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Abstract

Pre-trained language models (e.g., BERT)
have achieved significant success in vari-
ous natural language processing (NLP) tasks.
However, high storage and computational
costs obstruct pre-trained language mod-
els to be effectively deployed on resource-
constrained devices. In this paper, we propose
a novel BERT distillation method based on
many-to-many layer mapping, which allows
each intermediate student layer to learn from
any intermediate teacher layers. In this way,
our model can learn from different teacher lay-
ers adaptively for various NLP tasks. In ad-
dition, we leverage Earth Mover’s Distance
(EMD) to compute the minimum cumulative
cost that must be paid to transform knowl-
edge from teacher network to student net-
work. EMD enables the effective matching
for many-to-many layer mapping. Further-
more, we propose a cost attention mechanism
to learn the layer weights used in EMD au-
tomatically, which is supposed to further im-
prove the model’s performance and accelerate
convergence time. Extensive experiments on
GLUE benchmark demonstrate that our model
achieves competitive performance compared
to strong competitors in terms of both accu-
racy and model compression. For reproducibil-
ity, we release the code and data at https:
//github.com/lxk00/BERT-EMD.

1 Introduction

In recent years, pre-trained language models, such
as GPT (Radford et al., 2018), BERT (Devlin
et al., 2018), XL-Net (Yang et al., 2019), have
been proposed and applied to many NLP tasks,
yielding state-of-the-art performances. However,
the promising results of the pre-trained language
models come with the high costs of computation
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and memory in inference, which obstruct these
pre-trained language models to be deployed on
resource-constrained devices and real-time applica-
tions. For example, the original BERT-base model,
which achieved great success in many NLP tasks,
has 12 layers and about 110 millions parameters.

It is therefore critical to effectively accelerate
inference time and reduce the computational work-
load while maintaining accuracy. This research
issue has attracted increasing attention (Wang et al.,
2019; Shen et al., 2019; Tang et al., 2019), of which
knowledge distillation (Tang et al., 2019) is consid-
ered to be able to provide a practical way. Typically,
knowledge distillation techniques train a compact
and shallow student network under the guidance
of a complicated larger teacher network with a
teacher-student strategy (Watanabe et al., 2017).
Once trained, this compact student network can be
directly deployed in real-life applications.

So far, there have been several studies, such
as DistilBERT (Tang et al., 2019), BERT-PKD
(Sun et al., 2019), TinyBERT (Jiao et al., 2019),
which attempt to compress the original BERT into
a lightweight student model without performance
sacrifice based on knowledge distillation. For ex-
ample, BERT-PKD (Sun et al., 2019) and Tiny-
BERT (Jiao et al., 2019) are two representative
BERT compression approaches, which encourage
the student model to extract knowledge from both
the last layer and the intermediate layers of the
teacher network.

Despite the effectiveness of previous studies,
there are still several challenges for distilling com-
prehensive knowledge from the teacher model,
which are not addressed well in prior works. First,
existing compression methods learn one-to-one
layer mapping, where each student layer is guided
by only one specific teacher layer. For example,
BERT-PKD uses the 2, 4, 6, 8, 10 teacher layers to
guide the 1 to 5 student layers, respectively. How-
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ever, these one-to-one layer mapping strategies are
assigned based on empirical observations without
theoretical guidance. Second, as revealed in (Clark
et al., 2019), different BERT layers could learn
different levels of linguistic knowledge. The one-
to-one layer mapping strategy cannot learn an opti-
mal, unified compressed model for different NLP
tasks. In addition, most previous works do not con-
sider the importance of each teacher layer and use
the same layer weights among various tasks, which
create a substantial barrier for generalizing the com-
pressed model to different NLP tasks. Therefore,
an adaptive compression model should be designed
to transfer knowledge from all teacher layers dy-
namically and effectively for different NLP tasks.

