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Abstract

BERT and its variants have achieved state-
of-the-art performance in various NLP tasks.
Since then, various works have been proposed
to analyze the linguistic information being cap-
tured in BERT. However, the current works
do not provide an insight into how BERT is
able to achieve near human-level performance
on the task of Reading Comprehension based
Question Answering. In this work, we attempt
to interpret BERT for RCQA. Since BERT lay-
ers do not have predefined roles, we define a
layer’s role or functionality using Integrated
Gradients. Based on the defined roles, we per-
form a preliminary analysis across all layers.
We observed that the initial layers focus on
query-passage interaction, whereas later lay-
ers focus more on contextual understanding
and enhancing the answer prediction. Specif-
ically for quantifier questions (how much/how
many), we notice that BERT focuses on con-
fusing words (i.e., on other numerical quan-
tities in the passage) in the later layers, but
still manages to predict the answer correctly.
The fine-tuning and analysis scripts will be
publicly available at https://github.com/
iitmnlp/BERT-Analysis-RCQA.

1 Introduction

The past decade has witnessed a surge in the de-
velopment of deep neural network models to solve
NLP tasks. Pretrained language models such as
ELMO (Peters et al., 2018a), BERT (Devlin et al.,
2018) , XLNet (Yang et al., 2019) etc. have
achieved state-of-the-art results on various NLP
tasks. This success motivated various studies to un-
derstand how BERT achieves human-level perfor-
mance on these tasks. Tenney et al. (2019); Peters
et al. (2018b) analyze syntactic and semantic roles
played by different layers in such models. Clark
et al. (2019) specifically analyze BERT’s attention
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heads for syntactic and linguistic phenomena. Most
of these works focus on tasks such as sentiment
classification, syntactic/semantic tags prediction,
natural language inference, and so on. However,
to the best of our knowledge, BERT has not been
thoroughly analyzed for complex tasks like RCQA.
It is a challenging task because of 1) the large num-
ber of parameters and non-linearities in BERT, and
2) the absence of pre-defined roles across layers
in BERT as compared to pre-BERT models like
BiDAF (Seo et al., 2016) or DCN (Xiong et al.,
2016). In this work, we take the first step to iden-
tify each layer’s role using the attribution method
of Integrated Gradients (Sundararajan et al., 2017).
We then try to map these roles to the following
functions, deemed necessary in pre-BERT models
to reach the answer: (i) learn contextual representa-
tions for the passage and the question, individually,
(ii) attend to information in the passage specific to
the question and, (iii) predict the answer.

We perform analysis on the SQuAD (Rajpurkar
et al., 2016) and DuoRC (Saha et al., 2018) datasets.
We observe that the initial layers primarily focus
on question words that are present in the passage.
In the later layers, the focus on question words
decreases, and more focus is on the supporting
words that surround the answer and the predicted
answer span. Further, through a focused analysis
of quantifier questions (questions that require a
numerical entity as the answer), we observe that
BERT pays importance to many words similar to
the answer (same type, such as numbers) in later
layers. We find this intriguing since, even after
marking confusing words spread across passage as
important, BERT’s prediction accuracy is high. We
also provide qualitative analysis to demonstrate the
above trends.

https://github.com/iitmnlp/BERT-Analysis-RCQA
https://github.com/iitmnlp/BERT-Analysis-RCQA
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2 Related Work

