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Abstract
Attribution methods assess the contribution of
inputs to the model prediction. One way to do
so is erasure: a subset of inputs is considered
irrelevant if it can be removed without affect-
ing the prediction. Though conceptually sim-
ple, erasure’s objective is intractable and ap-
proximate search remains expensive with mod-
ern deep NLP models. Erasure is also suscepti-
ble to the hindsight bias: the fact that an input
can be dropped does not mean that the model
‘knows’ it can be dropped. The resulting prun-
ing is over-aggressive and does not reflect how
the model arrives at the prediction. To deal
with these challenges, we introduce Differen-
tiable Masking. DIFFMASK learns to mask-
out subsets of the input while maintaining dif-
ferentiability. The decision to include or dis-
regard an input token is made with a simple
model based on intermediate hidden layers of
the analyzed model. First, this makes the ap-
proach efficient because we predict rather than
search. Second, as with probing classifiers,
this reveals what the network ‘knows’ at the
corresponding layers. This lets us not only plot
attribution heatmaps but also analyze how de-
cisions are formed across network layers. We
use DIFFMASK to study BERT models on sen-
timent classification and question answering.1

1 Introduction

Deep neural networks have become standard tools
in NLP demonstrating impressive improvements
over traditional approaches on many tasks (Gold-
berg, 2017). Their power typically comes at the ex-
pense of interpretability, which may prevent users
from trusting predictions (Kim, 2015; Ribeiro et al.,
2016), makes it hard to detect model or data de-
ficiencies (Gururangan et al., 2018; Kaushik and

1Source code available at https://github.com/
nicola-decao/diffmask
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Figure 1: DIFFMASK: hidden states up to layer ` from
a model (top) are fed to a classifier g that predicts a
mask z. We use this to mask the input and re-compute
the forward pass (bottom). The classifier g is trained to
mask the input as much as possible without changing
the output (minimizing a divergence D?).

Lipton, 2018) or verify that a model is fair and
does not exhibit harmful biases (Sun et al., 2019;
Holstein et al., 2019).

These challenges have motivated work on inter-
pretability, both in NLP and generally in machine
learning; see Belinkov and Glass (2019) and Jacovi
and Goldberg (2020) for reviews. In this work, we
study post hoc interpretability where the goal is
to explain the prediction of a trained model and to
reveal how the model arrives at the decision. This
goal is usually approached with attribution meth-
ods (Bach et al., 2015; Shrikumar et al., 2017; Sun-
dararajan et al., 2017), which explain the behavior
of a model by assigning relevance to inputs.

One way to perform attribution is to use erasure
where a subset of features (e.g., input tokens) is
considered irrelevant if it can be removed without
affecting the model prediction (Li et al., 2016; Feng
et al., 2018). The advantage of erasure is that it is
conceptually simple and optimizes a well-defined
objective. This contrasts with most other attribu-
tion methods which rely on heuristic rules to define
feature salience; for example, attention-based attri-

https://github.com/nicola-decao/diffmask
https://github.com/nicola-decao/diffmask
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Question: Where did the Broncos practice for the Super Bowl ?
Passage: The Panthers used the San Jose State practice facility
and stayed at the San Jose Marriott . The Broncos practiced at
Stanford University and stayed at the Santa Clara Marriott .

(a) Integrated Gradient (Sundararajan et al., 2017).

Question: Where did the Broncos practice for the Super Bowl ?
Passage: The Panthers used the San Jose State practice facility
and stayed at the San Jose Marriott . The Broncos practiced at
Stanford University and stayed at the Santa Clara Marriott .

(b) Restricting the Flow (Schulz et al., 2020)

Question: Where did the Broncos practice for the Super Bowl ?
Passage: The Panthers used the San Jose State practice facility
and stayed at the San Jose Marriott . The Broncos practiced at
Stanford University and stayed at the Santa Clara Marriott .

(c) NLP explainer (Guan et al., 2019).

Question: Where did the Broncos practice for the Super Bowl ?
Passage: The Panthers used the San Jose State practice facility
and stayed at the San Jose Marriott . The Broncos practiced at
Stanford University and stayed at the Santa Clara Marriott .

(d) Erasure exact search optima.

Question: Where did the Broncos practice for the Super Bowl ?
Passage: The Panthers used the San Jose State practice facility
and stayed at the San Jose Marriott . The Broncos practiced at
Stanford University and stayed at the Santa Clara Marriott .

(e) Our DIFFMASK.

Question: Where did the Broncos practice for the Super Bowl ?
Passage: The Panthers used the San Jose State practice facility
and stayed at the San Jose Marriott . The Broncos practiced at
Stanford University and stayed at the Santa Clara Marriott .

(f) Our DIFFMASK non-amortized.