To address the aforementioned issues, we pro-
pose a novel BERT compression approach based on
many-to-many layer mapping and Earth Mover’s
Distance (EMD) (Rubner et al., 2000), called
BERT-EMD. First, we design a many-to-many
layer mapping strategy, where each intermediate
student layer has the chance to learn from all the in-
termediate teacher layers. In this way, BERT-EMD
can learn from different intermediate teacher layers
adaptively for different NLP tasks, motivated by
the intuition that different NLP tasks require differ-
ent levels of linguistic knowledge contained in the
intermediate layers of BERT. Second, to learn an
optimal many-to-many layer mapping strategy, we
leverage EMD to compute the minimum cumula-
tive cost that must be paid to transform knowledge
from teacher network to student network. EMD is
a well-studied optimization problem and provides
a suitable solution to transfer knowledge from the
teacher network in a holistic fashion.

We summarize our main contributions as fol-
lows. (1) We propose a novel many-to-many layer
mapping strategy for compressing the intermediate
layers of BERT in an adaptive and holistic fashion.
(2) We leverage EMD to formulate the distance be-
tween the teacher and student networks, and learn
an optimal many-to-many layer mapping based on
a solution to the well-known transportation prob-
lem. (3) We propose a cost attention mechanism
to learn the layer weights used in EMD automati-
cally, which can further improve the model’s per-
formance and accelerate convergence time. (4)
Extensive experiments on GLUE tasks show that
BERT-EMD achieves better performance than the
state-of-the-art BERT distillation methods.

2 Related Work

Language models pre-trained on large-scale cor-
pora can learn universal language representations,
which have proven to be effective in many NLP
tasks (Mikolov et al., 2013; Pennington et al., 2014;
Joulin et al., 2016). Early efforts mainly focus on
learning good word embeddings, such as word2vec
(Mikolov et al., 2013) and GloVe (Pennington et al.,
2014). Although these pre-trained embeddings
can capture semantic meanings of words, they
are context-free and fail to capture higher-level
concepts in context, such as syntactic structures
and polysemous disambiguation. Subsequently,
researchers have shifted attention to contextual
word embeddings learning, such as ELMo (Peters
et al., 2018), ULMFit (Howard and Ruder, 2018),
GPT (Radford et al., 2018), BERT (Devlin et al.,
2018), ENRIE (Zhang et al., 2019), XL-Net (Yang
et al., 2019), RoBERTa (Liu et al., 2019). For exam-
ple, Devlin et al. (2018) released the BERT-base of
110 million parameters and BERT-large of 330 mil-
lion parameters, which achieved significantly better
results than previous methods on GLUE tasks.

However, along with high-performance, the pre-
trained language models (e.g., BERT) usually have
a large number of parameters, which require a high
cost of computation and memory in inference. Re-
cently, many attempts have been made to reduce
the computation overhead and model storage of
pre-trained language models without performance
sacrifice. Existing compression techniques can be
divided into three categories: low-rank matrix fac-
torization (Wang et al., 2019), quantization (Shen
et al., 2019), and knowledge distillation (Tang et al.,
2019). Next, we mainly review the related works
that use knowledge distillation to compress the
BERT model.

Knowledge distillation using the teacher-student
strategy learns a lightweight student network under
the guidance of a large and complicated teacher net-
work. Mukherjee and Awadallah (2019) distilled
BERT into an LSTM network via both hard and
soft distilling methods. Sun et al. (2019) proposed
the BERT-PKD model to transfer the knowledge
from both the final layer and the intermediate lay-
ers of the teacher network. Jiao et al. (2019) pro-
posed the TinyBERT model, which performed the
Transformer distillation at both pre-training and
fine-tuning processes. Xu et al. (2020) proposed
the BERT-of-Theseus model to learn a compact stu-
dent network by replacing the teacher layers with
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their substitutes. Sun et al. (2020) introduced the
MobileBERT model, which has the same number
of layers with the teacher network, but was much
narrower via adopting bottleneck structures. Wang
et al. (2020) distilled the self-attention module of
the last Transformer layer of the teacher network.