In the past few years, various large-scale datasets
have been proposed for the RCQA task (Nguyen
et al., 2016; Joshi et al., 2017; Rajpurkar et al.,
2016; Saha et al., 2018) which have led to various
deep neural-network (NN) based architectures such
as Seo et al. (2016); Dhingra et al. (2016). Ad-
ditionally, with complex pretraining, models such
as Liu et al. (2019); Lan et al. (2019); Devlin et al.
(2018) are very close to human-level performance.
Due to the large number of parameters and non-
linearity of deep NN models, the answer to the
question “how did the model arrive at the predic-
tion?”, is not known; hence, they are termed as
blackbox models. Motivated by this question, there
have also been many works that analyze the inter-
pretability of deep NN models on NLP tasks; many
of them analyze models based on in-built attention
mechanisms (Jain and Wallace, 2019; Serrano and
Smith, 2019; Wiegreffe and Pinter, 2019). Further,
various attribution methods such as Bach et al.
(2015); Sundararajan et al. (2017) have been pro-
posed to analyze them. Tenney et al. (2019) and
Peters et al. (2018b) perform a layerwise analysis
of BERT and BERT-like models to assign them
syntactic and semantic meaning using probing clas-
sifiers. Si et al. (2019) question BERT’s working
on QA tasks through adversarial attacks, similar
to Jia and Liang (2017); Mudrakarta et al. (2018).
They point out that BERT is prone to be fooled
by such attacks. Unlike these earlier works, we
focus on analyzing BERT’s layers specifically for
RCQA to understand their QA-specific roles and
their behavior on potentially confusing quantifier
questions.

3 Experimental Setup

For our BERT analysis, we use the BERT-BASE
model, which has 12 Transformer blocks (layers),
each with a multi-head self-attention and a feed-
forward neural network. We use the official code
and pre-trained checkpoints1 and fine-tune it for
two epochs for the SQuAD and DuoRC datasets
to achieve F1 scores of 88.73 and 54.80 on their
respective dev-splits. We use SQuAD (Rajpurkar
et al., 2016) 1.1 with 90k/10k train/dev samples,
each with a 100-300 words passage and the SelfRC
dataset in DuoRC (Saha et al., 2018) with 60k/13k
train/dev samples, each with a 500 (on average)

1https://github.com/google-research/
bert

words passage. For each passage, both datasets
have a natural language query and answer span in
the passage itself.

4 Layer-wise Functionality

As discussed earlier, we aim to understand each
BERT layer’s functionality for the RCQA task; we
want to identify the passage words that are of pri-
mary importance at each layer for the answer. Intu-
itively, the initial layers should focus on question
words, and the latter should zoom in on contex-
tual words that point to the answer. To analyze
the above, we use the attribution method Integrated
Gradients (Sundararajan et al., 2017) on BERT at a
layerwise level.

For a given passage P consisting of n words
[w1, w2, . . . , wn], query Q, and model f with θ
parameters, answer prediction is modeled as:

p(ws, we) = f(ws, we|P,Q, θ)

where ws, we are the predicted answer start and
end words or positions.
For any given layer l, the above is equivalent to:

p(ws, we) = fl(ws, we|El−1(P ), El−1(Q), θ)

where fl is the forward propagation from layer l to
the prediction. El(.), is the representation learnt for
passage or query words by a given layer l. To elab-
orate, we consider the network below the layer l as
a blackbox which generates input representations
for layer l. The Integrated Gradients for a Model
M , a passage word wi, embedded as xi ∈ RL is:

IG(xi) =

1∫
α=0

∂M(x̃+ α(xi − x̃))
∂xi

dα

where x̃ is a zero vector, that serves as a baseline
to measure integrated gradient for wi. We calcu-
late the integrated gradients at each layer IGl(xi)
for all passage words wi using Algorithm 1. We
approximate the above integral across 50 uniform
samples of α ∈ [0, 1]. We then compute impor-
tance scores for each wi by taking the euclidean
norm of IG(wi) and normalizing it to get a proba-
bility distribution Il over the passage words.

4.1 JSD with top-k retained/removed
We quantify and visualize a layer’s function as
its distribution of importance over the passage
words Il. To compute the similarity between any

https://github.com/google-research/bert
https://github.com/google-research/bert
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Algorithm 1 To compute Layer-wise Integrated
Gradients for layer l

1: p̃ = 0 //zero baseline
2: m = 50

3: Gl(p) =
1
m

∑m
k=1

∂fl(p̃+
k
m
(p−p̃))

∂El

4: IGl(p) = [(p− p̃)×Gl(p)]
5: // Compute squared norm for each word
6: Ĩl([w1, . . . , wk]) = ||IGl(p)|| ∈ Rk

7: Normalize Ĩl to a probability distribution Il

(a) (b)

(c) (d)

Figure 1: JSD between Il’s with top-2 items re-
moved/retained (SQuAD - (a), (b), DuoRC - (c), (d))

two layers x, y, we measure the Jensen-Shannon
Divergence (JSD) between their corresponding
importance distributions Ix, Iy. We calculate
the JSD scores between every pair of layers in
the model and visualize it as a nl × nl heatmap
(nl - number of layers in the model). A higher
JSD score corresponds to the two layers being
more different. This further means the two layers
consider different words as salient. We visualize
heatmaps for the dev-splits of SQuAD (Figures 1a,
1b) and DuoRC (Figures 1c, 1d), averaging over
1000 samples in each case.