Figure 2: Question Answering token attribution: (b) and (c), are misleading (i.e., not faithful) as they attribute the
prediction mostly to the answer span itself (underlined). Our method (d) reveals that the model pays attention to
other named entities and the predicate ‘practice’ in both sentences. Predictions of the path-based methods (a) are
more spread-out. Exact search (e) as well as approximate search (f) leads to pathological attributions.

bution (Rocktäschel et al., 2016; Serrano and Smith,
2019; Vashishth et al., 2019) or back-propagation
methods (Bach et al., 2015; Shrikumar et al., 2017;
Sundararajan et al., 2017). These approaches re-
ceived much scrutiny in recent years (Nie et al.,
2018; Sixt et al., 2020; Jain and Wallace, 2019), as
they cannot guarantee that the network is ignoring
low-scored features. They are often motivated as
approximations of erasure (Baehrens et al., 2010;
Simonyan et al., 2014; Feng et al., 2018) and some-
times evaluated using erasure as ground-truth (Ser-
rano and Smith, 2019; Jain and Wallace, 2019).

Despite its conceptual simplicity, subset erasure
is not commonly used in practice. First, it is gen-
erally intractable, and beam search (Feng et al.,
2018) or leave-one-out estimates (Zintgraf et al.,
2017) are typically used instead. These approxi-
mations may be inaccurate. For example, leave-
one-out can underestimate the contribution of fea-
tures due to saturation (Shrikumar et al., 2017).
More importantly, even these approximations re-
main very expensive with modern deep (e.g., BERT-
based; Devlin et al., 2019) models, as they require
multiple computation passes through the model.
Second, the method is susceptible to the hind-
sight bias: the fact that a feature can be dropped
does not mean that the model ‘knows’ that it can
be dropped and that the feature is not used by the
model when processing the example. This results in
over-aggressive pruning that does not reflect what
information the model uses to arrive at the deci-
sion. The issue is pronounced in NLP tasks (see

Figure 2d and Feng et al., 2018), though it is easier
to see on an artificial example (Figure 3a). A model
is asked to predict if there are more 8s than 1s in
the sequence. The erasure attributes the prediction
to a single 8 digit, as this reduced example yields
the same decision as the original one. However,
this does not reveal what the model was relying on:
it has counted digits 8 and 1 as otherwise, it would
not have achieved the perfect score on the test set.

We propose a new method, Differentiable Mask-
ing (DIFFMASK), which overcomes the aforemen-
tioned limitations and results in attributions that are
more informative and help us understand how the
model arrives at the prediction. DIFFMASK relies
on learning sparse stochastic gates (a.k.a., masks),
guaranteeing that the information from the masked-
out inputs does not get propagated while maintain-
ing end-to-end differentiability without having to
resort to REINFORCE (Williams, 1992). The deci-
sion to include or disregard an input token is made
with a simple model based on intermediate hidden
layers of the analyzed model (see Figure 1). First,
this amortization circumvents the need for com-
binatorial search making the approach efficient at
test time. Second, as with probing classifiers (Adi
et al., 2017; Belinkov and Glass, 2019), this reveals
whether the network ‘knows’ at the corresponding
layer what input tokens can be disregarded. Dur-
ing training inputs are truly masked whenever we
sample zeros. After training, attribution scores cor-
respond to the expectation of sampling non-zeros.

The amortization lets us not only plot attribution
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(a) Erasure search.
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(b) Schulz et al. (2020).
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(c) Sundararajan et al. (2017).
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(d) Guan et al. (2019)
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(e) Our DIFFMASK conditioned on embedding
layer (left) and hidden states (right).

Figure 3: Input attributions of several methods on a toy
task: Given a sequence x of digits and a query 〈n,m〉 (8
and 1 in this example) of two digits, determine whether
there are more n than m in x. Attributions are com-
puted at the vector level and normalized to sum to 1.

heatmaps, as in Figure 2e, but also analyze how
decisions are formed across network layers. In our
artificial example, we see that in the bottom embed-
ding layer the model cannot discard any tokens, as
it does not ‘know’ which digits need to be counted
(Figure 3e, left). In the second layer, it ‘knows’
that these are 8s and 1s, so the rest gets discarded
(Figure 3e, right). In question answering (see Fig-
ure 8a), where we use a 24-layer model, it takes
13–16 layers for the model to ‘realize’ that ‘Santa
Clara Marriott’ is not relevant to the question and
discard it. We also adapt our method to measuring
the importance of intermediate states rather than
inputs. This, as we discuss later, lets us analyze
which states in every layer store information crucial
for making predictions, giving us insights about the
information flow.

