
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 332–348,
November 16–20, 2020. c©2020 Association for Computational Linguistics

332

FIND: Human-in-the-Loop Debugging Deep Text Classifiers

Piyawat Lertvittayakumjorn, Lucia Specia, Francesca Toni
Department of Computing, Imperial College London, UK
{pl1515, l.specia, ft}@imperial.ac.uk

Abstract

Since obtaining a perfect training dataset (i.e.,
a dataset which is considerably large, unbi-
ased, and well-representative of unseen cases)
is hardly possible, many real-world text classi-
fiers are trained on the available, yet imperfect,
datasets. These classifiers are thus likely to
have undesirable properties. For instance, they
may have biases against some sub-populations
or may not work effectively in the wild due to
overfitting. In this paper, we propose FIND –
a framework which enables humans to debug
deep learning text classifiers by disabling irrel-
evant hidden features. Experiments show that
by using FIND, humans can improve CNN text
classifiers which were trained under different
types of imperfect datasets (including datasets
with biases and datasets with dissimilar train-
test distributions).

1 Introduction

Deep learning has become the dominant approach
to address most Natural Language Processing
(NLP) tasks, including text classification. With suf-
ficient and high-quality training data, deep learning
models can perform incredibly well (Zhang et al.,
2015; Wang et al., 2019). However, in real-world
cases, such ideal datasets are scarce. Often times,
the available datasets are small, full of regular but
irrelevant words, and contain unintended biases
(Wiegand et al., 2019; Gururangan et al., 2018).
These can lead to suboptimal models with unde-
sirable properties. For example, the models may
have biases against some sub-populations or may
not work effectively in the wild as they overfit the
imperfect training data.

To improve the models, previous work has
looked into different techniques beyond standard
model fitting. If the weaknesses of the training
datasets or the models are anticipated, strategies
can be tailored to mitigate such weaknesses. For

example, augmenting the training data with gender-
swapped input texts helps reduce gender bias in the
models (Park et al., 2018; Zhao et al., 2018). Adver-
sarial training can prevent the models from exploit-
ing irrelevant and/or protected features (Jaiswal
et al., 2019; Zhang et al., 2018). With a limited
number of training examples, using human ratio-
nales or prior knowledge together with training
labels can help the models perform better (Zaidan
et al., 2007; Bao et al., 2018; Liu and Avci, 2019).

Nonetheless, there are side-effects of sub-
optimal datasets that cannot be predicted and are
only found after training thanks to post-hoc error
analysis. To rectify such problems, there have been
attempts to enable humans to fix the trained models
(i.e., to perform model debugging) (Stumpf et al.,
2009; Teso and Kersting, 2019). Since the mod-
els are usually too complex to understand, manu-
ally modifying the model parameters is not possi-
ble. Existing techniques, therefore, allow humans
to provide feedback on individual predictions in-
stead. Then, additional training examples are cre-
ated based on the feedback to retrain the models.
However, such local improvements for individual
predictions could add up to inferior overall per-
formance (Wu et al., 2019). Furthermore, these
existing techniques allow us to rectify only errors
related to examples at hand but provide no way to
fix problems kept hidden in the model parameters.

In this paper, we propose a framework which
allows humans to debug and improve deep text
classifiers by disabling hidden features which are
irrelevant to the classification task. We name
this framework FIND (Feature Investigation aNd
Disabling). FIND exploits an explanation method,
namely layer-wise relevance propagation (LRP)
(Arras et al., 2016), to understand the behavior of
a classifier when it predicts each training instance.
Then it aggregates all the information using word
clouds to create a global visual picture of the model.

333

This enables humans to comprehend the features
automatically learned by the deep classifier and
then decide to disable some features that could
undermine the prediction accuracy during testing.
The main differences between our work and ex-
isting work are: (i) first, FIND leverages human
feedback on the model components, not the individ-
ual predictions, to perform debugging; (ii) second,
FIND targets deep text classifiers which are more
convoluted than traditional classifiers used in ex-
isting work (such as Naive Bayes classifiers and
Support Vector Machines).

We conducted three human experiments (one
feasibility study and two debugging experiments)
to demonstrate the usefulness of FIND. For all the
experiments, we used as classifiers convolutional
neural networks (CNNs) (Kim, 2014), which are a
popular, well-performing architecture for many text
classification tasks including the tasks we experi-
mented with (Gambäck and Sikdar, 2017; Johnson
and Zhang, 2015; Zhang et al., 2019). The overall
results show that FIND with human-in-the-loop can
improve the text classifiers and mitigate the said
problems in the datasets. After the experiments, we
discuss the generalization of the proposed frame-
work to other tasks and models. Overall, the main
contributions of this paper are:

• We propose using word clouds as visual ex-
planations of the features learned.

• We propose a technique to disable the learned
features which are irrelevant or harmful to the
classification task so as to improve the classi-
fier. This technique and the word clouds form
the human-debugging framework – FIND.

• We conduct three human experiments that
demonstrate the effectiveness of FIND in dif-
ferent scenarios. The results not only high-
light the usefulness of our approach but also
reveal interesting behaviors of CNNs for text
classification.

The rest of this paper is organized as follows.
Section 2 explains related work about analyzing,
explaining, and human-debugging text classifiers.
Section 3 proposes FIND, our debugging frame-
work. Section 4 explains the experimental setup
followed by the three human experiments in Sec-
tion 5 to 7. Finally, Section 8 discusses general-
ization of the framework and concludes the paper.
Code and datasets of this paper are available at
https://github.com/plkumjorn/FIND.

2 Related Work

Analyzing deep NLP models – There has been
substantial work in gaining better understanding
of complex, deep neural NLP models. By visual-
izing dense hidden vectors, Li et al. (2016) found
that some dimensions of the final representation
learned by recurrent neural networks capture the
effect of intensification and negation in the input
text. Karpathy et al. (2015) revealed the existence
of interpretable cells in a character-level LSTM
model for language modelling. For example, they
found a cell acting as a line length counter and cells
checking if the current letter is inside a parenthesis
or a quote. Jacovi et al. (2018) presented inter-
esting findings about CNNs for text classification
including the fact that one convolutional filter may
detect more than one n-gram pattern and may also
suppress negative n-grams. Many recent papers
studied several types of knowledge in BERT (De-
vlin et al., 2019), a deep transformer-based model
for language understanding, and found that syntac-
tic information is mostly captured in the middle
BERT layers while the final BERT layers are the
most task-specific (Rogers et al., 2020). Inspired
by many findings, we make the assumption that
each dimension of the final representation (i.e., the
vector before the output layer) captures patterns
or qualities in the input which are useful for clas-
sification. Therefore, understanding the roles of
these dimensions (we refer to them as features) is a
prerequisite for effective human-in-the-loop model
debugging, and we exploit an explanation method
to gain such an understanding.
Explaining predictions from text classifiers –
Several methods have been devised to generate
explanations supporting classifications in many
forms, such as natural language texts (Liu et al.,
2019), rules (Ribeiro et al., 2018), extracted ra-
tionales (Lei et al., 2016), and attribution scores
(Lertvittayakumjorn and Toni, 2019). Some ex-
planation methods, such as LIME (Ribeiro et al.,
2016) and SHAP (Lundberg and Lee, 2017), are
model-agnostic and do not require access to model
parameters. Other methods access the model ar-
chitectures and parameters to generate the explana-
tions, such as DeepLIFT (Shrikumar et al., 2017)
and LRP (layer-wise relevance propagation) (Bach
et al., 2015; Arras et al., 2016). In this work, we use
LRP to explain not the predictions but the learned
features so as to expose the model behavior to hu-
mans and enable informed model debugging.

https://github.com/plkumjorn/FIND

334

Debugging text classifiers using human feed-
back – Early work in this area comes from the
human-computer interaction community. Stumpf
et al. (2009) studied the types of feedback humans
usually give in response to machine-generated pre-
dictions and explanations. Also, some of the feed-
back collected (i.e., important words of each cat-
egory) was used to improve the classifier via a
user co-training approach. Kulesza et al. (2015)
presented an explanatory debugging approach in
which the system explains to users how it made
each prediction, and the users then rectify the
model by adding/removing words from the explana-
tion and adjusting important weights. Even without
explanations shown, an active learning framework
proposed by Settles (2011) asks humans to itera-
tively label some chosen features (i.e., words) and
adjusts the model parameters that correspond to the
features. However, these early works target sim-
pler machine learning classifiers (e.g., Naive Bayes
classifiers with bag-of-words) and it is not clear
how to apply the proposed approaches to deep text
classifiers.

