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Abstract
To scale non-parametric extensions of proba-
bilistic topic models such as Latent Dirichlet
allocation to larger data sets, practitioners rely
increasingly on parallel and distributed systems.
In this work, we study data-parallel training for
the hierarchical Dirichlet process (HDP) topic
model. Based upon a representation of certain
conditional distributions within an HDP, we
propose a doubly sparse data-parallel sampler
for the HDP topic model. This sampler utilizes
all available sources of sparsity found in natural
language—an important way to make compu-
tation efficient. We benchmark our method
on a well-known corpus (PubMed) with 8m
documents and 768m tokens, using a single
multi-core machine in under four days.

1 Introduction

Topic models are a widely-used class of methods
that allow practitioners to identify latent semantic
themes in large bodies of text in an unsupervised
manner. They are particularly attractive in areas
such as history (Yang et al., 2011; Wang et al.,
2012), sociology (DiMaggio et al., 2013), and po-
litical science (Roberts et al., 2014), where a desire
for careful control of structure and prior informa-
tion incorporated into the model motivates one to
adopt a Bayesian approach to learning. In these
areas, large corpora such as newspaper archives are
becoming increasingly available (Ehrmann et al.,
2020), and models such as latent Dirichlet alloca-
tion (LDA) (Blei et al., 2003) and its nonparametric
extensions (Teh et al., 2006; Teh, 2006; Hu and
Boyd-Graber, 2012; Paisley et al., 2015) are widely
used by practitioners. Moreover, these models are
emerging as a component of data-efficient language
models (Guo et al., 2020). Training topic models
efficiently entails two requirements.

1. Expose sufficient parallelism that can be taken
advantage of by the hardware.

2. Utilize sparsity found in natural language to
control memory requirements and computa-
tional complexity.

In this work, we focus on the hierarchical Dirich-
let process (HDP) topic model of Teh et al. (2006),
which we review in Section 2. This model is a sim-
ple non-trivial extension of LDA to the nonparamet-
ric setting. This parallel implementation provides
a blueprint for designing massively parallel train-
ing algorithms in more complicated settings, such
as nonparametric dynamic topic models (Ahmed
and Xing, 2010) and tree-based extensions (Hu and
Boyd-Graber, 2012).

Parallel approaches to training HDPs have been
previously introduced by a number of authors, in-
cluding Newman et al. (2009), Wang et al. (2011),
Williamson et al. (2013), Chang and Fisher (2014)
and Ge et al. (2015). These techniques suit various
settings: some are designed to explicitly incorpo-
rate sparsity present in natural language and other
discrete spaces, while others are intended for HDP-
based continuous mixture models. Gal and Ghahra-
mani (2014) have pointed out that some methods
can suffer from load-balancing issues, which limit
their parallelism and scalability. The largest bench-
mark of parallel HDP training performed to our
awareness is by Chang and Fisher (2014) on the
100m-token NYTIMES corpora. Throughout this
work, we focus on Markov chain Monte Carlo
(MCMC) methods—empirically, their scalability
is comparable to variational methods (Magnusson
et al., 2018; Hoffman and Ma, 2019), and, subject
to convergence, they yield the correct posterior.

Our contributions are as follows. We propose an
augmented representation of the HDP for which the
topic indicators can be sampled in parallel over doc-
uments. We prove that, under this representation,
the global topic distribution Ψ is conditionally con-
jugate given an auxiliary parameter l. We develop
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Symbol Description Symbol Description
V Vocabulary size Ψ : 1×∞ Global distribution over topics
D Total number of documents Θ : D ×∞ Document-topic probabilities
N Total number of tokens θd : 1×∞ Topic probabilities for document d
v(i) Word type for token i m : D ×∞ Document-topic sufficient statistic
d(i) Document for token i Φ :∞× V Topic-word probabilities
wi,d Token i in document d φk : 1× V Word probabilities for topic k
bi,d Global topic draw indicator for wi,d n :∞× V Topic-word sufficient statistic
zi,d Topic indicator for token i in d l : 1×∞ Global topic latent sufficient statistic
K∗ Index for implicitly-represented topics α,β, γ Prior concentration for θd, φk, Ψ

Table 1: Notation for the HDP topic model. Sufficient statistics are conditional on the algorithm’s current iteration.
Bold symbols refer to matrices, bold italics refer to vectors, possibly countably infinite.

fast sampling schemes for Ψ and l, and propose
a training algorithm with a per-iteration complex-
ity that depends on the minima of two sparsity
terms—it takes advantage of both document-topic
and topic-word sparsity simultaneously.

