
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 2995–3001,
November 16–20, 2020. c©2020 Association for Computational Linguistics

2995

A Simple Approach to Learning Unsupervised Multilingual Embeddings

Pratik Jawanpuria, Mayank Meghwanshi, Bamdev Mishra
Microsoft, India

{pratik.jawanpuria,mamegh,bamdevm}@microsoft.com

Abstract

Recent progress on unsupervised cross-lingual
embeddings in the bilingual setting has given
the impetus to learning a shared embedding
space for several languages. A popular frame-
work to solve the latter problem is to solve the
following two sub-problems jointly: 1) learn-
ing unsupervised word alignment between sev-
eral language pairs, and 2) learning how to
map the monolingual embeddings of every lan-
guage to shared multilingual space. In con-
trast, we propose a simple approach by decou-
pling the above two sub-problems and solv-
ing them separately, one after another, using
existing techniques. We show that this pro-
posed approach obtains surprisingly good per-
formance in tasks such as bilingual lexicon in-
duction, cross-lingual word similarity, multi-
lingual document classification, and multilin-
gual dependency parsing. When distant lan-
guages are involved, the proposed approach
shows robust behavior and outperforms ex-
isting unsupervised multilingual word embed-
ding approaches.

1 Introduction

Learning cross-lingual word representations has
been the focus of many recent works (Mikolov
et al., 2013; Faruqui and Dyer, 2014; Artetxe et al.,
2016). It aims at learning a shared embedding
space for words across two (bilingual word embed-
ding) or more languages (multilingual word em-
bedding or MWE), by mapping similar words (or
concepts) across different languages close to each
other in a shared embedding space. Such a repre-
sentation is useful in various applications such as
cross-lingual text classification (Klementiev et al.,
2012), building bilingual lexicons (Mikolov et al.,
2013), cross-lingual information retrieval (Vulić
and Moens, 2015), and machine translation (Gu
et al., 2018), to name a few.

Mikolov et al. (2013) showed that the geometric
arrangement of word embeddings could be (ap-
proximately) preserved by linearly transforming
the word embeddings from one language space
to another. Subsequently, several works have ex-
plored learning bilingual word embeddings in both
supervised (Xing et al., 2015; Artetxe et al., 2016,
2018a; Smith et al., 2017; Jawanpuria et al., 2019)
and unsupervised (Zhang et al., 2017a,b; Conneau
et al., 2018; Artetxe et al., 2018b; Alvarez-Melis
and Jaakkola, 2018; Hoshen and Wolf, 2018; Grave
et al., 2019; Jawanpuria et al., 2020a) settings.

Representing word embeddings of many lan-
guages in a common shared space is desirable to
allow knowledge transfer between different lan-
guages. Chen and Cardie (2018) are among the
first to propose unsupervised learning of MWEs.
They extend the GAN-based iterative refinement
procedure for learning bilingual word embeddings
(Conneau et al., 2018) to the multilingual setting.
However, adversarial training has known concerns
of optimization stability with distant language pairs
(Søgaard et al., 2018). Alaux et al. (2019) propose
a joint optimization framework for learning bilin-
gual lexicons and mappings between several pairs
of languages. They obtain the bilingual lexicons
using the Gromov-Wasserstein approach (Alvarez-
Melis and Jaakkola, 2018) and mapping operators
between languages using the RCSLS algorithm
(Joulin et al., 2018). Heyman et al. (2019) propose
to learn the shared multilingual space by incre-
mentally adding languages to it, one in each itera-
tion. Their approach is based on a reformulation of
the bilingual self-learning algorithm proposed by
Artetxe et al. (2018b).

