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Abstract

Given the success of Transformer-based mod-
els, two directions of study have emerged: in-
terpreting role of individual attention heads
and down-sizing the models for efficiency.
Our work straddles these two streams: We
analyse the importance of basing pruning
strategies on the interpreted role of the at-
tention heads. We evaluate this on Trans-
former and BERT models on multiple NLP
tasks. Firstly, we find that a large fraction of
the attention heads can be randomly pruned
with limited effect on accuracy. Secondly, for
Transformers, we find no advantage in prun-
ing attention heads identified to be important
based on existing studies that relate impor-
tance to the location of a head. On the BERT
model too we find no preference for top or
bottom layers, though the latter are reported
to have higher importance. However, strate-
gies that avoid pruning middle layers and con-
secutive layers perform better. Finally, during
fine-tuning the compensation for pruned atten-
tion heads is roughly equally distributed across
the un-pruned heads. Our results thus suggest
that interpretation of attention heads does not
strongly inform pruning.

1 Introduction

The acclaimed success of Transformer-based mod-
els across NLP tasks has been followed by two im-
portant directions of research. In the first direction,
interpretability studies aim to understand how these
models work. Given that multi-headed attention is
an important feature of these models, researchers
have focused on attention heads as the units of in-
terpretation. These studies comment on the role
of each attention head and the relation between a
head’s position and its significance (Clark et al.,
2019; Michel et al., 2019; Voita et al., 2019b,a; Liu
et al., 2019; Belinkov et al., 2017). These studies
show that certain heads are more important based

on (i) their position in the network (top, middle,
bottom), or (ii) the component to which they be-
long (encoder self-attention, decoder self-attention,
encoder-decoder cross attention), or (iii) the func-
tional role they play (e.g., syntactic/semantic).

In the other major direction, these large
Transformer-based models have been down-sized
to be more time and space efficient. Different meth-
ods for down-sizing have been studied such as prun-
ing (McCarley, 2019; Gordon et al., 2020; Sajjad
et al., 2020), distillation (Sanh et al., 2019; Liu
et al., 2019; Jiao et al., 2019), weight quantiza-
tion (Zafrir et al., 2019; Shen et al., 2019), and
weight factorization and parameter sharing (Lan
et al., 2019). Pruning techniques have been partic-
ularly successful in reinforcing the folk-lore that
these models are highly over-parameterized. These
pruning methods prune parameters based on magni-
tude (Gordon et al., 2020), importance (McCarley,
2019) or layer-wise (Sajjad et al., 2020).

In this paper, we straddle these two directions
of work by asking the following question: Can
we randomly prune heads, thus completely ignor-
ing any notion of importance of heads? To answer
this, we systematically study the effect of randomly
pruning specific subsets of attention heads on the
accuracy on different tasks. Across experiments,
we modify the random sampling to vary the per-
centage of heads pruned and their location in the
network (components and layers).

We evaluate these experiments both on the Trans-
former and BERT models. Our results show that
a large fraction of attention heads can be pruned
randomly: 75% of the attention heads of Trans-
former can be randomly pruned with a drop of less
than 1 BLEU point on NMT tasks. Similarly, half
of the attention heads of BERT can be randomly
pruned with an average drop in accuracy of less
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than 1% across a chosen set of GLUE tasks1. Sig-
nificantly for Transformers, we find no evidence for
pruning methods preferring specific attention heads
based on their location; even when the locations
are chosen to match attention heads identified to be
more important in existing studies. Similarly on the
BERT model, pruning top and bottom layers do not
show significant difference, even though existing
studies attribute higher importance to the latter (Saj-
jad et al., 2020). However, we identify a preference
to avoid pruning the middle layers and consecutive
layers. Lastly, we check if during fine-tuning cer-
tain heads compensate more for the pruned heads.
If so, such heads would perhaps be more important.
However, we find no such evidence. In particu-
lar, during fine-tuning, the un-pruned heads change
similarly across most pruning configurations. Over-
all, our experiments suggest that interpretation of
attention heads does not strongly inform pruning.
The rest of the paper is organized as follows: Sec-
tion 2 mentions about the models and the datasets
used for this work followed by Section 3 which
provides details of the experimental process. This
section reports results on both Transformer and
BERT models. We summarize our work in Section
4.

2 Models and Datasets

2.1 Multi-headed Self Attention

In each multi-headed attention layer we have multi-
ple attention heads which transform the representa-
tion of inputs of a given sequence of tokens. Given
the dv dimensional representation of T tokens as
X ∈ <T×dv , the output of multi-headed self atten-
tion with N attention heads is given by

ConcatNi=1

(
softmax

(
(XW q

i )(XWk
i )T√

dk

)
XW v

i

)
, (1)

where W k
i ,W

q
i ,W

v
i ∈ <dv×dk are parameters of

the i-th attention head.