2 Partially collapsed Gibbs sampling for
hierarchical Dirichlet processes

The hierarchical Dirichlet process topic model
(Teh et al., 2006) begins with a global distribu-
tion Ψ over topics. Documents are assumed
exchangeable—for each document d, the associ-
ated topic distribution θd follows a Dirichlet pro-
cess centered at Ψ. Each topic is associated with a
distribution of tokens φk. Within each document,
tokens are assumed exchangeable (bag of words)
and assigned to topic indicators zi,d. For given data,
we observe the tokens wi,d.

We thus arrive at the GEM representation of a
HDP, given by equation (19) of Teh et al. (2006) as

Ψ ∼ GEM(γ) (1)

θd | Ψ ∼ DP(α,Ψ) (2)

φk ∼ Dir(β) (3)

zi,d | θd ∼ Discrete(θd) (4)

wi,d | zi,d,Φ ∼ Discrete(φzi,d) (5)

where α,β, γ are prior hyperparameters.

2.1 Intuition and augmented representation
At a high level, our strategy for constructing a scal-
able sampler is as follows. Conditional on Ψ, the
likelihood in equations (1)–(5) is the same as that
of LDA. Using this observation, the Gibbs step for
z, which is the largest component of the model,
can be handled efficiently by leveraging insights
on sparse parallel sampling from the well-studied
LDA literature (Yao et al., 2009; Li et al., 2014;

Magnusson et al., 2018; Terenin et al., 2019). For
this strategy to succeed, we need to ensure that all
Gibbs steps involved in the HDP under this rep-
resentation are analytically tractable and can be
computed efficiently. For this, the representation
needs to be modified.

To begin, we integrate each θd out of the model,
which by conjugacy (Blackwell and MacQueen,
1973) yields a Pólya sequence for each zd. By defi-
nition, given in Appendix A, this sequence is a mix-
ture distribution with respect to a set of Bernoulli
random variables bd, each representing whether
zi,d was drawn from Ψ or from a repeated draw in
the Pólya urn. Thus, the HDP can be written

Ψ ∼ GEM(γ) (6)

bi,d ∼ Ber
(

α
i−1+α

)
(7)

φk ∼ Dir(β) (8)

zd | bd,Ψ ∼ PS(Ψ, bd) (9)

wi,d | zi,d ∼ Discrete(φzi,d) (10)

where PS(Ψ, bd) is a Pólya sequence, defined in
Appendix A. This representation defines a posterior
distribution over z,Φ,Ψ, b for the HDP. To derive
a Gibbs sampler, we calculate its full conditionals.

2.2 Full conditionals for z, Φ, and b
The full conditionals z | Φ,Ψ and Φ | z,Ψ, with
bmarginalized out, are essentially those in partially
collapsed LDA (Magnusson et al., 2018; Terenin
et al., 2019). They are

P(zi,d = k | z−i,d,Φ,Ψ) (11)

∝ φk,v(i)

[
αΨk +m−id,k

]
(12)

where v(i) is the word type for word token i, and

φk | z ∼ Dir(β + nk) (13)
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where m−id,k denotes the document-topic sufficient
statistic with index i removed, and nk is the topic-
word sufficient statistic. Note the number of possi-
ble topics and full conditionalsφk | z here is count-
ably infinite. The full conditional for each bi,d is

P(bi,d = 1 | zd,Ψ, b−i,d) (14)

=
αΨzi,d

αΨzi,d +
∑i

j=1 1zj,d(zi,d)
. (15)

The derivation, based on a direct application of
Bayes’ Rule with respect to the probability mass
function of the Pólya sequence, is in Appendix A.

2.3 The full conditional for Ψ

To derive the full conditional for Ψ, we examine
the prior and likelihood components of the model.
It is shown in Appendix A that the likelihood term
zd | bd,Ψ may be written

p(zd | bd,Ψ) (16)

=

Nd∏
i=1
bi,d 6=1

i−1∑
j=1

1

i− 1
1zj,d(zi,d)

doesn’t enter posterior

Nd∏
i=1
bi,d=1

∞∏
k=1

Ψ
1k(zi,d)
k .