This work proposes a two-stage framework for
learning a shared MWE space in the unsupervised
setting. The two stages aim at solving the following
sub-problems: a) generating bilingual lexicons be-
tween a few pairs of languages, and subsequently
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b) learning the mapping operators between lan-
guages in a shared multilingual space. The sub-
problems are separately solved using existing tech-
niques. In contrast, existing unsupervised multilin-
gual approaches (Chen and Cardie, 2018; Heyman
et al., 2019; Alaux et al., 2019) solve the above sub-
problems jointly. Though it appears like a simple
baseline approach, the proposed framework pro-
vides the robustness and versatility often desired
while learning an effective multilingual space for
distant languages, which is a challenging setting
for unsupervised methods (Søgaard et al., 2018;
Glavaš et al., 2019; Vulić et al., 2019).

We evaluate our approach on the bilingual lexi-
con induction (BLI) task, cross-lingual word simi-
larity task, and two downstream multilingual tasks:
document classification and dependency parsing.
We summarize our findings below.
• For a group consisting of similar languages,

all multilingual approaches, including ours,
benefit from transfer learning across lan-
guages and achieve similar BLI performance.
• In challenging scenarios involving distant lan-

guages, existing unsupervised approaches fail
to learn an effective multilingual space. The
proposed approach, however, is robust and
outperforms other multilingual methods in
such settings.
• The proposed approach performs better than

existing methods on the cross-lingual word
similarity, the document classification, and
the dependency parsing tasks.

2 Unsupervised Multilingual Multi-stage
Framework

We propose the following framework for unsuper-
vised learning of MWEs:
• generate unsupervised word alignment be-

tween a few pairs of languages, and then
• use the above knowledge to learn the shared

multilingual space.
We solve the above two stages sequentially us-
ing known techniques. Our methodology con-
trasts with the existing unsupervised MWE meth-
ods (Alaux et al., 2019; Chen and Cardie, 2018;
Heyman et al., 2019), which learn the unsupervised
word alignments and the cross-lingual word embed-
ding mappings jointly. Despite its apparent sim-
plicity, we empirically observe that the proposed
approach illustrates remarkable generalization abil-
ity and robustness. We summarize the proposed

Algorithm 1 Proposed Algorithmic Framework
Input: Monolingual embeddings Xi for each
language Li and an undirected, connected graph
G(V,E) with V = {L1, . . . , Ln}.

/*Stage 1: Generate bilingual lexicons Yij*/
for each unordered pair (Li, Lj) ∈ E do
Yij ← UnsupWordAlign(Xi,Xj)

end for

/*Stage 2: Learn MWE in a shared latent space*/
Run GeoMM on G(V,E) with monolingual em-
beddings Xi for all languages Li and bilingual
lexicons Yij for language pairs (Li, Lj) ∈ E

The output of GeoMM:
a) metric B (a positive definite matrix), and
b) orthogonal matrices Ui ∀i = 1, . . . , n.

/*Represent word embedding x of language Li in
the common multilingual space*/
x→ B

1
2U>

i x.

approach in Algorithm 1 and discuss the details
below.

2.1 Stage 1: Generating Bilingual Lexicons
We first generate bilingual lexicons for a few lan-
guage pairs using existing unsupervised bilingual
word alignment algorithms (Artetxe et al., 2018b;
Alvarez-Melis and Jaakkola, 2018). The lexicons
are learned in the bilingual setting, independent
of each other. Our framework allows using dif-
ferent unsupervised bilingual word alignment al-
gorithms for different language pairs as our sec-
ond stage is agnostic to this process. More gen-
erally, one may obtain bilingual lexicons for lan-
guage pairs using various algorithms/resources: un-
supervised, weakly-supervised with bootstrapping
(Artetxe et al., 2017), human supervision, etc. Such
flexibility in getting bilingual lexicons is often de-
sirable in real-world applications (Søgaard et al.,
2018; Glavaš et al., 2019; Vulić et al., 2019). To
the best of our knowledge, existing unsupervised
MWE approaches do not discuss1 applicability to
such hybrid settings.