Recently, there have been new attempts to use ex-
planations and human feedback to debug classifiers
in general. Some of them were tested on traditional
text classifiers. For instance, Ribeiro et al. (2016)
showed a set of LIME explanations for individ-
ual SVM predictions to humans and asked them
to remove irrelevant words from the training data
in subsequent training. The process was run for
three rounds to iteratively improve the classifiers.
Teso and Kersting (2019) proposed CAIPI, which
is an explanatory interactive learning framework.
At each iteration, it selects an unlabelled example
to predict and explain to users using LIME, and the
users respond by removing irrelevant features from
the explanation. CAIPI then uses this feedback to
generate augmented data and retrain the model.

While these recent works use feedback on low-
level features (input words) and individual predic-
tions, our framework (FIND) uses feedback on the
learned features with respect to the big picture of
the model. This helps us avoid local decision pit-
falls which usually occur in interactive machine
learning (Wu et al., 2019). Overall, what makes
our contribution different from existing work is that
(i) we collect the feedback on the model, not the
individual predictions, and (ii) we target deep text
classifiers which are more complex than the models
used in previous work.

3 FIND: Debugging Text Classifiers

3.1 Motivation

Generally, deep text classifiers can be divided into
two parts. The first part performs feature extrac-
tion, transforming an input text into a dense vector
(i.e., a feature vector) which represents the input.
There are several alternatives to implement this part
such as using convolutional layers, recurrent layers,
and transformer layers. The second part performs
classification passing the feature vector through a
dense layer with softmax activation to get predicted
probability of the classes. These deep classifiers
are not transparent, as humans cannot interpret the
meaning of either the intermediate vectors or the
model parameters used for feature extraction. This
prevents humans from applying their knowledge to
modify or debug the classifiers.

In contrast, if we understand which patterns or
qualities of the input are captured in each feature,
we can comprehend the overall reasoning mecha-
nism of the model as the dense layer in the clas-
sification part then becomes interpretable. In this
paper, we make this possible using LRP. By under-
standing the model, humans can check whether the
input patterns detected by each feature are relevant
for classification. Also, the features should be used
by the subsequent dense layer to support the right
classes. If these are not the case, debugging can
be done by disabling the features which may be
harmful if they exist in the model. Figure 1 shows
the overview of our debugging framework, FIND.

3.2 Notation

Let us consider a text classification task with |C|
classes where C is the set of all classes and let V be
a set of unique words in the corpus (the vocabulary).
A training dataset D = {(x1, y1), . . . , (xN , yN)}
is given, where xi is the i-th document containing a
sequence of L words, [xi1, xi2, ..., xiL], and yi ∈ C
is the class label of xi. A deep text classifier M
trained on dataset D classifies a new input docu-
ment x into one of the classes (i.e., M(x) ∈ C). In
addition, M can be divided into two parts – a fea-
ture extraction partMf and a classification partMc.
Formally, M(x) = (Mc ◦Mf)(x); Mf (x) = f ;
M(x) = Mc(f) = softmax(Wf + b) = p where
f = [f1, f2, . . . , fd] ∈ Rd is the feature vector of
x, while W ∈ R|C|×d and b ∈ R|C| are parameters
of the dense layer of Mc. The final output is the
predicted probability vector p ∈ [0, 1]|C|.

335

Mf M'c

M'

p

f

x c

Human
Debugger

Mf Mc

M

p

f

Training
(3.2)

Analysis (3.3)

Disabling
features (3.4)

Debugged model

x c

Training data Original model Word clouds

Final weight adjustment

Figure 1: Overview of the proposed debugging framework, FIND. The numbers in the green boxes refer to the
corresponding Sections in this paper.

3.3 Understanding the Model

To understand how the model M works, we an-
alyze the patterns or characteristics of the input
that activate each feature fi. Specifically, using
LRP1, for each fi of an example xj in the training
dataset, we calculate a relevance vector rij ∈ RL

showing the relevance scores (the contributions) of
each word in xj for the value of fi. After doing
this for all d features of all training examples, we
can produce word clouds to help the users better
understand the model M .

Word clouds – For each feature fi, we create
(one or more) word clouds to visualize the patterns
in the input texts which highly activate fi. This can
be done by analyzing rij for all xj in the training
data and displaying, in the word clouds, words or
n-grams which get high relevance scores. Note that
different model architectures may have different
ways to generate the word clouds so as to effec-
tively reveal the behavior of the features.

For CNNs, the classifiers we experiment with in
this paper, each feature has one word cloud contain-
ing the n-grams, from the training examples, which
were selected by the max-pooling of the CNNs. For
instance, Figure 2, corresponding to a feature of fil-
ter size 2, shows bi-grams (e.g., “love love”, “love
my”, “loves his”, etc.) whose font size corresponds
to the feature values of the bi-grams. This is sim-
ilar to how previous works analyze CNN features
(Jacovi et al., 2018; Lertvittayakumjorn and Toni,
2019), and it is equivalent to back-propagating the
feature values to the input using LRP and cropping
the consecutive input words with non-zero LRP
scores to show in the word clouds.2

1See Appendix A for more details on how LRP works.
2We also propose how to create word clouds and perform

debugging for bidirectional LSTM networks (Hochreiter and
Schmidhuber, 1997) in Appendix C.

Figure 2: A word cloud (or, literally, an n-gram cloud)
of a feature from a CNN.

3.4 Disabling Features

As explained earlier, we want to know whether the
learned features are valid and relevant to the clas-
sification task and whether or not they get appro-
priate weights from the next layer. This is possible
by letting humans consider the word cloud(s) of
each feature and tell us which class the feature is
relevant to. A word cloud receiving human answers
that are different from the class it should support
(as indicated by W) exhibits a flaw in the model.
For example, if the word cloud in Figure 2 repre-
sents the feature fi in a sentiment analysis task but
the ith column of W implies that fi supports the
negative sentiment class, we know the model is not
correct here. If this word cloud appears in a product
categorization task, this is also problematic because
the phrases in the word cloud are not discrimina-
tive of any product category. Hence, we provide
options for the users to disable the features which
correspond to any problematic word clouds so that
the features do not play a role in the classification.
To enable this to happen, we modify Mc to be M ′c
where p = M ′c(f) = softmax((W � Q)f + b)
and Q ∈ R|C|×d is a masking matrix with � being
an element-wise multiplication operator. Initially,
all elements in Q are ones which enable all the
connections between the features and the output.
To disable feature fi, we set the ith column of Q

336

Exp Dataset |C| Train / Dev / Test

1 Yelp 2 500 / 100 / 38000
Amazon Products 4 100 / 100 / 20000

2
Biosbias 2 3832 / 1277 / 1278
Waseem 2 10144 / 3381 / 3382
Wikitoxic 2 - / - / 18965

3

20Newsgroups 2 863 / 216 / 717
Religion 2 - / - / 1819
Amazon Clothes 2 3000 / 300 / 10000
Amazon Music 2 - / - / 8302
Amazon Mixed 2 - / - / 100000

Table 1: Datasets used in the experiments.

to be a zero vector. After disabling features, we
then freeze the parameters of Mf and fine-tune the
parameters of M ′c (except the masking matrix Q)
with the original training dataset D in the final step.