The first term is a multiplicative constant indepen-
dent of Ψ and vanishes via normalization. Thus,
the full conditional Ψ | z, b depends on z and b
only through the sufficient statistic l defined by

lk =
D∑
d=1

Nd∑
i=1
bi,d=1

1zi,d=k (17)

and so we may suppose without loss of generality
that the likelihood term is categorical. Under these
conditions, we prove the full conditional for Ψ
admits a stick-breaking representation.

Proposition 1. Without loss of generality, suppose

Ψ ∼ GEM(γ) x | Ψ ∼ Discrete(Ψ). (18)

Then Ψ | x is given by

Ψk = ςk

k−1∏
i=1

(1− ςi) ςk ∼ Beta(a
(Ψ)
k , b

(Ψ)
k ) (19)

a
(Ψ)
k = 1 + lk b

(Ψ)
k = γ +

∞∑
i=k+1

li (20)

where l are the empirical counts of x.

Proof. Appendix B.

This expression is similar to the stick-breaking
representation of a Dirichlet process DP(·, F )—
however, it has different weights and does not
include random atoms drawn from F as part of
its definition—see Appendix B for more details.
Putting these ideas together, we define an infinite-
dimensional parallel Gibbs sampler.

Algorithm 1. Repeat until convergence.

• Sample φk ∼ Dir(nk + β) in parallel over
topics for k = 1, ..,∞.

• Sample zi,d ∝ φk,v(i) αΨk + φk,v(i)m
−i
d,k in

parallel over documents for d = 1, .., D.

• Sample bi,d according to equation (14) in par-
allel over documents for d = 1, .., D.

• Sample Ψ according to equations (19)–(20).

Algorithm 1 is completely parallel, but cannot be
implemented as stated due to the infinite number
of full conditionals for Φ, as well as the infinite
product used in sampling Ψ. We now bypass
these issues by introducing an approximate finite-
dimensional sampling scheme.

2.4 Finite-dimensional sampling of Ψ and Φ

By way of assuming Ψ ∼ GEM(γ), an HDP as-
sumes an infinite number of topics are present a
priori, with the number of tokens per topic decreas-
ing rapidly with the topic’s index in a manner con-
trolled by γ. Thus, under the model, a topic with
a sufficiently large index should contain no tokens
with high probability.

We thus propose to approximate Ψ by projecting
its tail onto a single flag topic K∗, which stands
for all topics not explicitly represented as part of
the computation. This can be done by by deter-
ministically setting ςK∗ = 1 in equation (19). The
resulting finite-dimensional Ψ will be the correct
posterior full conditional for the finite-dimensional
generalized Dirichlet prior considered previously in
Section 2.3. Hence, this finite-dimensional trunca-
tion forms a Bayesian model in its own right, which
suggests it should perform reasonably well. From
an asymptotic perspective, Ishwaran and James
(2001) have shown that the approximation is al-
most surely convergent and, therefore, well-posed.

Once this is done, Ψ becomes a finite vector of
length K∗, and only K∗ rows of Φ need to be ex-
plicitly instantiated as part of the computation. This
instantiation allows the algorithm to be defined on
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a fixed finite state space, simplifying bookkeeping
and implementation.

From a computational efficiency perspective, the
resulting value K∗ takes the place of K in partially
collapsed LDA. However, it cannot be interpreted
as the number of topics in the sense of LDA. Indeed,
LDA implicitly assumes that Ψ = Unif(1, ..,K)
deterministically—i.e., that every topic is assumed
a priori to contain the same number of tokens. In
contrast, the HDP model learns this distribution
from the data by letting Ψ ∼ GEM(γ).

If we allow the state space to be resized when
topic K∗ is sampled, then following Papaspiliopou-
los and Roberts (2008), it is possible to develop
truncation schemes which introduce no error. Since
this results in more complicated bookkeeping
which reduces performance, we instead fix K∗ and
defer such considerations to future work. We rec-
ommend setting K∗ to be sufficiently large that it
does not significantly affect the model’s behavior,
which can be checked by tracking the number of
tokens assigned to the topic K∗.

2.5 Sparse sampling of Φ and z
To be efficient, a topic model needs to utilize the
sparsity found in natural language as much as pos-
sible. In our case, the two main sources of sparsity
are as follows.