However, the aforementioned BERT compres-
sion approaches struggle to find an optimal layer
mapping between the teacher and student networks.
Each student layer merely learns from a single
teacher layer, which may lose rich linguistic knowl-
edge contained in the teacher network. Different
from previous methods, we propose a many-to-
many layer mapping method for BERT distillation,
where each intermediate student layer can learn
from any intermediate teacher layers adaptively. In
addition, an Earth Mover’s Disepstance is applied
to learn the optimal many-to-many layer mapping
solution.

3 Methodology

In this section, we propose a novel BERT compres-
sion method based on many-to-many layer map-
ping and Earth Mover’s Distance (called BERT-
EMD). In addition, we also propose a cost attention
mechanism to learn the layer weights used in EMD
automatically.

3.1 Overview of BERT-EMD

The main idea behind BERT-EMD is to transfer
knowledge from a large teacher network T (large
BERT) to a small student network S (BERT-EMD).
Both the student and teacher networks are imple-
mented with an embedding layer, several Trans-
former layers, and a prediction layer. We assume
that the teacher network has M Transformer layers
and the student network has N Transformer layers.
Each Transformer layer contains an attention layer
and a hidden layer.

Similar to TinyBERT (Jiao et al., 2019), our
method also includes three primary distillation
components: the embedding-layer distillation, the
Transformer distillation, and the prediction-layer
distillation. Concretely, both the embedding-layer
distillation and the prediction-layer distillation em-
ploy the one-to-one layer mapping as in TinyBERT
and BERT-PKD, where the two student layers are
guided by the corresponding teacher layers, re-
spectively. However, different from the previous
works, we propose to exploit the many-to-many
layer mapping for Transformer (intermediate lay-

ers) distillation (attention-based distillation and hid-
den states based distillation), where each student
attention layer (resp. hidden layer) can learn from
any teacher attention layers (resp. hidden layers).
In this way, BERT-EMD can learn from different
intermediate teacher layers adaptively for different
NLP tasks, motivated by the intuition that differ-
ent NLP tasks require different levels of linguistic
knowledge contained in the attention and hidden
layers of BERT. Next, we will describe the four
distillation strategies of BERT-EMD in detail.

3.2 Embedding-layer Distillation

Word embeddings are vital in NLP tasks and have
been extensively studied in recent years. Better
representations of words have come at the cost of
huge memory footprints. Compressing embedding
matrices without sacrificing model performance
is essential for real-world applications. To this
end, we minimize the mean squared error (MSE)
between the embedding layers of the teacher and
student networks:

Lemb = MSE(ESWe,E
T ) (1)

where the matrices ES and ET represent the em-
beddings of student and teacher networks, which
have the same shape. We is a projection parameter
to be learned.

3.3 Prediction-layer Distillation

The student network also learns from the probabil-
ity logits provided by teacher network. We mini-
mize the prediction-layer distillation function as:

Lpred = −softmax(zT)·log softmax(zS/t) (2)

where zT and zS represent the probability logits
predicted by the teacher and student, respectively.
t indicates a temperature value.

3.4 Transformer Distillation with Earth
Mover’s Distance

Instead of imposing one-to-one layer mapping as
in previous works (Sun et al., 2019; Jiao et al.,
2019), our Transformer distillation approach al-
lows many-to-many layer mapping and is capable
of generalizing to various NLP tasks. The Earth
Mover’s Distance (EMD) is proposed to measure
the dissimilarity (distance) between the teacher and
student networks as the minimum cumulative cost
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Figure 1: An overview of the proposed BERT-EMD method, which distills comprehensive knowledge from a large
teacher (T ) with M -layer Transformer to a small student (S) with N -layer Transformer. wTi and wSj are the
weight of i-th teacher layer and j-th student layer used in EMD. Here, l denotes the length of the input sequence.
h denotes the head number. d and d′ are the hidden sizes of student and teacher Transformers, respectively.

of transforming knowledge from the teacher net-
work to student network. The key insight is to view
network layers as distributions, and the desired
transformation should make the two distributions
(teacher and student layers) close.