We experiment with two unsupervised bilingual
word alignment algorithms (Artetxe et al., 2018b;

1Heyman et al. (2019), for example, state that their ap-
proach is impractical in the supervised setting as it requires
pairwise dictionaries for all pair of languages.
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Alvarez-Melis and Jaakkola, 2018) to generate
bilingual lexicons, described in Section 2.3. It
should be emphasized that the lexicons are learned
only for a few language pairs. For instance, in our
experiments, n−1 bilingual lexicons are generated
for n languages.

2.2 Stage 2: Multilingual Word Embeddings
We now learn the MWEs using the bilingual lexi-
cons obtained from the first stage. To achieve our
objective, we propose to employ the Geometry-
aware Multilingual Mapping (GeoMM) algorithm
(Jawanpuria et al., 2019).

The setting of GeoMM may be formalized as an
undirected, connected graph, whose nodes repre-
sent languages and edges between nodes imply the
availability of bilingual dictionaries (for the corre-
sponding language pairs). GeoMM represents mul-
tiple languages in a common latent space by learn-
ing language-specific rotations for each language
(d × d orthogonal matrix Ui for each language
Li) and a Mahalanobis metric common across lan-
guages (a d× d symmetric positive-definite matrix
B), where d is the dimensionality of the mono-
lingual word embeddings. The rotation matrices
align the language embeddings to a common latent
space, while the (shared) metric B governs how
distances are measured in this latent space. Both
the language-specific parameters (Ui ∀Li) and the
shared parameter (B) are learned via a joint opti-
mization problem (Jawanpuria et al., 2019, Equa-
tion 3). The function that maps a word embedding
x from language Li’s space to the shared latent
space is given by: x→ B

1
2U>

i x.

2.3 Implementation Details
We develop two variants of the proposed approach,
which differ in the unsupervised bilingual word
alignment algorithm employed in the first stage.
Both the variants use the GeoMM algorithm in the
second stage.

SL-GeoMM: In this method, we employ
the self-learning algorithm of Artetxe et al.
(2018b) for generating bilingual lexicons
(UnsupWordAlign subroutine in Algorithm 1).
We simplify the self-learning algorithm for our
purpose by using its unsupervised initialization
followed by stochastic dictionary induction
(without any pre/post -processing steps).

GW-GeoMM: We also experiment with the
Gromov-Wasserstein (GW) word alignment algo-
rithm (Alvarez-Melis and Jaakkola, 2018) as the

UnsupWordAlign subroutine in Algorithm 1.
The GW algorithm learns a doubly stochastic ma-
trix. To further obtain a bilingual lexicon, we ad-
ditionally run a CSLS (cross-domain similarity lo-
cal scaling) based refinement procedure (Conneau
et al., 2018).

3 Experiments

The proposed methods SL-GeoMM and GW-
GeoMM are compared against existing unsuper-
vised multilingual word embeddings approaches
UMWE (Chen and Cardie, 2018) and UMH
(Alaux et al., 2019) on various BLI and downstream
tasks. As a bilingual baseline, we also include state-
of-the-art unsupervised bilingual word embeddings
approach BilingUnsup (Artetxe et al., 2018b) in
our BLI experiments. In addition to gauging the
effectiveness of the proposed two-staged frame-
work, the experiments also study the multilingual
approaches’ robustness, especially when distant
languages are involved. The evaluated tasks are
detailed below.

Bilingual lexicon induction (BLI): We evaluate
on the MUSE (Conneau et al., 2018) and the
VecMap (Dinu and Baroni, 2015; Artetxe et al.,
2018a) datasets. Following (Chen and Cardie,
2018; Alaux et al., 2019), we report Precision@1 in
the BLI experiments and employ the CSLS based
inference (Conneau et al., 2018).

Cross-lingual word similarity (CLWS): The
CLWS task is evaluated using the SemEval 2017
dataset (Camacho-Collados et al., 2017).