Contributions We introduce DIFFMASK, a tech-
nique addressing limitations of attribution-based
methods (especially erasure and its approxima-
tions), and demonstrate that it is stable and faithful
to the analyzed models. We then use this technique
to analyze BERT-based models fined-tuned on sen-
timent classification and question answering.

2 Method

We aim to understand how a trained model pro-
cesses an input (i.e., a sequence of embedded to-

kens) to produce an output (e.g., a vector of class
probabilities). First, for an input x = 〈x1, . . . , xn〉,
we obtain the output y = f(x) of the model
along with its hidden states 〈h(0), . . . , h(L)〉, where
h(0) = x. We then probe the model using a shal-
low interpreter network which takes hidden states
up to a certain layer ` and outputs a binary mask
z = 〈z1, . . . , zn〉 indicating which input tokens are
necessary and which can be disregarded. To assess
whether the masked input x̂ = 〈x̂1, . . . , x̂n〉 is suffi-
cient, we re-feed the model with it and compute the
output ŷ = f(x̂). As long as ŷ approximates the
original output y well, we deem the inputs masked
by z unnecessary.

Masking, however, as in multiplication by zero,
makes a strong assumption about the geometry of
the feature space, in particular, it assumes that the
zero vector bears no information. Instead, we re-
place some of the inputs by a learned baseline vec-
tor b, i.e., x̂i = zi · xi + (1− zi) · b.

See Figure 1 for an overview. The interpreter
model consists of L+1 classifiers, the `th of which
conditions on the stack of hidden states up to h(`)

to predict binary ‘votes’ v(`) = g
(`)
φ (h(0), . . . , h(`))

towards keeping or masking input tokens. Each
classifier is a one-hidden-layer MLP, details and
hyperparameters are provided in Appendix A. For
a given depth `, the interpreter decides to mask
xi out as soon as v(k)i = 0 for some k ≤ `, i.e.,
zi =

∏`
k=0 v

(k)
i . That is, in order to deem xi un-

necessary, it is sufficient to do so based on any
subset of hidden states up until h(`).

Clearly, there is no direct supervision to estimate
the parameters φ of the probe and the baseline b,
thus we borrow erasure’s objective: namely, we
train the probe to mask-out as many input tokens
as possible constrained to keeping f(x̂) ≈ f(x).
Since often, the output of f parameterizes a likeli-
hood (e.g., a categorical distribution), we formulate
the constraint in terms of a divergence D? between
the two functions’ outputs. We cast this, rather nat-
urally, in the language of constrained optimization.

Objective A practical way to minimize the num-
ber of non-zeros predicted by g is minimizing the
L0 ‘norm’.2 Thus, our L0 loss is defined as the

2L0, denoted ‖z‖0 and defined as #(i|zi 6= 0), is the
number of non-zeros entries in a vector. Contrary to L1 or
L2, L0 is not a homogeneous function and, thus, not a proper
norm. However, contemporary literature refers to it as a norm,
and we do so as well to avoid confusion.
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total number of positions that are not masked:

L0(φ, b|x) =
n∑
i=1

1[R 6=0](zi) , (1)

where 1(·) is the indicator function. We minimize
L0 for all data-points in the dataset D subject to
a constraint that predictions from masked inputs
have to be similar to the original model predictions:

min
φ,b

∑
x∈D
L0(φ, b|x)

s.t. D?[y‖ŷ] ≤ m ∀x ∈ D ,

(2)

where ŷ = f(x̂), y = f(x), and the margin
m ∈ R>0 is a hyperparameter. Since non-linear
constrained optimisation is generally intractable,
we employ Lagrangian relaxation (Boyd et al.,
2004) optimizing instead

max
λ

min
φ,b

∑
x∈D
L0(φ, b|x)+λ(D?[y‖ŷ]−m) , (3)

where λ ∈ R≥0 is the Lagrangian multiplier.

Stochastic masks Our objective poses two chal-
lenges: i) L0 is discontinuous and has zero deriva-
tive almost everywhere, and ii) to output binary
masks, g needs a discontinuous output activation
such as the step function. A strategy to over-
come both problems is to make the binary vari-
ables stochastic and treat the objective in expecta-
tion, in which case one option is to resort to REIN-
FORCE (Williams, 1992), another is to use a sparse
relaxation to binary variables (Louizos et al., 2018;
Bastings et al., 2019). As we shall see (we com-
pare the two aforementioned options in Table 2 and
discuss them in Section 3.2), the latter proved more
effective. Thus we opt to use the Hard Concrete
distribution, a mixed discrete-continuous distribu-
tion on the closed interval [0, 1]. This distribution
assigns a non-zero probability to exactly zero while
it also admits continuous outcomes in the unit in-
terval via the reparameterization trick (Kingma
and Welling, 2014). We refer to Louizos et al.
(2018) for details, but also provide a brief sum-
mary in Appendix B. With stochastic masks, the
objective is computed in expectation, which ad-
dresses both sources of non-differentiability. Note
that during training inputs are truly masked-out
whenever we sample exact zeros. After training,
attribution scores correspond to the expectation of
sampling non-zero masks since any non-zero value
corresponds to a leak of information.