Attention-based Distillation We use the
attention-based distillation to transform the
linguistic knowledge from the teacher network
to the student network based on EMD. Formally,
let AT = {(AT

1 , w
A
T1

), . . . , (AT
M , w

A
TM

)}
be the teacher attention layers and
AS = {(AS

1 , w
A
S1

), . . . , (AS
N , w

A
SN

)} be the
student attention layers, where M and N represent
the numbers of the attention layers in the teacher
and student networks, respectively. Each AT

i (resp.
AS
i ) represents the i-th teacher (resp. student)

attention layer and wA
Ti

(resp. wA
Si

) indicates
corresponding layer weight that is initialized as
1
M (resp. 1

N ). We also define a “ground” distance
matrix DA = [dA

ij ], where dA
ij represents the cost of

transferring the attention knowledge from AT
i to

AS
j . Here, we use MSE to calculate the distance

dA
ij as:

dA
ij = MSE(AS

i ,A
T
j ) (3)

Then, we attempt to find a mapping flow FA =
[fAij ], with fAij the mapping flow between AT

i and
AS

j , that minimizes the cumulative cost required
to transform knowledge from the teacher attention

layers AT to the student attention layers AS :

WORK(AT ,AS ,FA) =
M∑
i=1

N∑
j=1

fAij d
A
ij (4)

subject to the following constraints:

fAij ≥ 0 1 ≤ i ≤M, 1 ≤ j ≤ N (5)
N∑
j=1

fAij ≤ wA
Ti

1 ≤ i ≤M (6)

M∑
i=1

fAij ≤ wA
Sj

1 ≤ j ≤ N (7)

M∑
i=1

N∑
j=1

fAij = min(
M∑
i=1

wA
Ti
,

N∑
j=1

wA
Sj

) (8)

where the first constraint forces the mapping flow
to be positive. The second constraint limits the
amount of attention information that can be sent
by AT to their weights. The third constraint limits
the attention information that can be received by
AS . The fourth constraint limits the amount of
total flow.

The above optimization is a well-studied trans-
portation problem (Hitchcock, 1941), which can be
solved by previously developed methods (Rachev,
1985). Once the optimal mapping flow FA is
learned, we can define the Earth Mover’s Distance
as the work normalized by the total flow:

EMD(AS ,AT ) =

∑M
i=1

∑N
j=1 f

A
ijd

A
ij∑M

i=1

∑N
j=1 f

A
ij

(9)
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Finally, the objective function for the attention-
based distillation can be defined by the EMD be-
tween AT and AS :

Lattn = EMD(AS ,AT ) (10)

Hidden States-based Distillation Similar to
attention-based distillation, we also learn the
hidden layer mapping based on EMD. For-
mally, let HT = {(HT

1 , w
H
T1

), . . . , (HT
M , w

H
TM

)}
be the teacher hidden layers and HS =
{(HS

1 , w
H
S1

), . . . , (HS
N , w

H
SN

)} be the student hid-
den layers, where M and N represent the numbers
of the hidden layers in the teacher and student net-
works, respectively. Each HT

i represents the i-th
hidden layer and wH

Ti
indicates corresponding layer

weight that is initialized as 1
M . We also define a

“ground” distance matrix DH = [dH
ij ], where dH

ij

represents the cost of transferring the hidden states
knowledge from HT

i to HS
j and we use a learnable

projection parameter as Wh. MSE is applied to
calculate the distance dH

ij :

dH
ij = MSE(HS

i Wh,HT
j ) (11)

Then, a mapping flow FH = [fHij ], with fHij the
mapping flow between HT

i and HS
j , is learned by

minimizing the cumulative cost required to trans-
form knowledge from HT to HS :