1. Document-topic sparsity: most documents
will only contain a handful of topics.

2. Topic-word sparsity: most word types will not
be present in most topics.

We thus expect the document-topic sufficient statis-
tic m and topic-word sufficient statistic n to con-
tain many zeros. We seek to use this to reduce
sampling complexity. Our starting point is the Pois-
son Pólya Urn sampler of Terenin et al. (2019),
which presents a Gibbs sampler for LDA with com-
putational complexity that depends on the minima
of two sparsity coefficients representing document-
topic and topic-word sparsity—such algorithms are
termed doubly sparse. The key idea is to approx-
imate the Dirichlet full conditional for φk with a
Poisson Pólya Urn (PPU) distribution defined by

φk,v=
ϕk,v∑V
v=1 ϕk,v

ϕk,v∼Pois(βk,v+nk,v) (21)

for v = 1, .., V . This distribution is discrete, so
Φ becomes a sparse matrix. The approximation is
accurate even for small values of nk,v, and Terenin

et al. (2019) proves that the approximation error
will vanish for large data sets in the sense of con-
vergence in distribution.

If β is uniform, we can further use sparsity to
accelerate sampling ϕk,v. Since a sum of Pois-
son random variables is Poisson, we can split
ϕk,v = ϕ(β)

k,v +ϕ(n)
k,v . We then sample ϕ(β)

k,v sparsely
by introducing a Poisson process and sampling its
points uniformly, and sample ϕ(n)

k,v sparsely by iter-
ating over nonzero entries of n.

For z, the full conditional

P(zi,d = k | z−i,d,Φ,Ψ) (22)

∝ φk,v(i)

[
αΨk +m−id,k

]
(23)

∝ φk,v(i)αΨk

(a)

+φk,v(i)m
−i
d,k

(b)

(24)

is similar to to the one in partially collapsed LDA
(Magnusson et al., 2018)—the difference is the
presence of Ψk. As Ψk only enters the expression
through component (a) and is identical for all zi,d,
it can be absorbed at each iteration directly into an
alias table (Walker, 1977; Li et al., 2014). Compo-
nent (b) can be computed efficiently by utilizing
sparsity of Φ and m and iterating over whichever
has fewer non-zero entries.

2.6 Direct sampling of l
Rather than sampling b, whose size will grow lin-
early with the number of documents, we introduce
a scheme for sampling the sufficient statistic l di-
rectly. Observe that

lk =

D∑
d=1

Nd∑
i=1
bi,d=1

1zn,d=k =

D∑
d=1

Nd∑
i=1
zi,d=k

1bi,d=1 (25)

where the domain of summation and the value of
the indicators have been switched. By definition of
bi,d, we have

Nd∑
i=1
zi,d=k

1bi,d=1 =

md,k∑
j=1

bj,d,k (26)

where

bj,d,k ∼ Ber

(
Ψkα

Ψkα+ j − 1

)
. (27)

Summing this expression over documents, we ob-
tain the expression

lk=

maxdmd,k∑
j=1

cj,k cj,k∼Bin

(
Dk,j ,

Ψkα

Ψkα+j−1

)
(28)
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where Dk,j is the total number of documents with
md,k ≥ j. Since md,k = 0 for all topics k without
any tokens assigned, we only need to sample l for
topics that have tokens assigned to them. This idea
can also be straightforwardly applied to other HDP
samplers (Chang and Fisher, 2014; Ge et al., 2015),
by allowing one to derive alternative full condition-
als in lieu of the Stirling distribution (Antoniak,
1974). The complexity of sampling l directly is
constant with respect to the number of documents,
and depends instead on the maximum number of
tokens per document.

To handle the bookkeeping necessary for com-
puting Dk,j , we introduce a sparse matrix d of size
K ×maxdNd whose entries dk,p are the number
of documents for topic k that have a total of p topic
indicators assigned to them. We increment d once
zd been sampled by iterating over non-zero ele-
ments inmd. We then compute Dk,j as the reverse
cumulative sum of the rows of d.

2.7 Poisson Pólya urn partially collapsed
Gibbs sampling

Putting all of these ideas together, we obtain the
following algorithm.

Algorithm 2. Repeat until convergence.