Masking hidden states To reveal which hidden
states store information necessary for realizing the
prediction, we modify the probe slightly. For a
given depth `, we use a mask z(`) = g

(`)
φ (h(`)) to re-

place some of the states in h(`) = 〈h(`)1 , . . . , h
(`)
n 〉

by a layer-specific baseline b(`), i.e. ĥ(`)i = z
(`)
i ·

h
(`)
i +(1−z(`))·b(`). The resulting state ĥ(`) is used

to re-compute subsequent states, ĥ(`+1), . . . , ĥ(L),
as well as the output, which we denote by ŷ. Here
we do not aggregate ‘votes’ with a product because
for this probe we want to discover whether hidden
states are predictive of their own usefulness. See
Figure 10 in Appendix D for an overview of this
variant of DIFFMASK.

3 Experiments

The goal of this work is to uncover a faithful inter-
pretation of an existing model, i.e. revealing, as
accurately as possible, the process by which the
model arrives at the prediction. Human-provided
labels, such as human rationales (Camburu et al.,
2018; DeYoung et al., 2020), will not help us in
demonstrating this, as humans cannot judge if an in-
terpretation is faithful (Jacovi and Goldberg, 2020).
More precisely, human-provided labels do not show
how the model behaves – e.g., annotations of what
parts of the input are relevant for solving a particu-
lar task do not constitute a guarantee that a model
relies on those parts more than others when mak-
ing a prediction. When we evaluate an attribution
method by comparing its outputs with human anno-
tations, we are not measuring whether it provides
faithful attributions but only if they are plausible
according to humans. This goes against our goals
as we aim to use the interpretation method to de-
tect model deficiencies, which are usually cases
where the model does not behave like humans. The
ground-truth explanations of how a model makes
certain predictions depend not only on the data but
also on the model, and, unfortunately, are generally
not known for real tasks and with complex mod-
els. This makes the evaluation and comparison of
attribution methods non-trivial.

Our strategy is to i) show the effectiveness of
DIFFMASK in a controlled setting (i.e., a toy task)
where ground-truth is available; ii) test the ef-
fectiveness of our relaxation for learning discrete
masks (on a real model for sentiment classifica-
tion); and iii) demonstrate that the method is stable
and models behave the same when masking is ap-
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Methods DKL ↓ DJS ↓

Exact erasure – * 0.27
Sundararajan et al. (2017) 1.32 0.27
Schulz et al. (2020) 1.12 0.18
Guan et al. (2019) 0.88 0.24
DIFFMASK 0.01 0.00

Table 1: Toy task: attribution to hidden states, aver-
age divergence in nats between the ground-truth attri-
butions and those by different methods. *The Delta dis-
tribution does not share support with the ground-truth.

plied. Once we have established that DIFFMASK

can be trusted, we use it to analyze BERT-based
models (Devlin et al., 2019) fine-tuned on senti-
ment classification, and on question answering. We
report hyperparameters in Appendix C, and addi-
tional plots, examples and analysis in Appendix D.

3.1 Toy task

Our toy task is defined as: given a sequence x of
digits (i.e., xi ∈ {0, · · · , 9}), and a query 〈n,m〉
of two digits, determine whether #n>#m in x.

Model The query and input are embedded, con-
catenated, and then fed to a single-layer feed-
forward NN, followed by a single-layer unidirec-
tional GRU (Cho et al., 2014).3 The classification
is done by a linear layer that acts on the last hidden
state of the GRU. See Appendix C.1 for all hy-
perparameters and a more precise definition of the
architecture. Unsurprisingly, the model solves the
task almost perfectly (accuracy on test is >99%).

Ground-truth for hidden-state attribution We
plot the distribution of hidden states (we use dimen-
sionality 2, with the purpose of having a bottleneck
and to support clear visualization) and observe a
linear separation between states of digits present in
the query and states not in the query. This means
that the role of the feed-forward layer is to decide
which digits to keep. Since the model solves the
task, the role of the GRU must then be to count
which digit occurred the most. The prediction must
be attributed uniformly to all the hidden states cor-
responding to either n or m. For completeness,
Figure 11 in the Appendix D.1 shows this plot.

3We use a feed-forward NN to incorporate the query infor-
mation, rather than another GRU layer, to ensure that counting
cannot happen in the first layer. This helps us define the
ground-truth for the method.