We analyze the distribution in two parts: (i) we
retain only top-k scores in each layer and zero out
the rest, which denotes the distribution’s head. (ii)
we zero the top-k scores in each layer and retain the
rest, which denotes the distribution’s tail. In either
case, we re-normalize to get a probability distri-
bution. When comparing just the top-2 items, we

Layer Name % answer
span % Q-words % Contextual

Words
Layer 0 26.99 22.94 9.45
Layer 1 26.09 24.35 9.43
Layer 2 29.9 22.41 11.65
Layer 3 30.44 19.55 11.13
Layer 4 30.06 18.33 11.23
Layer 5 30.75 14.71 11.57
Layer 6 31.25 15.33 11.94
Layer 7 32.37 12.29 12.32
Layer 8 30.78 18.91 12.07
Layer 9 34.58 10.21 13.41
Layer 10 34.31 10.56 13.39
Layer 11 34.63 12.0 13.74

Table 1: Semantic statistics of top-5 words - SQuAD

Layer Name % answer
span % Q-words % Contextual

Words
Layer 0 35.14 17.89 27.53
Layer 1 37.29 18.29 29.88
Layer 2 38.30 19.59 30.05
Layer 3 34.37 18.88 25.83
Layer 4 33.93 20.77 26.20
Layer 5 36.32 16.16 27.97
Layer 6 35.34 15.75 27.05
Layer 7 41.20 10.57 31.12
Layer 8 40.38 8.50 22.16
Layer 9 41.25 8.03 17.9
Layer 10 43.93 5.58 15.85
Layer 11 44.37 6.00 33.74

Table 2: Semantic statistics of top-5 words - DuoRC

see higher values (min 0.08/max 0.72) in heatmap
1a than in heatmap 1b (min 0.09/max 0.26). Sim-
ilarly, we see higher values (min 0.23/max 0.89)
in heatmap 1c than in heatmap 1d (min 0.12/max
0.28).We conclude that a layer’s function is re-
flected in words high up in the importance dis-
tribution. As we remove them, we encounter an
almost uniform distribution across the less impor-
tant words. Hence to correctly identify a layer’s
functionality, we need to focus only on the head
(top-k words) and not on the tail.

5 Results and Discussions

5.1 Probing layers: QA functionality
Based on the defined layers’ functionality Il, we try
to identify which layers focus more on the question,
the context around the answer, etc. We segregate
the passage words into three categories: answer
words, supporting words, and query words, where
supporting words are the words surrounding the
answer within a window size of 5. Query words
are the question words which appear in the passage.
We take the top-5 words marked as important in Il
for any layer l and compute how many words from
each of the above-defined categories appear in the
top-5 words (results in Tables 1 and 2). We observe
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Question:Why was Polonia relegated from the country’s top flight in 2013?
Answer: disastrous financial situation

L0 Polonia was relegated from the country’s top
flight in 2013 because of their disastrous financial
situation. They are now playing in the 4th league....

L9 Polonia was relegated from the country’s top flight in
2013 because of their disastrous financial situation.
They are now playing in the 4th league....

L1 Polonia was relegated from the country’s top flight in
2013 because of their disastrous financial situation.
They are now playing in the 4th league....

L10 Polonia was relegated from the country’s top flight in
2013 because of their disastrous financial situation.
They are now playing in the 4th league....

L2 Polonia was relegated from the country’s top flight in
2013 because of their disastrous financial situation.
They are now playing in the 4th league....

L11 Polonia was relegated from the country’s top flight in
2013 because of their disastrous financial situation.
They are now playing in the 4th league....

