–852. Curran Associates, Inc.

Long Chen, Xin Yan, Jun Xiao, Hanwang Zhang, Shil-
iang Pu, and Yueting Zhuang. 2020. Counterfactual
samples synthesizing for robust visual question an-
swering. In CVPR.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
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A Appendices

A.1 Implementation Details
The UpDn model uses pretrained Faster R-
CNN (Ren et al., 2015) to extract top K object
feature embeddings. We set K = 36 in our imple-
mentation, and the dimension of each object fea-
tures is 2048. For question embeddings, we prepro-
cess the questions to a maximum of 14 words. The
word embeddings are initialized with pretrained
GloVe (Pennington et al., 2014) vectors with di-
mension of 300. A single-layer GRU (Cho et al.,
2014) is used to obtain question embedding vec-
tors with the dimension of 512. The dimension of
the joint embedding is 2048. The initial learning
rate of Adamax optimizer and learning rate decay
schedule are followed to the public reimplementa-
tion2. The entire system is trained end-to-end with
both Lvqa and Lc. The parameters are initialized
from scratch and the random seed is set to 0. The
loss weight λvqa and λc are respectively set to 1
and 2. We set batch size to 512. The model devel-
oped on the official public Pytorch codebase3 takes
about 5 hours (∼30 epochs) to train on a Nvidia
RTX 2080Ti. Both Q-CSS and V-CSS are used to
generate (Q,Q+, Q−) and (I, I+, I−).

A.2 Performance on VQA v2

Model Expl.
VQA v2 val

Overall Y/N Number Other

SAN (Yang et al., 2016) 52.41 70.06 39.28 47.84
GVQA (Agrawal et al., 2018) 48.24 31.17 72.03 34.65

UpDn (Anderson et al., 2018) 63.48 81.18 42.14 55.66
+AReg (Ramakrishnan et al., 2018) 62.75 79.84 42.35 55.16
+GRL (Grand and Belinkov, 2019) 51.92 - - -
+RUBi (Cadene et al., 2019b) - - - -
+LMH (Clark et al., 2019) 56.35 65.06 37.63 54.69
+LMH+CSS∗ (Chen et al., 2020) 55.50 61.84 39.82 54.85
+LMH+CSS+GS∗ (Teney et al., 2020a) 45.11 36.17 38.47 53.70
+LMH+CSS+CL(ours) 57.29 67.27 38.40 54.71

+HINT (Selvaraju et al., 2019) HAT 62.35 80.49 41.75 54.01
+SCR (Wu and Mooney, 2019) HAT 62.20 78.90 41.40 54.30

Table 5: Performance comparison on VQA v2 valida-
tion split. ∗indicates the results of our reimplementa-
tion.

The results on the VQA v2 are also reported
in Table 5 for completeness. We observe that our

2https://github.com/hengyuan-hu/bottom-up-attention-
vqa

3https://github.com/yanxinzju/CSS-VQA
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method improves the performance of LMH+CSS
from 55.50% to 57.27%. The Gradient Supervi-
sion (GS), on the other hand, results in a sharp
drop in the performance by 10.39% for LMH+CSS.
The phenomenon shows that our approach is more
compatible with the i.i.d. setting.