Results We start with an example of input attri-
butions, see Figure 3, which illustrates how DIFF-
MASK goes beyond input attribution as typically
known.4 The attribution provided by erasure (Fig-
ure 3a) is not informative: for each datapoint the
search always finds a single digit that is sufficient to
maintain the original prediction and discards all the
other inputs. The perturbation methods by Schulz
et al. (2020) and Guan et al. (2019) (Figure 3b
and 3d) are also over-aggressive in pruning. They
assign low attribution to some items in the query
even though those had to be considered when mak-
ing the prediction. Differently from other methods,
DIFFMASK reveals input attributions conditioned
on different levels of depth. Figure 3e shows both
input attributions according to the input itself and
according to the hidden layer. It reveals that at the
embedding layer there is no information regarding
what part of the input can be erased: attribution is
uniform over the input sequence. After the model
has observed the query, hidden states predict that
masking input digits other than n and m will not
affect the final prediction: attribution is uniform
over digits in the query. This reveals the role of
the feed-forward layer as a filter for positions rel-
evant to the query. Other methods do not allow
for this type of inspection. These observations are
consistent across the entire test set.

For attribution to hidden states (i.e., the output
of the feed-forward layer) we can compare meth-
ods in terms of how much their attributions resem-
ble the ground-truth across the test set. Table 1
shows how the different approaches deviate from
the gold-truth in terms of Kullback-Leibler (DKL)
and Jensen–Shannon (DJS) divergences.5

3.2 Sentiment Classification

We turn now to a real task and analyze models fine-
tuned for sentiment classification on the Stanford
Sentiment Treebank (SST; Socher et al., 2013).

Erasure search as learning masks Before div-
ing into an analysis of a BERT sentiment model,
we would like to demonstrate that we can approxi-
mate the result of erasure well through our differ-
entiable relaxations. For that, we train a single-
layer GRU sentiment classifier and compare the
analyses by DIFFMASK to solutions provided by

4To enable comparison across methods, the attributions
in this Section are normalized between 0 and 1.

5We use DKL[p‖q] and DJS[p‖q] where p is the ground-
truth distribution and q is the predicted attribution distribution.
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Metric REINFORCE+ DIFFMASK

Precision 74.69 81.26
Recall 80.82 85.89
F1 73.57 80.75
Optimality 8.83 32.67
L0 33.13 30.58

Table 2: Sentiment classification: optimization with
DIFFMASK and REINFORCE (not amortised – with
a moving average baseline for variance reduction) vs.
erasure with exact search. All metrics are computed at
token level; optimality is measured at sentence level.

erasure (exact search). To isolate the impact of our
objective, we disable amortization, thus estimat-
ing Hard Concrete parameters for each example
independently. We compare DIFFMASK to REIN-
FORCE (Williams, 1992) with a moving average
baseline for variance reduction. Since erasure is
prohibitive for long sentences, we limit our eval-
uation to sentences up to 25 words (54% of the
data). Table 2 shows that DIFFMASK and REIN-
FORCE achieve comparable levels of sparsity, but
our method reaches an optimal solution much more
often (33% of the times vs 9%) and is, on average,
closer to an optimal solution (81% F1 vs 75% F1).

Faithfulness and Plausibility Now, we get back
to the fully-amortized DIFFMASK approach ap-
plied to a 12-layers BERTBASE model and verify
that there is no performance degradation when ap-
plying masking. Training hyperparameters are re-
ported in Appendix C.2. The F1 score of the model
on the validation set moved from 37.9% to 38.3%
while masking 46.3% input tokens, and to 38.9%
while masking 67.6% hidden states. The expla-
nations provided by DIFFMASK are also stable.
Across 5 runs with different seeds, the standard
deviation of input attributions are 0.05 and 0.03 for
inputs and hidden states, respectively.

While we cannot use human labels to evaluate
faithfulness of our method, comparing them and
DIFFMASK attribution will tell us whether the sen-
timent model relies on the same cues as humans.
Specifically, we compare to SST token level annota-
tion of sentiment. In Figure 4a, we show after how
many layers on average an input token is dropped,
depending on its sentiment label. This suggests that
the model relies more heavily on strongly positive
or negative words and, thus, is generally consistent
with human judgments (i.e., plausible).

E 2 4 6 8 10 12
Very negative

Negative
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Positive

Very positive

(a) Input.

E 2 4 6 8 10 12
Very negative

Negative
Neutral
Positive

Very positive

(b) Hidden states.

Figure 4: Sentiment classification: average number of
layers that predict to keep input tokens or hidden states
aggregated by token level sentiment annotations.