4 Experimental Setup

All datasets and their splits used in the experiments
are listed in Table 1. We will explain each of them
in the following sections. For each classification
task, we ran and improved three models, using
different random seeds, independently of one an-
other, and the reported results are the average of
the three runs. Regarding the models, we used 1D
CNNs with the same structures for all the tasks
and datasets. The convolution layer had three fil-
ter sizes [2, 3, 4] with 10 filters for each size (i.e.,
d = 10 × 3 = 30). All the activation functions
were ReLU except the softmax at the output layer.
The input documents were padded or trimmed to
have 150 words (L = 150). We used pre-trained
300-dim GloVe vectors (Pennington et al., 2014)
as non-trainable weights in the embedding layers.
All the models were implemented using Keras and
trained with Adam optimizer. We used iNNvesti-
gate (Alber et al., 2018) to run LRP on CNN fea-
tures. In particular, we used the LRP-ε propagation
rule to stabilize the relevance scores (ε = 10−7). Fi-
nally, we used Amazon Mechanical Turk (MTurk)
to collect crowdsourced responses for selecting fea-
tures to disable. Each question was answered by
ten workers and the answers were aggregated using
majority votes or average scores depending on the
question type (as explained next).

5 Exp 1: Feasibility Study

In this feasibility study, we assessed the effective-
ness of word clouds as visual explanations to reveal
the behavior of CNN features. We trained CNN
models using small training datasets and evaluated
the quality of CNN features based on responses

from MTurk workers to the feature word clouds.
Then we disabled features based on their average
quality scores. The assumption was: if the scores
of the disabled features correlated with the drop in
the model predictive performance, it meant that hu-
mans could understand and accurately assess CNN
features using word clouds. We used small training
datasets so that the trained CNNs had features with
different levels of quality. Some features detected
useful patterns, while others overfitted the training
data.

5.1 Datasets
We used subsets of two datasets: (1) Yelp – pre-
dicting sentiments of restaurant reviews (positive
or negative) (Zhang et al., 2015) and (2) Amazon
Products – classifying product reviews into one of
four categories (Clothing Shoes and Jewelry, Dig-
ital Music, Office Products, or Toys and Games)
(He and McAuley, 2016). We sampled 500 and
100 examples to be the training data for Yelp and
Amazon Products, respectively.

5.2 Human Feedback Collection and Usage
We used human responses on MTurk to assign
ranks to features. As each classifier had 30 origi-
nal features (d = 30), we divided them into three
ranks (A, B, and C) each of which with 10 fea-
tures. We expected that features in rank A are
most relevant and useful for the prediction task,
and features in rank C least relevant, potentially
undermining the performance of the model. To
make the annotation more accessible to lay users,
we designed the questions to ask whether a given
word cloud is (mostly or partially) relevant to one
of the classes or not, as shown in Figure 3. If the
answer matches how the model really uses this fea-
ture (as indicated by W), the feature gets a positive
score from this human response. For example, if
the CNN feature of the word cloud in Figure 3 is
used by the model for the negative sentiment class,
the scores of the five options in the figure are -2,
-1, 0, 1, 2, respectively. We collected ten responses
for each question and used the average score to
sort the features descendingly. After sorting, the
1st-10th features, 11th-20th features, and 21st-30th

features are considered as rank A, B, and C, respec-
tively.3 To show the effects of feature disabling, we
compared the original model M with the modified

3The questions and scoring criteria for the Amazon Prod-
ucts dataset, which is a multiclass classification task, are
slightly different. See Appendix B for details.

337

Figure 3: A user interface in Experiment 1 (Yelp).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Average feature scores

0

1

2

3

4

5

Nu
m

be
r o

f f
ea

tu
re

s Rank ARank BRank CYelp, CNN, Model#1

Figure 4: The distribution of average feature scores in
a CNN model trained on the Yelp dataset.

model M ′ with features in rank X disabled where
X ∈ {A, B, C, A and B, A and C, B and C}.

5.3 Results and Discussions
Figure 4 shows the distribution of average feature
scores from one of the three CNN instances for the
Yelp dataset. Examples of the word clouds from
each rank are displayed in Figure 5. We can clearly
see dissimilar qualities of the three features. Some
participants answered that the rank B feature in
Figure 5 was relevant to the positive class (proba-
bly due to the word ‘delicious’), and the weights
of this feature in W agreed (Positive:Negative =
0.137:-0.135). Interestingly, the rank C feature in
Figure 5 got a negative score because some partic-
ipants believed that this word cloud was relevant
to the positive class, but actually the model used
this feature as evidence for the negative class (Pos-
itive:Negative = 0.209:0.385).

Considering all the three runs, Figure 6 (top)
shows the average macro F1 score of the original
model (the blue line) and of each modified model.
The order of the performance drops is AB > A
> AC > BC > B > Original > C. This makes
sense because disabling important features (rank A
and/or B) caused larger performance drops, and the
overall results are consistent with the average fea-

Rank A - Average score = 2.0

Rank B - Average score = 1.2

Rank C - Average score = -0.7

Figure 5: Examples of word clouds of CNN features in
ranks A, B, and C (Experiment 1, Yelp – sentiment).

A B C A and B A and C B and C
Rank(s) of the features being disabled

0.50

0.55

0.60

0.65

0.70

0.75

0.80

M
ac

ro
-F

1

original model
Yelp, CNN, Average from 3 runs

A B C A and B A and C B and C
Rank(s) of the features being disabled

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

M
ac

ro
-F

1

original model
Amazon Products, CNN, Average from 3 runs

Figure 6: The average macro F1, from the three runs,
of all the CNN models for the Yelp dataset (top) and
the Amazon Products dataset (bottom).

ture scores given by the participants (as in Figure
4). It confirms that using word clouds is an effec-
tive way to assess CNN features. Also, it is worth
noting that the macro F1 of the model slightly in-
creased when we disabled the low-quality features
(rank C). This shows that humans can improve the
model by disabling irrelevant features.

The CNNs for the Amazon Products dataset also

338

behaved in a similar way (Figure 6 – bottom), ex-
cept that disabling rank C features slightly under-
mined, not increased, performance. This implies
that even the rank C features contain a certain
amount of useful knowledge for this classifier.4

6 Exp 2: Training Data with Biases

Given a biased training dataset, a text classifier may
absorb the biases and produce biased predictions
against some sub-populations. We hypothesize that
if the biases are captured by some of the learned
features, we can apply FIND to disable such fea-
tures and reduce the model biases.

6.1 Datasets and Metrics

We focus on reducing gender bias of CNN models
trained on two datasets – Biosbias (De-Arteaga
et al., 2019) and Waseem (Waseem and Hovy,
2016). For Biosbias, the task is predicting the oc-
cupation of a given bio paragraph, i.e., whether the
person is ‘a surgeon’ (class 0) or ‘a nurse’ (class 1).
Due to the gender imbalance in each occupation, a
classifier usually exploits gender information when
making predictions. As a result, bios of female
surgeons and male nurses are often misclassified.
For Waseem, the task is abusive language detection
– assessing if a given text is abusive (class 1) or
not abusive (class 0). Previous work found that
this dataset contains a strong negative bias against
females (Park et al., 2018). In other words, texts
related to females are usually classified as abusive
although the texts themselves are not abusive at
all. Also, we tested the models, trained on the
Waseem dataset, using another abusive language
detection dataset, Wikitoxic (Thain et al., 2017), to
assess generalizability of the models. To quantify
gender biases, we adopted two metrics – false posi-
tive equality difference (FPED) and false negative
equality difference (FNED) (Dixon et al., 2018).
The lower these metrics are, the less biases the
model has.

4We also conducted the same experiments here with bidi-
rectional LSTM networks (BiLSTMs) which required a dif-
ferent way to generate the word clouds (see Appendix C).
The results on BiLSTMs, however, are not as promising as
on CNNs. This might be because the way we created word
clouds for each BiLSTM feature was not an accurate way to
reveal its behavior. Unlike for CNNs, understanding recurrent
neural network features for text classification is still an open
problem.

6.2 Human Feedback Collection and Usage

Unlike the interface in Figure 3, for each word
cloud, we asked the participants to select the rele-
vant class from three options (Biosbias: surgeon,
nurse, it could be either / Waseem: abusive, non-
abusive, it could be either). The feature will be dis-
abled if the majority vote does not select the class
suggested by the weight matrix W. To ensure that
the participants do not use their biases while an-
swering our questions, we firmly mentioned in the
instructions that gender-related terms should not be
used as an indicator for one or the other class.