WORK(HT ,HS ,FH) =

M∑
i=1

N∑
j=1

fHij d
H
ij (12)

subject to the following constraints:

fHij ≥ 0 1 ≤ i ≤M, 1 ≤ j ≤ N (13)
N∑
j=1

fHij ≤ wH
Ti

1 ≤ i ≤M (14)

M∑
i=1

fHij ≤ wH
Sj

1 ≤ j ≤ N (15)

M∑
i=1

N∑
j=1

fHij = min(

M∑
i

wH
Ti
,

N∑
i

wH
Si

) (16)

After solving the above optimization problem,
we obtain the optimal mapping flow FH. The earth
mover’s distance can be then defined as the work
normalized by the total flow:

EMD(HS ,HT ) =

∑M
i=1

∑N
j=1 f

H
ijd

H
ij∑M

i=1

∑N
j=1 f

H
ij

(17)

Finally, the objective function for the hidden
states-based distillation can be defined by the earth
mover’s distance between HT and HS :

Lhidden = EMD(HS ,HT ) (18)

3.5 Weight Update with Cost Attention

In the EMD defined in Section 3.4, each teacher
layer (resp. student layer) is assigned an equal
weight wT = 1

M (resp. wS = 1
N ). Since dif-

ferent attention and hidden layers of BERT can
learn different levels of linguistic knowledge, these
layers should have different weights for various
NLP tasks. Therefore, we propose a cost attention
mechanism to assign weights for each attention and
hidden layers automatically.

The main idea behind the cost attention is to
make the teacher and student Transformer networks
be as close as possible. That is, we could reduce the
overall cost of EMD by increasing the weights of
the layers with low flow cost, while the weights of
the layers with high flow cost should be decreased
adaptively.

We take the weight updating process of the
teacher network as an example. The cost atten-
tion mechanism can be performed by three steps
after learning the optimal solution (flow matrices
FA and FH in EMD). First, we learn the transfer-
ring cost between each teacher and student layers
(unit transferring cost). Formally, let C̄A

Ti
and C̄H

Ti

be the unit transferring cost of each attention and
hidden layers respectively, which can be computed
as:

C̄A
Ti

=

∑N
j=1 d

A
ijf

A
ij

wTi

(19)

C̄H
Ti

=

∑N
j=1 d

H
ijf

H
ij

wTi

(20)

Second, we update the weights (wA
Ti

and wH
Ti

) of
the teacher attention and hidden layers based on
the learned unit transferring cost. Specifically, we
compute the updated weights w̄A

Ti
and w̄H

Ti
as the

inverse ratio of the transferring costs:

w̄A
Ti

=

∑M
j=1 C̄

A
j

C̄A
Ti

(21)

w̄H
Ti

=

∑M
j=1 C̄

H
Tj

C̄H
Ti

(22)



3014

Finally, we normalize the updated layer weights
used in EMD via softmax, and introduce a temper-
ature coefficient τ to smooth the results. In particu-
lar, we update weight w̄Ti of the i-th Transformer
layer used in EMD by averaging the corresponding
weights of attention and hidden layers:

w̄Ti =
1

2
(softmax(w̄A

Ti
/τ) + softmax(w̄H

Ti
/τ))

(23)

It is noteworthy that the learned new weights are
leveraged as the constrains to optimize the EMD
problem in the next batch. Specifically, we ini-
tialize the i-th teacher attention and hidden layer
weights (wA

Ti
andwH

Ti
) in the η-th batch with the up-

dated weight w̄Ti learned in the η − 1-th batch. In
this way, we can further improve the performance
of BERT-EMD and accelerate convergence time.

3.6 Overall Learning Objective

Finally, we combine the embedding-layer distil-
lation, attention-based distillation, hidden states-
based distillation, prediction-layer distillation ob-
jectives to form the overall knowledge distillation
objective as follows:

Ldistill = β(Lemb+Lattn+Lhidden)+Lpred (24)

where β is a factor that controls the weights of the
three distillation objectives (Lemb, Lattn, Lhidden).