2.2 Transformers

We use the Transformer-Base model (Vaswani
et al., 2017) which has 6 layers each in the three
components: encoder self-attention (ES), encoder-
decoder cross-attention (ED), and decoder self-
attention (DS). In each layer of each of the three
components, we have 8 attention heads, totalling to
3× 6× 8 = 144 attention heads. We train the mod-

1We avoid WNLI, RTE, MRPC, STS-B, CoLA as the
results on these datasets tend to be noisy and unstable as
reported in (Gordon et al., 2020; Sajjad et al., 2020)

els with 2.5 million sentence pairs each from the
WMT’14 English-Russian (EN-RU) and English-
German (EN-DE) datasets. We report BLEU scores
on WMT’s newstest2014. We use Adam optimizer
(Kingma and Ba, 2014) with parameters β1 = 0.9,
β2 = 0.997, and ε = 10−9. We vary the learning
rate according to the formula described in Vaswani
et al. (2017) with warmup steps = 16k. We use
large batch sizes of 32k and 25k for EN-RU and
EN-DE, respectively, as it has been established that
large batch sizes are inherent to the performance of
Transformers (Popel and Bojar, 2018; Voita et al.,
2019b). We achieve effectively large batch sizes
using the technique of gradient accumulation on
single NVIDIA V100 and 1080Ti GPUs.

2.3 BERT

In all experiments involving BERT, we use the
BERT Base-uncased model (Devlin et al., 2018).
It has 12 layers and each layer contains 12 atten-
tion heads, summing to 144 attention heads. We
fine-tune and evaluate the pre-trained model2 on
sentence entailment task MNLI-M, the question
similarity task QQP, the question-answering task
QNLI, and the movie review task SST-2 from the
GLUE Benchmark (Wang et al., 2018). We re-
port accuracies on the official development sets
of the considered GLUE tasks. For each of the
four GLUE tasks, namely MNLI-M, QQP, QNLI
and SST-2, we tried combinations of batch size
and learning rate from {8, 16, 32, 64, 128} and
{2, 3, 4, 5} × 10−5 respectively and selected the
best performing configuration. The exact hyperpa-
rameters used for each of the tasks have been made
available with the code released3. Each BERT ex-
periment was run on a single Cloud TPU (v2-8).

3 Experiments

3.1 Experimental Process

In all the experiments, we perform random pruning
where a subset of attention heads chosen by random
sampling are zeroed out. Formally, each attention
head is assigned a weight ξ which is 0 if the head
is pruned and 1 otherwise. Then, the output of an
attention layer is given by

ConcatNi=1

(
ξisoftmax

(
(XW q

i )(XWk
i )T√

dk

)
XW v

i

)
(2)

After pruning, we fine-tune the Transformer model
for 30 epochs and the BERT model for 10 epochs.

2https://github.com/google-research/bert
3https://github.com/iitmnlp/head importance and pruning
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Since the values ξ are randomly sampled, in each
experiment we report the average of three differ-
ent samplings of ξ. The standard deviations are
0.668% and 0.778% of the reported average values
for Transformer and BERT respectively.

3.2 Experimental Results on Transformers
Varying Pruning Percentage. We randomly
prune attention heads across all components and
layers varying the percentage of pruning from 25%
to 87% (Table 1). We observed that in the case of
extreme pruning, i.e., keeping just one head in each
layer of each of the three components (which cor-
responds to a pruning percentage of 87%), the drop
in BLEU was 1.62 (EN-RU) and 1.03 (EN-DE) as
can be seen from Table 1. Across both EN-RU
and EN-DE tasks, 60% of the attention heads can
be pruned with a maximum drop in BLEU score
by only 0.15. As can be observed from Figure
1, the drop is sharper as we increase the pruning
percentage beyond 60%.

% Pruning EN-RU EN-DE
0 (Baseline) 29.09 27.95

25 29.59 (+0.50) 28.19 (+0.24)
35 29.29 (+0.20) 27.94 (-0.01)
50 29.38 (+0.29) 28.02 (+0.07)
55 29.00 (-0.09) 28.24 (+0.29)
60 28.94 (-0.15) 27.88 (-0.07)
75 28.22 (-0.87) 27.49 (-0.46)
81 27.97 (-1.12) 26.80 (-1.15)
87 27.47 (-1.62) 26.92 (-1.03)

Table 1: BLEU scores for Transformer on EN-RU and
EN-DE datasets when subject to varying pruning per-
centages. Difference from the baseline score is indi-
cated in brackets.