Multilingual dependency parsing (MLDP): In
this task (Ammar et al., 2016), we evaluate the
quality of learned multilingual embeddings on ML-
Parsing dataset sampled from the Universal Depen-
dencies 1.1 corpus (Agić et al., 2015). The dataset
has twelve languages: Bulgarian, Czech, Danish,
German, Greek, English, Spanish, Finnish, French,
Hungarian, Italian, and Swedish.

Multilingual document classification (MLDC):
This task (Ammar et al., 2016) is evaluated on the
ReutersMLDC dataset, which has documents in
seven languages: Danish, German, English, Span-
ish, French, Italian, and Swedish.

More details of the experimental settings and
additional results are discussed in the technical
report (Jawanpuria et al., 2020b).
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de-xx en-xx es-xx fr-xx it-xx pt-xx xx-de xx-en xx-es xx-fr xx-it xx-pt avg.

SL-GeoMM 70.5 80.0 81.7 79.7 80.9 80.9 69.9 80.6 82.3 83.1 79.6 78.2 79.0
GW-GeoMM 69.3 80.2 81.2 78.9 80.3 79.9 69.0 81.7 81.7 82.0 78.7 76.7 78.3
UMWE 70.4 80.6 82.0 79.8 80.6 80.6 69.5 77.4 83.5 84.1 80.4 79.0 79.0
UMH 69.2 79.9 81.8 79.4 80.6 80.6 69.0 80.7 82.3 82.8 79.0 77.6 78.6
BilingUnsup 60.9 76.9 75.6 72.7 75.2 75.3 61.6 76.1 77.2 75.9 73.6 72.2 72.8

Table 1: Average Precision@1 for BLI on six European languages from the MUSE dataset. The results are obtained
for every combination of source-target language pair.

cs-xx da-xx de-xx en-xx es-xx fr-xx it-xx nl-xx pl-xx pt-xx ru-xx

SL-GeoMM 65.1 61.3 64.1 70.2 69.3 68.1 68.7 67.4 66.0 68.7 63.3
GW-GeoMM 64.6 61.7 64.1 70.0 69.3 68.0 68.7 67.1 65.6 68.3 62.4
UMWE 57.6 54.1 56.8 63.1 62.9 61.5 61.9 0.0 58.6 61.6 56.3
UMH 63.7 60.8 62.8 68.8 68.9 67.5 68.0 66.1 64.2 67.8 61.9
BilingUnsup 61.8 58.7 58.4 64.9 65.0 63.3 64.5 63.7 62.0 64.4 59.3

xx-cs xx-da xx-de xx-en xx-es xx-fr xx-it xx-nl xx-pl xx-pt xx-ru avg.

SL-GeoMM 53.6 61.9 69.5 75.0 76.3 75.7 72.4 70.1 55.2 74.0 48.4 66.6
GW-GeoMM 53.1 62.1 69.3 74.6 76.3 75.6 72.3 70.0 55.1 73.8 47.6 66.3
UMWE 49.5 57.6 60.3 63.1 68.4 67.9 65.2 0.0 51.0 66.3 45.0 54.0
UMH 52.9 60.4 68.3 74.1 75.6 74.6 71.4 68.6 54.8 72.6 47.4 65.5
BilingUnsup 51.0 56.6 64.5 69.6 71.7 70.1 67.7 66.1 53.6 68.8 46.3 62.4

Table 2: Average Precision@1 for BLI on eleven European languages from the MUSE dataset. The results are
obtained for every combination of source-target language pair.

3.1 Results on Standard BLI Setting

Table 1 reports the BLI results on a group of six
relatively close European languages (Alaux et al.,
2019): German, English, Spanish, French, Italian,
and Portuguese. We observe that the proposed
two-stage methods, GW-GeoMM and SL-GeoMM,
obtain scores on par with state-of-the-art methods,
UMWE and UMH. Thus, multilingual approaches
can learn an effective multilingual space for close-
by languages. We also observe that all the multi-
lingual approaches outperform BilingUnsup, high-
lighting the benefits of transfer learning.