Analysis We used DIFFMASK to analyse the be-
havior of our BERT model. In Figure 5, we report
the average number of layers that input tokens or
hidden states are kept for (or, equivalently, after
how many layers they are dropped on average), ag-
gregating by part-of-speech tags (PoS). It turns out
that determinants, punctuation, and pronouns can
be completely discarded from the input across all
validation set, while adjectives and nouns should
be kept. Also the [CLS] and [SEP] tokens can
be ignored indicating that the model does not need
such markers. Examining the POS tags distribution
for hidden states leads to further conclusions. Here,
the [CLS] and [SEP] tokens are the most impor-
tant ones. This is not surprising as the classifier on
top of BERT uses the [CLS] hidden state which
gets progressively updated through all layers. Both
these special tokens are not important as inputs be-
cause BERT can infer these markers in other layers,
however, they are heavily used in the computation.

Figure 6e we show a visual example of that.
We see that the model, even in the bottom lay-
ers, knows that the punctuation and both separators
can be dropped from the input. This contrasts with
hidden states attribution (Figure 6f) which indi-
cates that the separator states (especially [SEP])
are very important. By putting this information
together, we can hypothesize that the separator is
used to aggregate information from the sentence,
relying on self-attention. In fact, this aggregation
is still happening in layer 12; at the very top layers,
states corresponding to almost all non-separator
tokens can be dropped.

Comparison to other methods In Figure 6, we
visually compare different techniques on one exam-
ple form validation set. While previous techniques
(e.g., integrated gradient) do not let us test what a
model ‘knows’ in a given layer (i.e. attribution to
input conditioned on a layer), they can be used to
perform attribution to hidden layers. All methods
except attention correctly highlight the last hidden
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[SEP]
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(b) Hidden states.

Figure 5: Sentiment classification: average number of
layers that predict to keep input tokens (a) or hidden
states (b) aggregating by part-of-speech tags (POS) and
[CLS], [SEP] tokens on validation set.

state of the [CLS] token as important. Its impor-
tance is due to the top-level classifier using the
[CLS] hidden state. Although for DIFFMASK we
show the expectation of keeping states, it assigns
much sharper attributions. For instance, on the
validation set, it assigns to the last hidden state
of the [CLS] the biggest attribution 99% of the
times where Schulz et al. (2020) only 71%. Raw
attention (Figure 6a) does not seem to highlight any
significant patterns in that example except that start
and end of sentence tokens ([CLS] and [SEP],
respectively) receive more attention than the rest.6

Attributions by Schulz et al. (2020) and Guan et al.
(2019) assign slightly higher importance to hidden
states corresponding to ‘highly’ and ‘enjoyable’,
whereas it is hard to see any informative patterns
provided by integrated gradient. Notice that for
DIFFMASK, a near-zero attribution has a very clear
interpretation: such a state is not used for predic-
tion since in expectation it is dropped (not gated).

3.3 Question Answering

We turn now to QA where we analyse a fine-tuned
BERTLARGE model on the Stanford Question An-
swering Dataset (SQUAD; Rajpurkar et al., 2016).

Analysis We start by asking DIFFMASK which
tokens does the model keep? We do a similar
analysis as for sentiment classification of POS tags
over the entire validation set. We summarize the

6Voita et al. (2019b) and Michel et al. (2019) pointed out
that many Transformer heads play no or minor role.
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure 6: Sentiment classification: comparison be-
tween attribution method for hidden layers w.r.t. the
predicted label. All plots are normalized per-layer by
the largest attribution. Attention heatmap is obtained
max pooling over heads and averaging across positions.

results in Figure 14 in Appendix D.2. It turns out
that conjunctions and adpositions are dropped by
the embedding and first layer, respectively, on aver-
age. On the contrary, proper nouns and punctuation
are usually predicted to be dropped only after the
14th layer. We argue that due to the pre-training
objective, BERT could infer well missing parts of
the input, especially if they are trivial to infer (e.g.,
as often the case for prepositions). On the contrary,
nouns and proper nouns are important as they count
for 84% of the answers on SQuAD. For example,
in Figure 8a, we can see that it takes 13–16 layers
for the model to ‘realize’ that ‘Santa Clara Marriot’
is not relevant to the question and discard it.

Unlike in sentiment classification, separator to-
kens as well as punctuation assume a central role
as inputs (i.e., punctuation is considered the most
important POS tag as for both questions and pas-
sages is usually dropped after the 17th layer). Punc-
tuation serves to demarcate sentence boundaries,
useful for QA but not for sentiment classification.

Tokens from questions are generally masked by
higher layers than tokens from passages as we
show in Figure 7a, which suggests that they are
more important. We highlight that even in higher



3250

E 4 8 12 16 20 24
0.0

0.2

0.4

0.6

0.8

1.0

Question
Passage
Prediction
GT w/ wrong prediciton

(a) Input.