Pruning based on Layer Numbers. Voita et al.
(2019b) identify that attention heads in specific
layers of the Transformer – lower layers of Self-
Attention components, i.e., Encoder-Self (ES) and
Decoder-Self (DS), and higher layers of Encoder-
Decoder cross attention (ED) – are more important.
We evaluate the correspondence of this importance
to pruning. We choose 5 pruning percentages from
25% to 75% and in each case two pruning config-
urations: One where the heads considered impor-
tant are retained and the other where the important
heads are pruned. The configurations and the corre-
sponding BLEU scores on the EN-RU dataset are
shown in Table 2 where each configuration is spec-
ified as a string. For example, the string 777322
indicates that 7 heads each were retained in the first
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Figure 1: Effect of random pruning on the performance
of Transformer and BERT for various pruning percent-
ages.

% Configuration BLEU Scores
ES ED DS

0 888888 888888 888888 29.09

25 888444 444888 888444 29.62 (+0.53)
444888 888444 444888 29.43 (+0.34)

40 777322 233777 777332 29.17 (+0.08)
223777 777332 233777 29.57 (+0.48)

50 666222 222666 666222 29.01 (-0.08)
222666 666222 222666 29.35 (+0.26)

60 555211 112555 555211 28.99 (-0.10)
112555 555211 112555 28.78 (-0.31)

75 333111 111333 333111 28.48 (-0.61)
111333 333111 111333 28.35 (-0.74)

Table 2: BLEU scores for different pruning configura-
tions of Transformer. Every row has 2 configurations:
first, where the important heads are retained, and sec-
ond, where the important heads are pruned.

three layers, 3 in the fourth layer and 2 each in the
last two layers. For each pruning percentage, the
first row corresponds to the configuration in which
heads considered important (Voita et al., 2019b)
were retained and the second row corresponds to
the adversarial configuration in which heads con-
sidered important were pruned. We identify no
preference in pruning as for each pruning percent-
age the performance of both configurations is very
similar.

Pruning Based on Component. Some studies
show that heads in the ED component are most
important while those in the ES module are least
important (Voita et al., 2019b). We choose 4 differ-
ent pruning percentages and in each case consider
three configurations where the number of attention
heads is least in one chosen component (ES, ED,
DS). The configurations and corresponding BLEU
scores on the EN-RU dataset are shown in Table 3.
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Pruning % Configuration BLEU Score
Baseline (48,48,48) 29.09

(14,31,30) 28.96 (-0.13)
48% (31,14,30) 29.00 (-0.09)

(30,31,14) 29.13 (+0.04)
(12,21,25) 28.48 (-0.61)

60% (21,12,25) 28.78 (-0.31)
(25,21,12) 28.48 (-0.61)
(8,13,15) 27.95 (-1.14)

75% (13,8,15) 27.96 (-1.13)
(15,13,8) 28.04 (-1.05)
(5,9,12) 27.24 (-1.85)

82% (9,5,12) 26.95 (-2.14)
(12,9,5) 27.83 (-1.26)

Table 3: BLEU scores for different pruning configura-
tions of Transformer specified by the triple denoting the
number of heads retained in the Encoder-Self, Encoder-
Decoder, and Decoder-Self attention components.

We identify no consistent preference in the pruning
strategy: In the 4 cases considered, each of the 3
configurations has the highest BLEU score in at
least one case. Note that we chose the number of
heads in each layer (14, 31, etc) to be consistent
with those used in (Voita et al., 2019b).

3.3 Experimental Results on BERT

% Pruning MNLI-M QQP QNLI SST-2
0 83.69 91.22 91.66 92.88
10 83.70 91.39 91.60 92.48
20 82.80 91.09 90.33 92.25
30 82.87 91.19 90.84 92.48
40 82.48 91.05 90.40 92.27
50 83.02 90.90 90.04 92.00
60 81.35 90.56 87.31 91.89
70 80.40 89.83 86.85 90.86
80 78.93 90.03 86.40 89.96
90 75.08 87.44 81.80 87.11

Table 4: Performance of random pruning on BERT for
different pruning percentages. The accuracies are re-
ported on the official GLUE development datasets.

Varying Pruning Percentage. We vary the prun-
ing percentage from 10 to 90% and report the accu-
racy on the 4 GLUE tasks: MNLI-M, QQP, QNLI,
and SST-2 (Table 4). We observe that half of the
attention heads can be pruned with an average ac-
curacy drop of under 1%. As shown in Figure 1,
beyond 50% pruning, the accuracy drop is sharper.

Pruning based on Layer Numbers. To identify
any preference to pruning heads in specific layers,
we consider several configurations as shown in Ta-
ble 5, where we prune a subset of layers entirely,

i.e. we prune all the attention heads of particular
layers. When all the self-attention heads of a layer
l are pruned, only the feed-forward network of that
layer will be active whose input will just be the
output from the previous layer l-1.