3.2 Results on Robust BLI Setting

We evaluate the robustness of the methods to dis-
tant languages by including five other European
languages (Czech, Danish, Dutch, Polish, Rus-
sian) (Alaux et al., 2019) to the previous setup.
Table 2 reports the summarized results. The pro-
posed methods, GW-GeoMM and SL-GeoMM,
perform better than UMH and UMWE for every
language. We also observe that UMWE fails at
mapping Dutch language embeddings in the mul-
tilingual space even though Dutch is close to En-
glish. However, in a separate bilingual experiment,
UMWE learns an effective English-Dutch cross-
lingual space (obtaining an average en-nl and nl-en
score of 75.2). This contrasting behavior of the

GAN-based UMWE algorithm between the bilin-
gual and multilingual settings is possibly due to its
optimization instability (Søgaard et al., 2018).

We also evaluate the methods in a highly diverse
language group: Arabic, German, English, French,
Hindi, and Russian. Table 3 reports the BLI perfor-
mance on each language pair. We observe that the
proposed SL-GeoMM learns a highly effective mul-
tilingual space and obtains the best overall result,
illustrating its robustness in this challenging setting.
On the other hand, other multilingual approaches
fail to learn a reasonably good multilingual space.
For instance, GW-GeoMM, UMWE, and UMH fail
to obtain a good BLI score (< 1 Precision@1) in
10, 16, and 18 language pairs, respectively. Below,
we analyze their results.
• The Gromov-Wasserstein alignment algorithm
(Alvarez-Melis and Jaakkola, 2018), used in the
first stage of GW-GeoMM, fails to align English
and Hindi words. However, this misalignment
does not adversely affect GW-GeoMM on language
pairs not involving Hindi as GW-GeoMM performs
similar to SL-GeoMM on those language pairs.
• UMH employs the Gromov-Wasserstein (GW)
alignment formulation in its joint learning frame-
work. As observed with GW-GeoMM, UMH also
does not learn suitable Hindi embeddings in the
MWE space. However, UMH also fails to learn
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ar-de ar-en ar-fr ar-hi ar-ru de-en de-fr de-hi de-ru en-fr en-hi en-ru fr-hi fr-ru hi-ru

SL-GeoMM 46.2 49.5 56.5 39.4 34.1 74.6 75.2 38.4 45.2 82.5 39.0 49.7 42.7 47.1 29.7
GW-GeoMM 46.5 50.5 58.1 0.0 33.6 74.0 75.5 0.0 44.4 82.5 0.0 47.7 0.0 46.2 0.0
UMWE 0.0 45.0 58.4 41.4 0.0 0.0 0.0 0.0 40.2 81.9 36.4 0.0 42.6 0.0 0.0
UMH 0.1 0.1 0.3 0.0 0.1 74.7 72.5 0.0 44.7 82.0 0.0 46.5 0.0 44.5 0.0
BilingUnsup 46.5 46.4 55.0 36.9 35.2 70.8 61.9 31.8 43.6 79.8 31.3 44.1 36.1 44.9 24.9

de-ar en-ar fr-ar hi-ar ru-ar en-de fr-de hi-de ru-de fr-en hi-en ru-en hi-fr ru-fr ru-hi avg.

SL-GeoMM 31.1 35.5 37.4 29.7 33.9 75.1 70.7 45.5 61.7 82.9 47.6 65.6 51.9 66.6 39.9 50.8
GW-GeoMM 31.5 35.6 37.5 0.0 32.8 74.6 70.5 0.0 61.3 83.1 0.0 62.9 0.0 65.8 0.0 37.2
UMWE 0.1 37.6 39.8 23.7 0.1 0.0 0.0 0.0 55.7 79.5 34.1 0.0 48.4 0.0 0.0 22.2
UMH 0.2 0.1 0.2 0.0 0.1 74.3 69.9 0.0 60.8 83.2 0.0 62.5 0.0 65.1 0.0 26.1
BilingUnsup 30.8 29.4 37.7 28.7 35.0 72.0 61.3 42.0 59.6 78.7 37.6 59.2 45.4 62.6 32.3 46.7

Table 3: Average Precision@1 for BLI on a diverse group of six languages (MUSE dataset). The results are
obtained for every combination of source-target pair.