6.3 Results and Discussions

The results of this experiment are displayed in Fig-
ure 7. For Biosbias, on average, the participants’
responses suggested us to disable 11.33 out of 30
CNN features. By doing so, the FPED of the mod-
els decreased from 0.250 to 0.163, and the FNED
decreased from 0.338 to 0.149. After investigat-
ing the word clouds of the CNN features, we found
that some of them detected patterns containing both
gender-related terms and occupation-related terms
such as “his surgical expertise” and “she supervises
nursing students”. Most of the MTurk participants
answered that these word clouds were relevant to
the occupations, and thus the corresponding fea-
tures were not disabled. However, we believe that
these features might contain gender biases. So,
we asked one annotator to consider all the word
clouds again and disable every feature for which the
prominent n-gram patterns contained any gender-
related terms, no matter whether the patterns detect
occupation-related terms. With this new disabling
policy, 12 out of 30 features were disabled on av-
erage, and the model biases further decreased, as
shown in Figure 7 (Debugged (One)). The side-
effect of disabling 33% of all the features here was
only a slight drop in the macro F1 from 0.950 to
0.933. Hence, our framework was successful in
reducing gender biases without severe negative ef-
fects in classification performance.

Concerning the abusive language detection task,
on average, the MTurk participants’ responses sug-
gested us to disable 12 out of 30 CNN features. Un-
like Biosbias, disabling features based on MTurk
responses unexpectedly increased the gender bias
for both Waseem and Wikitoxic datasets. However,
we found one similar finding to Biosbias, that many
of the CNN features captured n-grams which were
both abusive and related to a gender such as ‘these

339

Biosbias
FPED

Biosbias
FNED

Waseem
FPED

Waseem
FNED

Wikitoxic
FPED

Wikitoxic
FNED

0.0

0.1

0.2

0.3

0.4

FP
ED

 o
r F

NE
D

Biosbias, CNN Waseem/Wikitoxic, CNN

Original Debugged (MTurk) Debugged (One)

Figure 7: The average FPED and FNED of the CNN
models in Experiment 2 (the lower, the better).

girls are terrible’ and ‘of raping slave girls’, and
these features were not yet disabled. So, we asked
one annotator to disable the features using the new
“brutal” policy – disabling all which involved gen-
der words even though some of them also detected
abusive words. By disabling 18 out of 30 features
on average, the gender biases were reduced for both
datasets (except FPED on Wikitoxic which stayed
close to the original value). Another consequence
was that we sacrificed 4% and 1% macro F1 on the
Waseem and Wikitoxic datasets, respectively. This
finding is consistent with (Park et al., 2018) that
reducing the bias and maintaining the classification
performance at the same time is very challenging.

7 Exp 3: Dataset Shift

Dataset shift is a problem where the joint distri-
bution of inputs and outputs differs between train-
ing and test stage (Quionero-Candela et al., 2009).
Many classifiers perform poorly under dataset shift
because some of the learned features are inappli-
cable (or sometimes even harmful) to classify test
documents. We hypothesize that FIND is useful
for investigating the learned features and disabling
the overfitting ones to increase the generalizability
of the model.

7.1 Datasets
We considered two tasks in this experiment. The
first task aims to classify “Christianity” vs “Athe-
ism” documents from the 20 Newsgroups dataset5.
This dataset is special because it contains a lot
of artifacts – tokens (e.g., person names, punctu-
ation marks) which are not relevant, but strongly
co-occur with one of the classes. For evaluation,
we used the Religion dataset by Ribeiro et al.
(2016), containing “Christianity” and “Atheism”
web pages, as a target dataset. The second task is
sentiment analysis. We used, as a training dataset,
Amazon Clothes, with reviews of clothing, shoes,

5http://qwone.com/˜jason/20Newsgroups/

20Newsgroups Religion-10.00

-5.00

0.00

5.00

10.00

Re
la

tiv
e

M
ac

ro
 F

1
Ch

an
ge

 (%
)

Clothes Music Mixed Yelp
-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

Figure 8: The relative Macro F1 changes (in %) of the
CNN models for both tasks in Experiment 3.

and jewelry products (He and McAuley, 2016), and
as test sets three out-of-distribution datasets – Ama-
zon Music (He and McAuley, 2016), Amazon
Mixed (Zhang et al., 2015), and the Yelp dataset
(which was used in Experiment 1). Amazon Mu-
sic contains only reviews from the “Digital Music”
product category which was found to have an ex-
treme distribution shift from the clothes category
(Hendrycks et al., 2020). Amazon Mixed compiles
the reviews from various kinds of products, while
Yelp focuses on restaurant reviews.

7.2 Human Feedback Collection and Usage

We collected responses from MTurk workers using
the same user interfaces as in Experiment 2. Simply
put, we asked the workers to select a class which
was relevant to a given word cloud and checked if
the majority vote agreed with the weights in W.

7.3 Results and Discussions

For the first task, on average, 14.33 out of 30
features were disabled and the macro F1 scores
of the 20Newsgroups before and after debugging
are 0.853 and 0.828, respectively. The same met-
rics of the Religion dataset are 0.731 and 0.799.
This shows that disabling irrelevant features mildly
undermined the predictive performance on the in-
distribution dataset, but clearly enhanced the per-
formance on the out-of-distribution dataset (see
Figure 8, left). This is especially evident for the
Atheism class for which the F1 score increased
around 15% absolute. We noticed from the word
clouds that many prominent words for the Atheism
class learned by the models are person names (e.g.,
Keith, Gregg, Schneider) and these are not appli-
cable to the Religion dataset. Forcing the models
to use only relevant features (detecting terms like
‘atheists’ and ‘science’), therefore, increased the
macro F1 on the Religion dataset.

Unlike 20Newsgroups, Amazon Clothes does
not seem to have obvious artifacts. Still, the re-

http://qwone.com/~jason/20Newsgroups/

340

sponses from crowd workers suggested that we
disable 6 features. The disabled features were cor-
related to, but not the reason for, the associated
class. For instance, one of the disabled features was
highly activated by the pattern “my year old”
which often appeared in positive reviews such as
“my 3 year old son loves this.”. However, these cor-
related features are not very useful for the three out-
of-distribution datasets (Music, Mixed, and Yelp).
Disabling them made the model focus more on the
right evidence and increased the average macro F1
for the three datasets, as shown in Figure 8 (right).
Nonetheless, the performance improvement here
was not as apparent as in the previous task because,
even without feature disabling, the majority of the
features are relevant to the task and can lead the
model to the correct predictions in most cases.6

8 Discussion and Conclusions

We proposed FIND, a framework which enables
humans to debug deep text classifiers by disabling
irrelevant or harmful features. Using the proposed
framework on CNN text classifiers, we found that
(i) word clouds generated by running LRP on the
training data accurately revealed the behaviors of
CNN features, (ii) some of the learned features
might be more useful to the task than the others
and (iii) disabling the irrelevant or harmful features
could improve the model predictive performance
and reduce unintended biases in the model.

8.1 Generalization to Other Models

In order to generalize the framework beyond CNNs,
there are two questions to consider. First, what is
an effective way to understand each feature? We
exemplified this with two word clouds representing
each BiLSTM feature in Appendix C, and we plan
to experiment with advanced visualizations such
as LSTMVis (Strobelt et al., 2018) in the future.
Second, can we make the model features more in-
terpretable? For example, using ReLU as activation
functions in LSTM cells (instead of tanh) renders
the features non-negative. So, they can be summa-
rized using one word cloud which is more practical
for debugging.

In general, the principle of FIND is under-
standing the features and then disabling the ir-
relevant ones. The process makes visualizations
and interpretability more actionable. Over the
past few years, we have seen rapid growth of

6See Appendix F for the full results from all experiments.

scientific research in both topics (visualizations
and interpretability) aiming to understand many
emerging advanced models including the popular
transformer-based models (Jo and Myaeng, 2020;
Voita et al., 2019; Hoover et al., 2020). We believe
that our work will inspire other researchers to foster
advances in both topics towards the more tangible
goal of model debugging.