E 4 8 12 16 20 24
0.0

0.2

0.4

0.6

0.8

1.0

(b) Hidden states.

Figure 7: QA: average expectation of keeping input (a)
and hidden states (b) from different layers.

layers when DIFFMASK masks > 95% of the to-
kens, the original model prediction is almost al-
ways kept > 90%. Noticeably, when the original
BERT makes wrong predictions, the tokens anno-
tated as the ground truth answer are kept ∼60% of
the time. This may suggest that when this happens
the model still considers other options (e.g., valid
options such as the ground truth) as plausible, thus
DIFFMASK detects them as important.

Now, we inspect hidden states attributions to
answer where is the information stored? In Fig-
ure 7b we can see a similar trend as for masking
input, i.e., question’s hidden states are kept more on
average and deeper in the computation. States on
layers 2–3 are dropped less than from the embed-
ding and first layer. This is consistent with findings
of Voita et al. (2019a) which show that frequent
tokens, such as determiners, accumulate contextual
information. However, they are not important as
inputs as we show in an example in Figure 8b.

The hidden states corresponding to separator to-
kens are always kept across all layers except the
last one across the validation set. Notice that, this
token is also used as a delimiter between the ques-
tion and the passage, and hence indicates where
questions as well as passages end.

The level of hidden states pruning is quite incre-
mental (after layer 3) and gets strong, after layer
9 more than 50% of them can be masked out. A
steep increase in superfluous states 13–14 (visible
on both parts of Figure 7) may indicate that some
states, at that point in computation, contain enough
information needed for the classification while all
the others can indeed be removed without affecting
the model prediction. Our observation that higher
layers are more predictive is in line with findings
of Kovaleva et al. (2019). They pointed out that
the final layers of BERT change most and are more
task-specific. Again, the fact that states correspond-

E 3 6 9 12 15 18 21 24
[SEP]

.
Marriott

Clara
Santa

the
at

stayed
and

University
Stanford

at
practiced

Broncos
The

.
Marriott

Jose
San
the
at

stayed
and

facility
practice

State
Jose
San
the

used
Panthers

The
[SEP]
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[SEP]
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(b) Gating hidden states.

Figure 8: QA: attribution the inputs (a) and hidden
states (b). The correct answers is highlighted in bold.

ing to the ground truth answer are still active on
top layers when the model makes a wrong predic-
tion indicates that the model is still considering
different span options across top layers as well.

Comparison to other methods As we do not
have access to the ground-truth, we start by con-
trasting DIFFMASK qualitatively to other attribu-
tion methods on a few examples. We highlight
some common pitfalls that afflict other methods
(such as the hindsight bias) and how DIFFMASK

overcomes those. This helps demonstrate our
method’s faithfulness to the original model.

Figure 2 shows input attributions by different
methods on an example from the validation set.
Erasure (Figure 2d), as expected, does not provide
useful insights, it essentially singles out the answer
discarding everything else including the question.
This cannot be faithful and is a simple consequence
of erasure’s hindsight bias: when only the span that
contains the answer is presented as input, the model
predicts that very span as the answer, but this does
not imply that the model ignores everything else
when presented with the complete document as in-
put. The methods of Schulz et al. (2020) and Guan
et al. (2019) optimize attributions on single ex-
amples and thus also converge to assigning high
importance mostly to words that support the cur-
rent prediction and that indicate the question type.
Integrated gradient does not seem to highlight any
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discernible pattern, which we speculate is mainly
because a zero baseline is not suitable for word
embeddings. Choosing a more adequate baseline is
not straightforward and remains an important open
issue (Sturmfels et al., 2020). Note that, DIFF-
MASK without amortization (Figure 2f) resembles
erasure (as shown in § 3.2 for SST).

Differently from all other methods, our DIFF-
MASK probes the network to understand what it
‘knows’ about the input-output mapping in differ-
ent layers. In Figure 2e we show the expectation of
keeping input tokens conditioned on any one of the
layers in the model to make such predictions (see
Figure 8a for a per-layer visualization). Our input
attributions highlight that the model, in expectation
across layers, wants to keep words in the question,
the predicate ‘practice’ in both sentences as well
as all potential candidate answers (i.e., named enti-
ties). But eventually, the most important spans are
in the question and the answer itself.