CLWS MLDC MLDP

SL-GeoMM 0.724 90.3 71.0
GW-GeoMM 0.725 89.7 69.9
UMWE 0.706 88.3 71.0
UMH 0.718 90.0 70.6

Table 4: Average Spearman correlation, average accu-
racy, and average unlabeled attachment score (UAS) on
the CLWS, MLDC, and MLDP tasks, respectively.

suitable Arabic embeddings in the MWE space
even though the GW algorithm learns an effective
bilingual alignment of English and Arabic words.
Misalignment of one language’s embeddings in the
MWE space adversely affects other languages in
the joint learning approaches like UMH.
• The GAN-based approach, UMWE, learns two
groups of aligned languages in the shared multi-
lingual space. The first group consists of Arabic,
English, French, and Hindi languages. However,
these languages are misaligned with the other group
consisting of German and Russian. Such grouping
cannot be attributed to language similarity (e.g.,
English and German are closer than English and
Arabic) and maybe an outcome of optimization
stability (Søgaard et al., 2018).

3.3 Cross-lingual Word Similarity Results

Table 4, first column, reports the SemEval 2017
cross-lingual word similarity (CLWS) task’s re-
sults on four languages: English, German, Spanish,
and Italian. For each method, we consider the
MWEs of the four languages learned in the second
BLI experiment (corresponding to Table 2) for the
CLWS evaluation. We observe that the proposed
approaches, SL-GeoMM and GW-GeoMM, obtain
the best results.

3.4 Results on Downstream Applications

For each multilingual method, we first learn a
shared multilingual space (as in BLI setup), fol-
lowed by application-specific evaluation. Table 4,
second and third columns, reports the multilingual
document classification (MLDC) and multilingual
document parsing (MLDP) tasks’ performance, re-
spectively. We observe that both the proposed two-
stage approaches perform well on the downstream
tasks with SL-GeoMM obtaining the best results.

4 Conclusion

We study a two-stage framework for learning un-
supervised multilingual word embeddings. The
two stages correspond to unsupervised generation
of bilingual lexicons for a few language pairs and
subsequently learning a shared latent multilingual
space. We propose to solve each of them with
existing techniques (Artetxe et al., 2018b; Alvarez-
Melis and Jaakkola, 2018; Jawanpuria et al., 2019).
Though the proposed framework seems simple
compared to the joint optimization methods (Chen
and Cardie, 2018; Alaux et al., 2019; Heyman et al.,
2019), our main contribution has been to show
that it is a strong performer. Empirical results on
several different benchmarks on bilingual lexicon
induction, cross-lingual word similarity, multilin-
gual document classification, and multilingual doc-
ument parsing tasks show remarkably good perfor-
mance and robustness of the proposed framework.
The proposed framework has the flexibility to be
easily employed in hybrid setups where supervi-
sion is available for a few language pairs but is
unavailable for others. Overall, our results encour-
age the development of simple multi-stage models
for learning multilingual word embeddings.
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2018. Word translation without parallel data.
In Proceedings of the International Confer-
ence on Learning Representations. URL:
https://github.com/facebookresearch/MUSE.

Georgiana Dinu and Marco Baroni. 2015. Improving
zero-shot learning by mitigating the hubness prob-
lem. In Workshop track of International Conference
on Learning Representations.

Manaal Faruqui and Chris Dyer. 2014. Improving vec-
tor space word representations using multilingual
correlation. In Proceedings of the Conference of the
European Chapter of the Association for Computa-
tional Linguistics, pages 462–471.
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