8.2 Generalization to Other Tasks

FIND is suitable for any text classification tasks
where a model might learn irrelevant or harmful
features during training. It is also convenient to
use since only the trained model and the training
data are required as input. Moreover, it can address
many problems simultaneously such as removing
religious and racial bias together with gender bias
even if we might not be aware of such problems
before using FIND. In general cases, FIND is at
least useful for model verification.

For future work, it would be interesting to extend
FIND to other NLP tasks, e.g., question answering
and natural language inference. This will require
some modifications to understand how the features
capture relationships between two input texts.

8.3 Limitations

Nevertheless, FIND has some limitations. First,
the word clouds may reveal sensitive contents in
the training data to human debuggers. Second, the
more hidden features the model has, the more hu-
man effort FIND needs for debugging. For instance,
BERT-base (Devlin et al., 2019) has 768 features
(before the final dense layer) which require lots
of human effort to perform investigation. In this
case, it would be more efficient to use FIND to
disable attention heads rather than individual fea-
tures (Voita et al., 2019). Third, it is possible that
one feature detects several patterns (Jacovi et al.,
2018) and it will be difficult to disable the feature
if some of the detected patterns are useful while the
others are harmful. Hence, FIND would be more
effective when used together with disentangled text
representations (Cheng et al., 2020).

Acknowledgments

We would like to thank Nontawat Charoenphakdee
and anonymous reviewers for helpful comments.
Also, the first author wishes to thank the support
from Anandamahidol Foundation, Thailand.

341

References
Maximilian Alber, Sebastian Lapuschkin, Philipp

Seegerer, Miriam Hägele, Kristof T Schütt, Grégoire
Montavon, Wojciech Samek, Klaus-Robert Müller,
Sven Dähne, and Pieter-Jan Kindermans. 2018.
innvestigate neural networks! arXiv preprint
arXiv:1808.04260.

Leila Arras, Franziska Horn, Grégoire Montavon,
Klaus-Robert Müller, and Wojciech Samek. 2016.
Explaining predictions of non-linear classifiers in
NLP. In Proceedings of the 1st Workshop on Repre-
sentation Learning for NLP, pages 1–7, Berlin, Ger-
many. Association for Computational Linguistics.

Leila Arras, Grégoire Montavon, Klaus-Robert Müller,
and Wojciech Samek. 2017. Explaining recurrent
neural network predictions in sentiment analysis. In
Proceedings of the 8th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social
Media Analysis, pages 159–168, Copenhagen, Den-
mark. Association for Computational Linguistics.

Sebastian Bach, Alexander Binder, Grégoire Mon-
tavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. 2015. On pixel-wise explana-
tions for non-linear classifier decisions by layer-wise
relevance propagation. PLOS ONE, 10(7):1–46.

Yujia Bao, Shiyu Chang, Mo Yu, and Regina Barzilay.
2018. Deriving machine attention from human ra-
tionales. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1903–1913, Brussels, Belgium. Association
for Computational Linguistics.

Pengyu Cheng, Martin Renqiang Min, Dinghan Shen,
Christopher Malon, Yizhe Zhang, Yitong Li, and
Lawrence Carin. 2020. Improving disentangled text
representation learning with information-theoretic
guidance. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7530–7541, Online. Association for Computa-
tional Linguistics.

Maria De-Arteaga, Alexey Romanov, Hanna Wal-
lach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kentha-
padi, and Adam Tauman Kalai. 2019. Bias in bios:
A case study of semantic representation bias in a
high-stakes setting. In Proceedings of the Confer-
ence on Fairness, Accountability, and Transparency,
FAT* ’19, page 120–128, New York, NY, USA. As-
sociation for Computing Machinery.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Lucas Dixon, John Li, Jeffrey Sorensen, Nithum Thain,
and Lucy Vasserman. 2018. Measuring and mitigat-
ing unintended bias in text classification. In Pro-
ceedings of the 2018 AAAI/ACM Conference on AI,
Ethics, and Society, pages 67–73.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Us-
ing convolutional neural networks to classify hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90, Vancouver,
BC, Canada. Association for Computational Lin-
guistics.

Yvette Graham, Nitika Mathur, and Timothy Baldwin.
2014. Randomized significance tests in machine
translation. In Proceedings of the Ninth Workshop
on Statistical Machine Translation, pages 266–274,
Baltimore, Maryland, USA. Association for Compu-
tational Linguistics.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel Bowman, and Noah A.
Smith. 2018. Annotation artifacts in natural lan-
guage inference data. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 107–112, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Ruining He and Julian McAuley. 2016. Ups and downs:
Modeling the visual evolution of fashion trends with
one-class collaborative filtering. In proceedings of
the 25th international conference on world wide
web, pages 507–517.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam
Dziedzic Rishabh Krishnan, and Dawn Song. 2020.
Pretrained transformers improve out-of-distribution
robustness. In Association for Computational Lin-
guistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Benjamin Hoover, Hendrik Strobelt, and Sebastian
Gehrmann. 2020. exBERT: A Visual Analysis Tool
to Explore Learned Representations in Transformer
Models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 187–196, Online. As-
sociation for Computational Linguistics.

Alon Jacovi, Oren Sar Shalom, and Yoav Goldberg.
2018. Understanding convolutional neural networks
for text classification. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and In-
terpreting Neural Networks for NLP, pages 56–65,
Brussels, Belgium. Association for Computational
Linguistics.

Ayush Jaiswal, Daniel Moyer, Greg Ver Steeg, Wael
AbdAlmageed, and Premkumar Natarajan. 2019. In-
variant representations through adversarial forget-
ting. arXiv preprint arXiv:1911.04060.

https://doi.org/10.18653/v1/W16-1601
https://doi.org/10.18653/v1/W16-1601
https://doi.org/10.18653/v1/W17-5221
https://doi.org/10.18653/v1/W17-5221
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.18653/v1/D18-1216
https://doi.org/10.18653/v1/D18-1216
https://doi.org/10.18653/v1/2020.acl-main.673
https://doi.org/10.18653/v1/2020.acl-main.673
https://doi.org/10.18653/v1/2020.acl-main.673
https://doi.org/10.1145/3287560.3287572
https://doi.org/10.1145/3287560.3287572
https://doi.org/10.1145/3287560.3287572
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/W17-3013
https://doi.org/10.18653/v1/W17-3013
https://doi.org/10.18653/v1/W17-3013
https://doi.org/10.3115/v1/W14-3333
https://doi.org/10.3115/v1/W14-3333
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/2020.acl-demos.22
https://doi.org/10.18653/v1/2020.acl-demos.22
https://doi.org/10.18653/v1/2020.acl-demos.22
https://doi.org/10.18653/v1/W18-5408
https://doi.org/10.18653/v1/W18-5408

342

Jae-young Jo and Sung-Hyon Myaeng. 2020. Roles
and utilization of attention heads in transformer-
based neural language models. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 3404–3417, Online.
Association for Computational Linguistics.

Rie Johnson and Tong Zhang. 2015. Effective use of
word order for text categorization with convolutional
neural networks. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 103–112, Denver, Col-
orado. Association for Computational Linguistics.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2015.
Visualizing and understanding recurrent networks.
CoRR, abs/1506.02078.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

Todd Kulesza, Margaret Burnett, Weng-Keen Wong,
and Simone Stumpf. 2015. Principles of explanatory
debugging to personalize interactive machine learn-
ing. In Proceedings of the 20th international confer-
ence on intelligent user interfaces, pages 126–137.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 107–117, Austin,
Texas. Association for Computational Linguistics.

Piyawat Lertvittayakumjorn and Francesca Toni. 2019.
Human-grounded evaluations of explanation meth-
ods for text classification. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5195–5205, Hong Kong,
China. Association for Computational Linguistics.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models
in NLP. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 681–691, San Diego, California. As-
sociation for Computational Linguistics.

Frederick Liu and Besim Avci. 2019. Incorporating
priors with feature attribution on text classification.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
6274–6283, Florence, Italy. Association for Compu-
tational Linguistics.

Hui Liu, Qingyu Yin, and William Yang Wang. 2019.
Towards explainable NLP: A generative explanation
framework for text classification. In Proceedings of

the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5570–5581, Florence,
Italy. Association for Computational Linguistics.