4 Related Work

While we motivated our approach through its re-
lation to erasure, an alternative way of looking at
our approach is considering it as a perturbation-
based method. This recently introduced class of
attribution methods (Ying et al., 2019; Guan et al.,
2019; Schulz et al., 2020; Taghanaki et al., 2019),
instead of erasing input, injects noise. Besides
back-propagation and attention-based methods dis-
cussed in the introduction, another class of interpre-
tation methods (Murdoch and Szlam, 2017; Singh
et al., 2019; Jin et al., 2020) builds on prior work
in cooperative game theory (e.g., Shapley value
of Shapley, 1953). These methods are not trivial
to apply to a new model, as they are architecture-
specific. Their hierarchical versions (e.g., Singh
et al., 2019; Jin et al., 2020) also make a strong
assumption about the structure of interaction (e.g.,
forming a tree) which may affect their faithfulness.
Also Chen et al. (2018) share some similarities to
our work as they also do amortization but use the
Gumbel softmax trick (Maddison et al., 2017; Jang
et al., 2017) to approximate minimal subset selec-
tion. They assume that the subset contains exactly
k elements where k is a hyperparameter. Moreover,
their explainer is a separate model predicting input
subsets, rather than a ‘probe’ on top of the model’s
hidden layers, and hence cannot be used to reveal
how decisions are formed across layers.

A large body of literature analyzed BERT and

Transformed-based models. For example, Ten-
ney et al. (2019) and van Aken et al. (2019)
probed BERT layers for a range of linguistic tasks,
while Hao et al. (2019) analyzed the optimization
surface. Rogers et al. (2020) provides a compre-
hensive overview of recent BERT analysis papers.

There is a stream of work on learning inter-
pretable models by means of extracting latent ra-
tionales (Lei et al., 2016; Bastings et al., 2019).
Some of the techniques underlying DIFFMASK are
related to that line of work. They employ stochas-
tic masks to learn an interpretable model, which
they train by minimizing a downstream loss subject
to constraints on L0, whereas we employ stochas-
tic masks to interpret an existing model, and for
that, we minimize L0 subject to constraints on that
model’s output distribution. In our very recent
work Schlichtkrull et al. (2020), we also employ
stochastic masks and L0 regularization for analyz-
ing graph neural networks. We learn which edges
are relevant in multi-hop question answering and
graph-based semantic role labeling (Marcheggiani
and Titov, 2017; De Cao et al., 2019).

5 Conclusion

We have introduced a new post hoc interpretation
method which learns to completely remove sub-
sets of inputs or hidden states through masking.
We circumvent an intractable search by learning
an end-to-end differentiable prediction model. To
overcome the hindsight bias problem, we probe the
model’s hidden states at different depths and amor-
tize predictions over the training set. Faithfulness is
validated in a controlled experiment pointing more
clearly to some flaws of other attribution methods.
We used our method to study BERT-based models
on sentiment classification and question answer-
ing. DIFFMASK sheds light on what different lay-
ers ‘know’ about the input and where information
about the prediction is stored in different layers.
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Daumé, Miro Dudik, and Hanna Wallach. 2019. Im-
proving fairness in machine learning systems: What
do industry practitioners need? In Proceedings
of the 2019 CHI Conference on Human Factors in
Computing Systems, CHI ’19, page 1–16, New York,
NY, USA. Association for Computing Machinery.

Alon Jacovi and Yoav Goldberg. 2020. Towards faith-
fully interpretable NLP systems: How should we de-
fine and evaluate faithfulness? In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4198–4205, Online. As-
sociation for Computational Linguistics.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not Explanation. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3543–3556, Minneapolis, Minnesota.
Association for Computational Linguistics.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cat-
egorical reparameterization with Gumbel-Softmax.
International Conference on Learning Representa-
tions.

Xisen Jin, Junyi Du, Zhongyu Wei, Xiangyang Xue,
and Xiang Ren. 2020. Towards Hierarchical Im-
portance Attribution: Explaining Compositional Se-
mantics for Neural Sequence Models. International
Conference on Learning Representations.

Divyansh Kaushik and Zachary C. Lipton. 2018. How
much reading does reading comprehension require?
a critical investigation of popular benchmarks. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
5010–5015, Brussels, Belgium. Association for
Computational Linguistics.

Been Kim. 2015. Interactive and interpretable ma-
chine learning models for human machine collabo-
ration. Ph.D. thesis, Massachusetts Institute of Tech-
nology.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. International
Conference on Learning Representations.

Diederik P Kingma and Max Welling. 2014. Auto-
encoding variational bayes. International Confer-
ence on Learning Representations.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4365–4374, Hong Kong, China. Association for
Computational Linguistics.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 107–117, Austin,
Texas. Association for Computational Linguistics.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Un-
derstanding neural networks through representation
erasure. arXiv:1612.08220.

Christos Louizos, Max Welling, and Diederik P.
Kingma. 2018. Learning Sparse Neural Networks
through L0 Regularization. In International Confer-
ence on Learning Representations.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh.
2017. The concrete distribution: A continuous re-
laxation of discrete random variables. International
Conference on Learning Representations.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1507–1516, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc,
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