Layers Pruned MNLI-M QQP QNLI SST-2
0 (Baseline) 83.69 91.22 91.66 92.88

Top 1 82.95 91.33 91.48 91.85
Bottom 1 83.65 91.42 91.17 93.11

Top 3 82.58 90.85 89.2 92.31
Bottom 3 83.36 90.95 90.88 92.54

Top 6 80.98 90.52 87.44 90.02
Bottom 6 79.29 90.17 87.40 91.05

Top 8 77.59 89.34 85.08 88.53
Bottom 8 78.07 89.67 84.22 87.95

Top 1, Bottom 1 83.33 91.23 90.70 92.88
Middle 2 83.60 91.08 90.80 91.74

Top 2, Bottom 2 82.41 91.11 90.48 92.20
Middle 4 81.84 90.87 86.14 90.94

Top 3, Bottom 3 81.72 90.67 88.30 92.31
Middle 6 80.08 90.49 87.07 87.84

Top 4, Bottom 4 79.47 89.57 86.01 90.36
Middle 8 78.88 89.55 83.67 88.87

Table 5: Accuracy on GLUE tasks for multiple layer-
wise pruned configurations of BERT.

Bottom layers of BERT have been identified to
model word morphology (Liu et al., 2019; Belinkov
et al., 2017) and are considered to be important (Saj-
jad et al., 2020). Further, recent work has identified
high cosine-similarity between output vectors of
the top layers, indicating reduced importance of
top layers (Goyal et al., 2020). We relate these
studies to pruning by comparing the pruning of the
same number of top and bottom layers (rows 2-9
in Table 5). Amongst the four cases, two cases
each favor pruning top layers and bottom layers,
revealing no preference in pruning.

The middle layers in BERT have been shown to
have specific characteristics of higher attention en-
tropy and greater attention to specific tokens (Clark
et al., 2019). We thus considered configurations
where we compare pruning top and bottom layers
against pruning middle layers (last eight rows of
Table 5). The results indicate a clear preference:
In 14 out of 16 cases, pruning the middle layers
performs worse that pruning equal number of lay-
ers distributed among top/bottom layers. Indeed,
we incur an additional over 2% average drop in
accuracy for QNLI and SST-2 tasks, indicating a
task-specific sensitivity to pruning middle layers.

Recent work has identified that consecutive lay-
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Figure 2: Head-wise average magnitude change of weights during fine-tuning for the following pruning configura-
tions of BERT for the MNLI-M task: (a) 10% pruned (b) 50% pruned (c) 90% pruned (d) Top three layers pruned
(e) Bottom three layers pruned (f) Alternate layers pruned.

ers of BERT have similar functionality (Lan et al.,
2019). To study this, we considered configurations
where six even and odd alternate layers are pruned
and compare it with other strategies of pruning 50%
layers of BERT (Table 6). We observe that the odd
configuration performs better than the Top 6 and
Bottom 6 configurations, indicating a preference to
avoid pruning of consecutive layers.

Layers Pruned MNLI-M QQP QNLI SST-2
Top 6 80.98 90.52 87.44 90.02

Bottom 6 79.29 90.17 87.40 91.05
Even 6 81.54 90.74 86.39 90.36
Odd 6 81.95 90.58 90.18 92.20

Top 3, Bottom 3 81.72 90.67 88.30 92.31
Middle 6 80.08 90.49 87.07 87.84

Table 6: Accuracy on GLUE tasks when half of the lay-
ers of BERT are pruned. Pruning odd numbered layers
retains the maximal accuracy across most of the tasks.

Effect of Fine-Tuning. Recent studies (Koval-
eva et al., 2019; Houlsby et al., 2019) have reported
that when fine-tuning BERT for specific tasks, the
top layers change much more than the lower layers.
We now evaluate this for fine-tuning after pruning.
In Figure 2, we plot the average change in mag-
nitude of parameters for different attention heads
(W q,W k,W v in Equation 1) for the MNLI-M task.
We observe no spatial patterns in the parameter
changes or with respect to relative distance from
pruned heads. In particular, for all experiments in

Table 5 and 6, the average change in attention pa-
rameters for any two layers differs by less than 10%.
This shows that the compensation for pruned atten-
tion heads is roughly equally distributed across the
unpruned heads.

4 Conclusion

We systematically studied the effect of pruning at-
tention heads in Transformer and BERT models.
We confirmed the general expectation that a large
number of attention heads can be pruned with lim-
ited impact on performance. For Transformers we
observed no preference for pruning attention heads
which have been identified as important in inter-
pretability studies. Similarly, for BERT we found
no preference between pruning top and bottom lay-
ers. However, pruning middle layers and consec-
utive layers led to a larger drop in accuracy. We
also observe that the recovery during fine-tuning
was uniformly distributed across attention heads.
We conclude that there is often no direct entailment
between importance of an attention head as charac-
terised in several recent studies, and low prunability
of the respective head using random pruning.
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