Scott M Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Ad-
vances in neural information processing systems,
pages 4765–4774.

Grégoire Montavon, Alexander Binder, Sebastian
Lapuschkin, Wojciech Samek, and Klaus-Robert
Müller. 2019. Layer-wise relevance propagation: an
overview. In Explainable AI: interpreting, explain-
ing and visualizing deep learning, pages 193–209.
Springer.

Eric W Noreen. 1989. Computer-intensive methods for
testing hypotheses. Wiley New York.

Ji Ho Park, Jamin Shin, and Pascale Fung. 2018. Re-
ducing gender bias in abusive language detection.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2799–2804, Brussels, Belgium. Association
for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Joaquin Quionero-Candela, Masashi Sugiyama, Anton
Schwaighofer, and Neil D. Lawrence. 2009. Dataset
Shift in Machine Learning. The MIT Press.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. “why should i trust you?”: Explain-
ing the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD
’16, page 1135–1144, New York, NY, USA. Asso-
ciation for Computing Machinery.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Anchors: High-precision model-
agnostic explanations. In Thirty-Second AAAI Con-
ference on Artificial Intelligence.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in bertology: What we know about
how BERT works. CoRR, abs/2002.12327.

Burr Settles. 2011. Closing the loop: Fast, interactive
semi-supervised annotation with queries on features
and instances. In Proceedings of the 2011 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1467–1478, Edinburgh, Scotland,
UK. Association for Computational Linguistics.

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017. Learning important features through
propagating activation differences. In Proceedings
of the 34th International Conference on Machine
Learning, pages 3145–3153. JMLR. org.

https://doi.org/10.18653/v1/2020.acl-main.311
https://doi.org/10.18653/v1/2020.acl-main.311
https://doi.org/10.18653/v1/2020.acl-main.311
https://doi.org/10.3115/v1/N15-1011
https://doi.org/10.3115/v1/N15-1011
https://doi.org/10.3115/v1/N15-1011
http://arxiv.org/abs/1506.02078
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.18653/v1/D16-1011
https://doi.org/10.18653/v1/D19-1523
https://doi.org/10.18653/v1/D19-1523
https://doi.org/10.18653/v1/N16-1082
https://doi.org/10.18653/v1/N16-1082
https://doi.org/10.18653/v1/P19-1631
https://doi.org/10.18653/v1/P19-1631
https://doi.org/10.18653/v1/P19-1560
https://doi.org/10.18653/v1/P19-1560
https://doi.org/10.18653/v1/D18-1302
https://doi.org/10.18653/v1/D18-1302
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
http://arxiv.org/abs/2002.12327
http://arxiv.org/abs/2002.12327
https://www.aclweb.org/anthology/D11-1136
https://www.aclweb.org/anthology/D11-1136
https://www.aclweb.org/anthology/D11-1136

343

Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfis-
ter, and Alexander M Rush. 2018. Lstmvis: A tool
for visual analysis of hidden state dynamics in recur-
rent neural networks. IEEE Transactions on Visual-
ization and Computer Graphics, 24(1):667–676.

Simone Stumpf, Vidya Rajaram, Lida Li, Weng-Keen
Wong, Margaret Burnett, Thomas Dietterich, Erin
Sullivan, and Jonathan Herlocker. 2009. Interact-
ing meaningfully with machine learning systems:
Three experiments. International Journal of Human-
Computer Studies, 67(8):639–662.

Stefano Teso and Kristian Kersting. 2019. Explanatory
interactive machine learning. In Proceedings of the
2019 AAAI/ACM Conference on AI, Ethics, and So-
ciety, pages 239–245.

Nithum Thain, Lucas Dixon, and Ellery Wulczyn. 2017.
Wikipedia talk labels: Toxicity.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5797–5808, Florence,
Italy. Association for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2019.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the
NAACL Student Research Workshop, pages 88–93,
San Diego, California. Association for Computa-
tional Linguistics.

Michael Wiegand, Josef Ruppenhofer, and Thomas
Kleinbauer. 2019. Detection of Abusive Language:
the Problem of Biased Datasets. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 602–608, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Tongshuang Wu, Daniel S. Weld, and Jeffrey Heer.
2019. Local decision pitfalls in interactive machine
learning: An investigation into feature selection in
sentiment analysis. ACM Trans. Comput.-Hum. In-
teract., 26(4).

Omar Zaidan, Jason Eisner, and Christine Piatko. 2007.
Using “annotator rationales” to improve machine
learning for text categorization. In Human Lan-
guage Technologies 2007: The Conference of the
North American Chapter of the Association for Com-
putational Linguistics; Proceedings of the Main

Conference, pages 260–267, Rochester, New York.
Association for Computational Linguistics.

Brian Hu Zhang, Blake Lemoine, and Margaret
Mitchell. 2018. Mitigating unwanted biases with
adversarial learning. In Proceedings of the 2018
AAAI/ACM Conference on AI, Ethics, and Society,
pages 335–340.

Jingqing Zhang, Piyawat Lertvittayakumjorn, and Yike
Guo. 2019. Integrating semantic knowledge to
tackle zero-shot text classification. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 1031–1040, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018. Gender bias in
coreference resolution: Evaluation and debiasing
methods. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 15–20,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

A Layer-wise Relevance Propagation

Layer-wise Relevance Propagation (LRP) is a tech-
nique for explaining predictions of neural networks
in terms of importance scores of input features
(Bach et al., 2015). Originally, it was devised to
explain predictions of image classifiers by creating
a heatmap on the input image highlighting pixels
that are important for the classification. Then Arras
et al. (2016) and Arras et al. (2017) extended LRP
to work on CNNs and RNNs for text classification,
respectively.

Consider a neuron k whose value is computed
using n neurons in the previous layer,

xk = g(

n∑
j=1

xjwjk + bk)

where xk is the value of the neuron k, g is a non-
linear activation function, wjk and bk are weights
and bias in the network, respectively. We can see
that the contribution of a single node j to the value
of the node k is

zjk = xjwjk +
bk
n

https://doi.org/10.6084/m9.figshare.4563973.v2
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/N16-2013
https://doi.org/10.18653/v1/N16-2013
https://doi.org/10.18653/v1/N16-2013
https://doi.org/10.18653/v1/N19-1060
https://doi.org/10.18653/v1/N19-1060
https://doi.org/10.1145/3319616
https://doi.org/10.1145/3319616
https://doi.org/10.1145/3319616
https://www.aclweb.org/anthology/N07-1033
https://www.aclweb.org/anthology/N07-1033
https://doi.org/10.18653/v1/N19-1108
https://doi.org/10.18653/v1/N19-1108
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003

344

assuming that the bias term bk is distributed equally
to the n neurons. LRP works by propagating the
activation of a neuron of interest back through the
previous layers in the network proportionally. We
call the value each neuron receives a relevance
score (R) of the neuron. To back propagate, if the
relevance score of the neuron k isRk, the relevance
score that the neuron j receives from the neuron k
is

Rj←k =
zjk∑n

j′=1 zj′k
Rk

To make the relevance propagation more stable, we
add a small positive number ε (as a stabilizer) to
the denominator of the propagation rule:

Rj←k =
zjk

ε+
∑n

j′=1 zj′k
Rk

We used this propagation rule, so called LRP-ε,
in the experiments of this paper. For more details
about LRP propagation rules, please see Montavon
et al. (2019).

To explain a prediction of a CNN text classifier,
we propagate an activation value of the output node
back to the word embedding matrix. After that, the
relevance score of an input word equals the sum of
relevance scores each dimension of its word vector
receives. However, in this paper, we want to ana-
lyze the hidden features rather than the output, so
we start back propagating from the hidden features
instead to capture patterns of input words which
highly activate the features.

B Multiclass Classification

As shown in Figure 9, we used a slightly differ-
ent user interface in Experiment 1 for the Amazon
Products dataset which is a multiclass classifica-
tion task. In this setting, we did not provide the
options for mostly and partly relevant; otherwise,
there would have been nine options per question
which are too many for the participants to answer
accurately. With the user interface in Figure 9, we
gave a score to the feature fi based on the partic-
ipant answer. To explain, we re-scaled values in
the ith column of W to be in the range [0,1] using
min-max normalization and gave the normalized
value of the chosen class as a score to the feature
fi. If the participant selects None, this feature gets
a zero score. The distribution of the average fea-
ture scores for this task (one CNN) is displayed in
Figure 10.