4 Experimental Setup

4.1 Experimental Data

We evaluate our BERT-EMD model on the Gen-
eral Language Understanding Evaluation (GLUE)
(Wang et al., 2018) benchmark, which is a col-
lection of nine diverse sentence-level classifica-
tion tasks. Concretely, GLUE consists of (i) Mi-
crosoft Research Paraphrase Matching (MRPC),
Quora Question Pairs (QQP) and Semantic Tex-
tual Similarity Benchmark (STS-B) for paraphrase
similarity matching; (ii) Stanford Sentiment Tree-
bank (SST-2) for sentiment classification; (iii)
Multi-Genre Natural Language Inference Matched
(MNLI-m), Multi-Genre Natural Language Infer-
ence Mismatched (MNLI-mm), Question Natural
Language Inference (QNLI) and Recognizing Tex-
tual Entailment (RTE) for natural language infer-
ence task; and (iv) the Corpus of Linguistic Accept-
ability (CoLA) for linguistic acceptability.

4.2 Evaluation Metrics

Following previous works (Sun et al., 2019; Jiao
et al., 2019), we use classification accuracy as the
evaluation metric for SST-2, MNLI-m, MNLI-mm,
QNLI, and RTE datasets. For a fair comparison
with TinyBERT (Jiao et al., 2019), the F1 met-
ric is adopted for MRPC and QQP datasets, the
Spearman correlation is adopted for STS-B, and
the Matthew’s correlation is adopted for CoLA.
The results reported for the test set of GLUE are in
the same format as on the official leaderboard.

4.3 Implementation Details

Similar to TinyBERT, our BERT-EMD method also
contains a general distillation and a task-specific
distillation. In particular, we initialize our student
model with the general distillation model provided
by TinyBERT 1. The teacher model is implemented
as a 12-layer BERT model (BERTBASE12), which
is fine-tuned for each task to perform knowledge
distillation.

We employ the grid search algorithm on the val-
idation set to tune the hyper-parameters. Since
there are many hyper-parameter combinations, we
first do the grid search on β and the learning
rate. Then, we fix the values of these two hyper-
parameters and tune the values of the other hyper-
parameters. Specifically, the batch size is 32, the
learning rate is tuned from {5e − 5, 2e − 5, 1e −
5}, the parameter t defined in Eq. (2) is tuned
from {1, 3, 7, 10}, the temperature coefficient τ
is tuned from {1, 2, 5, 10}, and β is tuned from
{0.01, 0.001, 0.005}.

4.4 Baseline Methods

In this paper, we compare our BERT-EMD with
several state-of-the-art BERT compression ap-
proaches, including the original 4/6-layer BERT
models (Devlin et al., 2018), DistilBERT (Tang
et al., 2019), BERT-PKD (Sun et al., 2019), Tiny-
BERT (Jiao et al., 2019), BERT-of-Theseus (Xu
et al., 2020). However, the original TinyBERT em-
ploys a data augmentation strategy in the training
process, which is different from the other baseline
models. For a fair comparison, we re-implement
the TinyBERT model by eliminating the data aug-
mentation strategy.

It is noteworthy that we do not compare BERT-
EMD with the recent MobileBERT (Sun et al.,
2020) and MiniLM (Wang et al., 2020), since

1https://github.com/TinyBERT/TinyBERT
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Model Params Inference MNLI-m MNLI-mm QQP SST-2 CoLA QNLI MRPC RTE STS-b AVE
Num Time (393k) (393k) (364k) (67k) (8.5k) (108k) (3.5k) (2.5k) (5.7k)