Table 3: Heatmap visualisation of the Il distribution over BERT’s first and last 3 layers, for a sample from SQuAD.
The initial layers focus on question specific words and latter focus on supporting words that lead to answer
.

similar overall trends for both SQuAD and DuoRC.
From Column 3, it is evident that the model first
tries to identify the part of the passage where the
question words are present. As it gets more con-
fident about the answer (Column 2), the question
words’ importance decreases. From Col. 4, we
infer that the layers’ contextual role increases from
the initial to the final layers.
Qualitative Example: We present a visualization
of the top-5 words of the first and last three layers
(with respect to Il) in Table 3 for a sample from
SQuAD. We see that all six layers give a high score
to the answer span itself (‘disastrous’, ‘situation’).
Further, we see that the initial layers 0,1 and 2 are
also trying to connect the passage and the query
(‘relegated’, ‘because’, ‘Polonia’ get high impor-
tance scores). Hence, in this example, we see that
the initial layers incorporate interaction between
the query and passage. In contrast, the last lay-
ers focus on enhancing and verifying the model’s
prediction.

5.2 Visualizing Word Representations

We now qualitatively analyze the word represen-
tations of each layer. We visualize the t-SNE plot
for one such passage, question,answer triplet from
SQuAD (refer Table 4) in Figures 2, 3. We visual-
ize the answer, supporting words, query words, and
special tokens. Note that we have grayed out the
other words in the passage. In initial layers (such
as layer 0), we observe that similar words such
as stop-words, team names, numbers {eight, four},
etc., are close to each other. In Layer 4, the passage,
question, and answer come closer to each other. By
layer 9, we see that the answer words are segre-
gated from the rest of the words, even though the
passage word ‘four’, which is of the same type as
the answer ‘eight’ (number), is still close to ‘eight’.
We see more interesting observations yet here: (i)

Passage: the panthers finished the regular sea-
son with a 15 – 1 record, ... the broncos ... fin-
ished the regular season with a 12 – 4 record.
They joined the patriots , dallas cowboys , and
pittsburgh steelers as one of teams that have
made eight appearances in the super bowl .
Question: How many appearances have
the Broncos made in the super bowl?

Table 4: Sample from the dev-split of SQuAD. Blue
shows the answer, purple shows the contextual passage
words and green shows the query

.

in later layers, the question words separate from
the answer and the supporting words, (ii) Across
all 12 layers, embeddings for four, eight remain
very close together, which could have easily led to
the model making a wrong prediction. However,
the model still predicts the answer ‘eight’ correctly.
We were not able to identify the layer where the dis-
tinction between the two confusing answers occurs.

Quantifier questions: For a detailed analysis of
quantifier questions like how many, how much that
could have many confusing answers (i.e., numeri-
cal words) in the passage, we perform further anal-
ysis. Based on our layer-level functionality Il, we
compute the number of words that are numerical
quantities in the top-5 words, and the entire pas-
sage, and compute their ratio. This represents the
ratio of confusing words that are marked as impor-
tant by each layer. There are 799 and 310 such
questions in SQuAD and DuoRC, respectively.
Interestingly, we observe that this ratio increases
as we go higher up (SQuAD: L0 - 5.6%, L10 -
17.7%, L11 - 15.5%, DuoRC: L0 - 12.9%, L10 -
21.6%, L11 - 22.6%). For the example in Table
4, we observed that in its later layers, BERT gives
high importance to the words ‘eight’, ‘four’, and
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Figure 2: t-SNE plots - word embeddings of layers 0, 4
for the example in Table 4. For layer 0 similar words
(e.g., team names, stop words) are close to each other.
For intermediate layers like Layer 4, all the contextual,
answer and question words intermingle.

‘second’ (numerical quantities), even though the
latter are not related or necessary to answer the
question. This shows that BERT, in its later layers,
distributes its focus over confusing words. How-
ever, it still manages to predict the correct answer
for such questions (87.35% EM for such questions
for SQuAD, and 53.5% in DuoRC); BERT also has
high confidence in predicting the answer for such
questions (86.5% vs 80.4% for quantifier questions
with more than one numerical entity in the passage
vs non-quantifier questions in SQuAD, 95.2% vs
87.2% in DuoRC). This behavior is very different
from the assumed roles a layer might take to an-
swer the question, as it is expected that such words
were considered in the initial rather than final lay-
ers. This shows the complexity of BERT and the
difficulty of interpreting it for the RCQA task.