Figure 9: A user interface in Experiment 1 (Amazon
Products).

C Bidirectional LSTM networks

To understand BiLSTM features, we created two
word clouds for each feature. The first word cloud
contains top three words which gain the highest
positive relevance scores from each training exam-
ple, while the second word cloud does the same
but for the top three words which gain the lowest
negative relevance scores (see Figure 11).

Furthermore, we also conducted Experiment 1
for BiLSTMs. Each direction of the recurrent layer
had 15 hidden units and the feature vector was ob-
tained by taking element-wise max of all the hidden
states (i.e., d = 15×2 = 30). We adapted the code
of (Arras et al., 2017) to run LRP on BiLSTMs. Re-
garding human feedback collection, we collected
feedback from Amazon Mechanical Turk workers
by splitting the pair of word clouds into two and
asking the question about the relevant class inde-
pendently of each other. The answer of the positive
relevance word cloud should be consistent with the
weight matrix W, while the answer of the nega-
tive relevance word cloud should be the opposite
of the weight matrix W. The score of a BiLSTM
feature is the sum of its scores from the positive
word cloud and the negative word cloud.

The results of the extra BiLSTM experiments
are shown in Table 4 and 5. Table 4 shows unex-
pected results after disabling features. For instance,
disabling rank B features caused a larger perfor-
mance drop than removing rank A features. This
suggests that how we created word clouds for each
BiLSTM feature (i.e., displaying top three words
with the highest positive and lowest negative rel-

345

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Average feature scores

0

2

4

6

8

10

12

Nu
m

be
r o

f f
ea

tu
re

s
Rank ARank BRank C

Amazon Products, CNN, Model#1

Figure 10: The distribution of average feature scores in
a CNN model trained on the Amazon Products dataset.

Figure 11: A pair of word clouds which represent one
BiLSTM feature.

evance) might not be an accurate way to explain
the feature. Nevertheless, another observation from
Table 4 is that even when we disabled two-third
of the BiLSTM features, the maximum macro F1
drop was less than 5%. This suggests that there is a
lot of redundant information in the features of the
BiLSTMs.

D Metrics for Biases

In this paper, we used two metrics to quantify bi-
ases in the models – False positive equality differ-
ence (FPED) and False negative equality difference
(FNED) – with the following definitions (Dixon
et al., 2018).

FPED =
∑
t∈T
|FPR− FPRt|

FNED =
∑
t∈T
|FNR− FNRt|

where T is a set of all sub-populations we consider
(i.e., T = {male, female}). FPR and FNR stand
for false positive rate and false negative rate, re-
spectively. The subscript t means that we calculate
the metrics using data examples mentioning the
sub-population t only. We used the following key-
words to identify examples which are related to or
mentioning the sub-populations.
Male gender terms:

“male”, “males”, “boy”, “boys”, “man”,
“men”, “gentleman”, “gentlemen”, “he”, “him”,
“his”, “himself”, “brother”, “son”, “husband”,
“boyfriend”, “father”, “uncle”, “dad”
Female gender terms:

“female”, “females”, “girl”, “girls”, “woman”,
“women”, “lady”, “ladies”, “she”, “her”, “herself”,
“sister”, “daughter”, “wife”, “girlfriend”, “mother”,
“aunt”, “mom”

E Additional Details for Reproducibility

E.1 Data Sources and Pre-processing
• Yelp and Amazon Mixed: We sampled ex-

amples from the datasets provided by Zhang
et al. (2015) here7.

• Amazon Products, Amazon Clothes, Ama-
zon Music: We sampled examples from the
datasets provided by He and McAuley (2016)
here8.

• Biosbias: We created the dataset using the
code provided by De-Arteaga et al. (2019)
here9. All the bios are from Common Crawl
August 2018 Index.

• Waseem: The authors of (Waseem and Hovy,
2016) kindly provided the dataset to us by
email. We considered “racism” and “sexism”
examples as “Abusive” and “neither” exam-
ples as “Non-abusive”.

• Wikitoxic: The dataset can be downloaded
here10. We used only examples which were
given the same label by all the annotators.

• 20Newsgroups: We downloaded the standard
splits of the dataset using scikit-learn11. The

7https://github.com/zhangxiangxiao/
Crepe

8http://jmcauley.ucsd.edu/data/amazon/
9https://github.com/Microsoft/biosbias

10https://figshare.com/articles/
Wikipedia_Talk_Labels_Toxicity/4563973

11https://scikit-learn.org/

https://github.com/zhangxiangxiao/Crepe
https://github.com/zhangxiangxiao/Crepe
http://jmcauley.ucsd.edu/data/amazon/
https://github.com/Microsoft/biosbias
https://figshare.com/articles/Wikipedia_Talk_Labels_Toxicity/4563973
https://figshare.com/articles/Wikipedia_Talk_Labels_Toxicity/4563973
https://scikit-learn.org/

346

header and the footer of each text were re-
moved.

• Religion: We used the dataset provided by
Ribeiro et al. (2016) here12.

E.2 Number of Model Parameters
Convolutional Neural Networks

• Fixed word embeddings: 120,000,600

• Convolutional layers: 27,030

• Final (masked) dense layer:

– Binary classification: 62 (+60)
– 4-class classification: 124 (+120)

Bidirectional LSTM networks

• Fixed word embeddings: 120,000,600

• Bidirectional LSTM layers: 37,920

• Final (masked) dense layer:

– Binary classification: 62 (+60)
– 4-class classification: 124 (+120)

E.3 Computing Infrastructure Used
• CPU: Intel Core i9-9900X (3.5GHz)

• GPU: 11GB NVIDIA GeForce RTX 2080 Ti

• RAM: 32GB Corsair Vengeance DDR4

F Full Experimental Results

Tables 2-9 in this section report the full results of all
the experiments and datasets. All the results shown
are averaged from three runs. Boldface numbers
are the best scores in the columns. They are further
underlined if they are significantly better than the
scores of all the other models. We conducted the
statistical significance analysis using approximate
randomization test with 1,000 iterations and a sig-
nificance level α of 0.05 (Noreen, 1989; Graham
et al., 2014).

12https://github.com/marcotcr/
lime-experiments

https://github.com/marcotcr/lime-experiments
https://github.com/marcotcr/lime-experiments

347

Model: CNNs Test dataset: Yelp
Negative F1 Positive F1 Accuracy Macro F1

Original 0.758 ± 0.04 0.666 ± 0.05 0.720 ± 0.04 0.732 ± 0.04
Disabling A 0.711 ± 0.04 0.584 ± 0.02 0.660 ± 0.03 0.676 ± 0.04
Disabling B 0.742 ± 0.03 0.618 ± 0.13 0.695 ± 0.06 0.710 ± 0.06
Disabling C 0.754 ± 0.04 0.730 ± 0.06 0.742 ± 0.05 0.743 ± 0.04
Disabling AB 0.681 ± 0.02 0.334 ± 0.10 0.570 ± 0.03 0.599 ± 0.04
Disabling AC 0.710 ± 0.02 0.606 ± 0.07 0.668 ± 0.04 0.678 ± 0.03
Disabling BC 0.732 ± 0.04 0.630 ± 0.14 0.694 ± 0.07 0.705 ± 0.06

Table 2: Results (Average ± SD) of Experiment 1: Yelp, CNNs

Model: CNNs Test dataset: Amazon Products
Clothes F1 Music F1 Office F1 Toys F1 Accuracy Macro F1