BERTBASE12-G 110M ×1 84.6 83.4 71.2 93.5 52.1 90.5 88.9 66.4 85.8 79.60
BERTBASE12-T 110M ×1 84.4 83.3 71.6 93.4 52.8 90.5 88.1 66.9 85.2 79.58
BERTSMALL4 14.5M - 75.4 74.9 66.5 87.6 19.5 84.8 83.2 62.6 77.1 70.18
DistillBERT4 52.2M ×3.0 78.9 78.0 68.5 91.4 32.8 85.2 82.4 54.1 76.1 71.93
BERT-PKD4 52.2M ×3.0 79.9 79.3 70.2 89.4 24.8 85.1 82.6 62.3 79.8 72.60
TinyBERT4 14.5M ×9.4 81.2 80.3 68.9 90.0 25.3 86.2 85.4 63.9 80.4 73.51
BERT-EMD4 14.5M ×9.4 82.1 80.6 69.3 91.0 25.6 87.2 87.6 66.2 82.3 74.66
BERT-PKD6 66.0M ×1.9 81.5 81.0 70.7 92.0 43.5 89.0 85.0 65.5 81.6 76.61
BERT-of-Theseus6 66.0M - 82.4 82.1 71.6 92.2 47.8 89.6 87.6 66.2 84.1 78.18
TinyBERT6 66.0M ×1.9 84.4 83.1 71.3 92.6 46.1 89.8 88.0 69.7 83.9 78.77
BERT-EMD6 66.0M × 1.9 84.7 83.5 72.0 93.3 47.5 90.7 89.8 71.7 86.8 80.00

Table 1: Experimental results on the GLUE test set. The subscript within each model name represents the number
of Transformer layers. AVE represents the average score over all tasks. BERTBASE12-G and BERTBASE12-T
indicate the results of the fine-tuned BERT-base from (Devlin et al., 2018) and in our implementation, respectively.

Method MNLI-m QQP RTE STS-b
BERT-EMD4 82.1 69.3 66.2 82.3

w/o CA4 81.6 69.0 65.1 81.6
w/o EMD4 80.7 67.7 64.1 80.7

BERT-EMD6 84.7 72.0 71.7 86.8
w/o CA6 84.5 71.6 71.0 85.3
w/o EMD6 84.2 71.2 70.4 84.7

Table 2: Ablation test results in terms of removing
EMD (w/o EMD) and cost attention (w/o CA).

MiniLM does not report the results on the GLUE
test set and the MobileBERT model employs the
Transformer block with different architectures.

5 Experimental Results

5.1 Main Results
We summarize the experimental results on the
GLUE test sets in Table 1. The number below
each task denotes the number of training instances.
Following previous works (Sun et al., 2019,?), we
also report the average values of these nine tasks
(the “AVE” column). From the results, we can ob-
serve that BERT-EMD substantially outperforms
state-of-the-art baseline methods by a noticeable
margin on most tasks.

Among all the 4-layer BERT approaches, our
BERT-EMD4 method achieves the best results
on almost all the tasks except SST-2 and CoLA.
First, BERT-EMD4 achieves significantly bet-
ter results than BERTSMALL4 on all the GLUE
tasks with a large improvement of 4.48% on av-
erage. Second, BERT-EMD4 also outperforms
DistilBERT4 and BERT-PKD4 by a substantial
margin, even with only 30% parameters and in-
ference time. Furthermore, BERT-EMD4 exceeds
the TinyBERT model (the best competitor) by 2.3%
accuracy on RTE, 2.2% F1 on MRPC, and 1.9%
Spearman correlation on STS-B. This verifies the

effectiveness of our BERT-EMD model in improv-
ing the performance of small BERT-based methods
on various language understanding tasks.

We can observe similar trends in the 6-
layer BERT models. Table 1 shows that the
proposed BERT-EMD6 method can effectively
compress BERTBASE12 into a 6-layer BERT
model without performance sacrifice. Specifically,
BERT-EMD6 performs better than the 12-layer
BERT BERTBASE12 model on 7 out of 9 tasks,
with only about 50% parameters and inference time
of the original BERTBASE12 model. For example,
BERT-EMD achieves a noticeable improvement of
5.3% accuracy on RTE and 1% Spearman correla-
tion on STS-B, over the BERTBASE12 model.