Figure 3: t-SNE plots- word embeddings of layers 9, 11
for the example in Table 4. In layers 9-11, the answer
eight segregates from other words. However, numerical
entity four, is very close to the answer.

6 Conclusion

In this work, we highlight that the lack of pre-
defined roles for layers adds to the difficulty of
interpreting highly complex BERT-based models.
We first define each layer’s functionality using Inte-
grated Gradients. We present results and analysis to
show that BERT is learning some form of passage-
query interaction in its initial layers before arriving
at the answer. We found the following observations
interesting and with a potential to be probed further:
(i) why do the question word representations move
away from contextual and answer representation in
later layers? (ii) If the focus on confusing words
increases from the initial to later layers, how does
BERT still have a high accuracy? We hope that
this work will help the research community inter-
pret BERT for other complex tasks and explore the
above open-ended questions.
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Layer Name % common / proper /
cardinal nouns % verbs % stop words % adverbs % adjectives % punct marks % words in

answer span
Layer 0 49.57 12.92 12.63 2.73 11.63 11.41 26.99
Layer 1 53.65 13.81 10.71 3.13 11.44 8.27 26.09
Layer 2 52.16 14.19 13.71 3.24 12.52 5.25 29.9
Layer 3 49.63 12.98 16.27 2.76 10.97 8.52 30.44
Layer 4 47.99 12.32 19.93 2.87 10.58 7.29 30.06
Layer 5 46.97 12.34 19.35 2.73 9.56 10.29 30.75
Layer 6 49.61 12.13 17.38 2.51 9.74 9.75 31.25
Layer 7 50.43 11.31 16.23 2.61 9.87 10.85 32.37
Layer 8 54.16 11.59 14.59 2.58 11.27 6.94 30.78
Layer 9 53.09 10.11 12.98 2.42 11.01 11.82 34.58

Layer 10 57.8 8.67 12.2 2.11 10.93 9.64 34.31
Layer 11 54.58 8.77 14.57 2.31 10.43 10.63 34.63

Table 5: Part-of-Speech statistics of top-5 words - SQuAD
Layer Name % common / proper /

cardinal nouns % verbs % stop words % adverbs % adjectives % punct marks % words in
answer span

Layer 0 55.81 12.63 9.5 1.97 9.56 10.87 35.14
Layer 1 58.1 13.21 8.41 2.16 10.03 8.6 37.29
Layer 2 59.42 13.9 8.67 2.22 10.54 5.61 38.30
Layer 3 55.03 13.61 11.55 2.15 9.54 8.78 34.37
Layer 4 54.43 13.91 12.63 1.97 9.14 8.26 33.93
Layer 5 51.97 13.09 12.58 1.82 8.04 12.79 36.32
Layer 6 54.88 12.35 9.84 1.77 8.45 12.88 35.34
Layer 7 60.12 10.02 9.34 1.8 9.07 9.94 41.20
Layer 8 60.81 8.56 7.64 1.84 9.2 12.33 40.38
Layer 9 60.96 8.84 8.2 1.84 9.24 11.33 41.25

Layer 10 57.43 8.42 10.57 1.81 9.05 13.24 43.93
Layer 11 60.46 9.07 11.06 1.97 9.39 8.65 44.37

Table 6: Part-of-Speech statistics of top-5 words - DuoRC

A Probing layers: POS Tags

Based on the layers’ functionality Il, we analyze
the top-5 important words in each layer on the basis
of POS tags. The results can be found in Tables
5 and 6. We note that all 12 layers are majorly
focused on entity based words (common nouns,
proper nouns and numerical entities). Surprisingly,
all layers give approximately 10% of their impor-
tance to punctuation marks and stopwords each,
the same level of importance that is given to verbs
and adjectives. It is worth noting that on average,
answer spans in SQuAD on 82.04% entites, and
answer spans in DuoRC are 79.78% entities.