Original 0.806 ± 0.02 0.960 ± 0.00 0.789 ± 0.03 0.748 ± 0.01 0.825 ± 0.00 0.829 ± 0.00
Disabling A 0.724 ± 0.02 0.827 ± 0.06 0.722 ± 0.03 0.679 ± 0.03 0.738 ± 0.02 0.744 ± 0.02
Disabling B 0.773 ± 0.02 0.956 ± 0.00 0.711 ± 0.02 0.688 ± 0.02 0.779 ± 0.02 0.785 ± 0.02
Disabling C 0.786 ± 0.01 0.958 ± 0.01 0.795 ± 0.02 0.734 ± 0.02 0.817 ± 0.00 0.821 ± 0.00
Disabling AB 0.515 ± 0.08 0.586 ± 0.17 0.530 ± 0.04 0.512 ± 0.04 0.536 ± 0.05 0.556 ± 0.05
Disabling AC 0.578 ± 0.11 0.745 ± 0.05 0.652 ± 0.04 0.579 ± 0.01 0.638 ± 0.03 0.669 ± 0.01
Disabling BC 0.768 ± 0.02 0.948 ± 0.01 0.663 ± 0.06 0.627 ± 0.07 0.750 ± 0.04 0.754 ± 0.04

Table 3: Results (Average ± SD) of Experiment 1: Amazon Products, CNNs

Model: BiLSTMs Test dataset: Yelp
Negative F1 Positive F1 Accuracy Macro F1

Original 0.810 ± 0.01 0.774 ± 0.03 0.794 ± 0.01 0.799 ± 0.01
Disabling A 0.810 ± 0.00 0.767 ± 0.01 0.791 ± 0.01 0.798 ± 0.00
Disabling B 0.800 ± 0.00 0.745 ± 0.01 0.776 ± 0.01 0.785 ± 0.01
Disabling C 0.803 ± 0.00 0.774 ± 0.01 0.790 ± 0.01 0.793 ± 0.00
Disabling AB 0.781 ± 0.01 0.720 ± 0.02 0.754 ± 0.02 0.763 ± 0.02
Disabling AC 0.800 ± 0.00 0.758 ± 0.01 0.781 ± 0.00 0.787 ± 0.00
Disabling BC 0.787 ± 0.01 0.730 ± 0.02 0.762 ± 0.01 0.769 ± 0.01

Table 4: Extra results (Average ± SD) of Experiment 1: Yelp, BiLSTMs

Model: BiLSTMs Test dataset: Amazon Products
Clothes F1 Music F1 Office F1 Toys F1 Accuracy Macro F1

Original 0.764 ± 0.01 0.958 ± 0.00 0.792 ± 0.02 0.760 ± 0.02 0.818 ± 0.01 0.820 ± 0.01
Disabling A 0.735 ± 0.03 0.940 ± 0.02 0.770 ± 0.02 0.733 ± 0.01 0.793 ± 0.01 0.796 ± 0.01
Disabling B 0.747 ± 0.00 0.939 ± 0.02 0.765 ± 0.02 0.741 ± 0.01 0.798 ± 0.01 0.801 ± 0.01
Disabling C 0.769 ± 0.02 0.946 ± 0.01 0.792 ± 0.03 0.759 ± 0.04 0.816 ± 0.02 0.817 ± 0.02
Disabling AB 0.636 ± 0.09 0.884 ± 0.04 0.720 ± 0.02 0.665 ± 0.04 0.727 ± 0.03 0.734 ± 0.02
Disabling AC 0.718 ± 0.02 0.828 ± 0.08 0.758 ± 0.03 0.683 ± 0.03 0.745 ± 0.04 0.754 ± 0.04
Disabling BC 0.702 ± 0.03 0.881 ± 0.05 0.702 ± 0.07 0.699 ± 0.03 0.750 ± 0.03 0.752 ± 0.03

Table 5: Extra results (Average ± SD) of Experiment 1: Amazon Products, BiLSTMs

348

Model: CNNs Test dataset: Biosbias
Surgeon F1 Nurse F1 Accuracy Macro F1 FPED ↓ FNED ↓

Original 0.957 ± 0.00 0.943 ± 0.00 0.951 ± 0.00 0.950 ± 0.00 0.250 ± 0.02 0.338 ± 0.02
Disabling (MTurk) 0.943 ± 0.01 0.925 ± 0.01 0.935 ± 0.01 0.934 ± 0.01 0.163 ± 0.01 0.149 ± 0.03
Disabling (One) 0.942 ± 0.01 0.924 ± 0.01 0.934 ± 0.01 0.933 ± 0.01 0.118 ± 0.00 0.085 ± 0.01

Table 6: Results (Average ± SD) of Experiment 2: Biosbias, CNNs

Model: CNNs Test dataset: Waseem
Not Abusive F1 Abusive F1 Accuracy Macro F1 FPED ↓ FNED ↓

Original 0.876 ± 0.00 0.682 ± 0.01 0.821 ± 0.00 0.783 ± 0.00 0.232 ± 0.03 0.212 ± 0.02
Disabling (MTurk) 0.865 ± 0.00 0.671 ± 0.01 0.808 ± 0.00 0.770 ± 0.00 0.303 ± 0.02 0.220 ± 0.04
Disabling (One) 0.856 ± 0.01 0.614 ± 0.04 0.791 ± 0.02 0.743 ± 0.02 0.205 ± 0.03 0.184 ± 0.03

Model: CNNs Test dataset: Wikitoxic
Not Abusive F1 Abusive F1 Accuracy Macro F1 FPED ↓ FNED ↓

Original 0.973 ± 0.00 0.179 ± 0.03 0.948 ± 0.00 0.601 ± 0.02 0.052 ± 0.01 0.164 ± 0.03
Disabling (MTurk) 0.967 ± 0.01 0.230 ± 0.05 0.936 ± 0.02 0.609 ± 0.04 0.083 ± 0.04 0.181 ± 0.05
Disabling (One) 0.970 ± 0.00 0.191 ± 0.01 0.942 ± 0.01 0.598 ± 0.01 0.053 ± 0.00 0.112 ± 0.02

Table 7: Results (Average ± SD) of Experiment 2: Waseem & Wikitoxic, CNNs

Model: CNNs Test dataset: 20Newsgroups
Atheism F1 Christian F1 Accuracy Macro F1

Original 0.828 ± 0.01 0.875 ± 0.01 0.855 ± 0.01 0.853 ± 0.01
Disabling (MTurk) 0.798 ± 0.01 0.853 ± 0.01 0.830 ± 0.01 0.828 ± 0.01

Model: CNNs Test dataset: Religion
Atheism F1 Christian F1 Accuracy Macro F1

Original 0.567 ± 0.03 0.787 ± 0.01 0.715 ± 0.02 0.731 ± 0.01
Disabling (MTurk) 0.700 ± 0.15 0.834 ± 0.04 0.789 ± 0.07 0.799 ± 0.06

Table 8: Results (Average ± SD) of Experiment 3: 20Newsgroups & Religion, CNNs

Model: CNNs Test dataset: Amazon Clothes
Negative F1 Positive F1 Accuracy Macro F1

Original 0.862 ± 0.01 0.862 ± 0.01 0.862 ± 0.01 0.862 ± 0.01
Disabling (MTurk) 0.857 ± 0.01 0.855 ± 0.01 0.856 ± 0.01 0.856 ± 0.01

Model: CNNs Test dataset: Amazon Music
Negative F1 Positive F1 Accuracy Macro F1

Original 0.640 ± 0.02 0.722 ± 0.01 0.687 ± 0.01 0.695 ± 0.01
Disabling (MTurk) 0.668 ± 0.01 0.722 ± 0.01 0.697 ± 0.01 0.701 ± 0.01

Model: CNNs Test dataset: Amazon Mixed
Negative F1 Positive F1 Accuracy Macro F1

Original 0.784 ± 0.01 0.799 ± 0.00 0.792 ± 0.01 0.793 ± 0.00
Disabling (MTurk) 0.793 ± 0.00 0.801 ± 0.00 0.797 ± 0.00 0.797 ± 0.00

Model: CNNs Test dataset: Yelp
Negative F1 Positive F1 Accuracy Macro F1

Original 0.767 ± 0.02 0.800 ± 0.00 0.785 ± 0.01 0.789 ± 0.01
Disabling (MTurk) 0.786 ± 0.00 0.804 ± 0.00 0.795 ± 0.00 0.796 ± 0.00

Table 9: Results (Average ± SD) of Experiment 3: Sentiment Analysis (Amazon Clothes), CNNs