5.2 Ablation Study

To verify the effectiveness of EMD and the cost at-
tention mechanism, we perform ablation test of
BERT-EMD on two large datasets (MNLI and
QQP) and two small datasets (MRPC and RTE)
in terms of removing EMD (denoted as w/o EMD)
and cost attention (w/o CA), respectively. In partic-
ular, for the method of removing EMD, we retain
the many-to-many layer mapping by simply replac-
ing the EMD with the mean squared error when
measuring the distance between the teacher and
student layers.

The ablation test results are summarized in Ta-
ble 2. Generally, both EMD and cost attention
contribute noticeable improvement to our method.
The performances decrease sharply, especially on
the STS-B task, when removing the EMD module.
This is within our expectation since the EMD mod-
ule formulates the distance between the teacher
and student networks as an optimal transport prob-
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Figure 2: The visualization of flow matrices (F) and distance matrices (D) in developing BERT-EMD4 (above)
and BERT-EMD6 (below) for two examples from MNLI and RTE tasks, respectively. The abscissa represents the
Transformer layers of BERTBASE12

, and the ordinate represents the Transformer layers of BERT-EMD4/BERT-
EMD6. The color depth represents the values (weights) of the layers.

lem, which helps to learn an optimal many-to-many
layer mapping. The cost attention also contributes
to the effectiveness of BERT-EMD. This verifies
that the cost attention can further improve the many-
to-many layer mapping by learning the importance
of each teacher layer in guiding the student net-
work. It is noteworthy that when removing the
EMD module in the many-to-many lay mapping
process, our w/o EMD4 performs slightly worse
than TinyBERT4 on the MNLI and QQP tasks.
This is because we cannot automatically control the
information flow during the many-to-many layer
mapping without using EMD, which further veri-
fies the effectiveness of EMD in the many-to-many
layer mapping process.

5.3 Visualization of Compression Process

To better understand the many-to-many layer map-
ping process, we illustrate the flow matrices F and
cost (distance) matrices D in developing BERT-
EMD4 (above) and BERT-EMD6 (below) for two
examples from MNLI and RTE tasks, respectively.
In Figure 2, we report the averaged values of the
flow and cost matrices of the entire epoch that
achieves the best performance on the validation
set with heat maps.

From the results in Figure 2, we have several
key observations. First, different tasks could em-
phasize different teacher layers in compressing the
Transformer. The diagonal positions of the ma-
trices are almost always important for the MNLI

task, which exhibits similar trends with TinyBERT
with the one-to-one “Skip” layer mapping strategy.
However, for the RTE task, each student Trans-
former layer can learn from any teacher Trans-
former layers. The previous one-to-one layer map-
ping methods cannot take full advantage of the
teacher network. This argument can be verified
by the quantitative results in Table 1, where our
BERT-EMD has a much larger improvement on
RTE than on MNLI over TinyBERT. Second, com-
paring BERT-EMD4 and BERT-EMD6, we can ob-
serve that BERT-EMD4 usually needs to learn more
comprehensive information from skipped teacher
Transformer layers, resulting in more divergent
many-to-many layer mappings.

6 Conclusion

In this paper, we propose a novel BERT compres-
sion method based on many-to-many layer map-
ping by Earth Mover’s Distance (EMD). To our
knowledge, BERT-EMD is the first work that al-
lows each intermediate student layer to learn from
any intermediate teacher layers adaptively. In addi-
tion, a cost attention mechanism is designed to fur-
ther improve the model’s performance and acceler-
ate convergence time by learning the layer weights
used in EMD automatically. Extensive experiments
on GLUE tasks show that BERT-EMD can achieve
competitive performances with the large BERT-
Base model while significantly reducing the model
size and inference time.
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