• Sample φk ∼ PPU(nk + β) in parallel over
topics for k = 1, ..,K∗.

• Sample zi,d ∝ φk,v(i) αΨk + φk,v(i)m
−i
d,k in

parallel over documents for d = 1, .., D.

• Sample lk according to equation (28) in par-
allel over topics for k = 1, ..,K∗.

• Sample Ψ according to equations (19)–(20),
except with ςK∗ = 1.

Algorithm 2 is sparse, massively parallel, defined
on a fixed finite state space, and contains no infinite
computations in any of its steps. The Gibbs step for
Φ converges in distribution (Terenin et al., 2019)
to the true Gibbs steps as N →∞, and the Gibbs
step for Ψ converges almost surely (Ishwaran and
James, 2001) to the true Gibbs step as K∗ →∞.

2.8 Computational complexity
We now examine the per-iteration computational
complexity of Algorithm 2. To proceed, we fix K∗

and maximum document size maxdNd, and relate
the vocabulary size V with the number N of total
words as follows.

Assumption (Heaps’ Law). The number of unique
words in a corpus follows Heaps’ law (Heaps,
1978) V = ξN ζ with constants ξ > 0 and ζ < 1.

The per-iteration complexity of Algorithm 2 is
equal to the sum of the per-iteration complexity of
sampling its components. The sampling complex-
ities of Ψ and l are constant with respect to the
number of tokens, and the sampling complexity of
Φ has been shown by Magnusson et al. (2018) to
be negligible under the given assumptions. Thus, it
suffices to consider z.

At a given iteration, let K(m)
d(i) be the number of

existing topics in document d associated with word
token i, and let K(Φ)

v(i) be the number of nonzero
topics in the row of Φ corresponding to word to-
ken i. It follows immediately from the argument
given by Terenin et al. (2019) that the per-iteration
complexity of sampling each topic indicator zi is

O
[
min

(
K

(m)
d(i) ,K

(Φ)
v(i)

)]
. (29)

Algorithm 2 is thus a doubly sparse algorithm.

3 Performance results

To study performance of the partially collapsed
sampler—Algorithm 2—we implemented it in
Java using the open-source MALLET1 (McCallum,
2002) topic modeling framework. We ran it on the
AP, CGCBIB, NEURIPS, and PUBMED corpora,1

which are summarized in Table 2. Prior hyperpa-
rameters controlling the degree of sparsity were set
to α = 0.1, β = 0.01, γ = 1. We set K∗ = 1000
and observed no tokens ever allocated to the topic
K∗. Data were preprocessed with default Mallet
(McCallum, 2002) stop-word removal, minimum
document size of 10, and a rare word limit of 10.
Following Teh et al. (2006), the algorithm was ini-
tialized with one topic. All experiments were re-
peated five times to assess variability. Total runtime
for each experiment is given in Table 2.

To assess Algorithm 2 in a small-scale setting,
we compare it to the widely-studied sparse fully
collapsed direct assignment sampler of Teh et al.
(2006), which is not parallel. We ran 100 000

1See HTTP://MALLET.CS.UMASS.EDU and HTTPS://GITHUB.COM/LEJON/PARTIALLYCOLLAPSEDLDA. AP and CGCBIB
can be found therein. NeurIPS and PubMed can be found at HTTPS://ARCHIVE.ICS.UCI.EDU/ML/DATASETS/BAG+OF+WORDS.
Full output of experiments can be found at HTTPS://GITHUB.COM/ATERENIN/PARALLEL-HDP-EXPERIMENTS/.

http://mallet.cs.umass.edu
https://github.com/lejon/PartiallyCollapsedLDA
https://archive.ics.uci.edu/ml/datasets/bag+of+words
https://github.com/aterenin/Parallel-HDP-Experiments/
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Figure 1: Trace plots for log-likelihood, number of active topics, and additional metrics for CGCBIB, NeurIPS, and
PubMed. On the x axis, per-iteration scale is used for AP, CGCBIB and PubMed, and real-time scale is used for
NeurIPS. Algorithms used are partially collapsed HDP for all corpora, direct assignment HDP for AP and CGCBIB,
and subcluster split-merge HDP for NeurIPS. Individual traces are partially transparent, and their mean is opaque.

iterations of both methods on AP and CGCBIB. We
selected these corpora because they were among
the larger corpora on which it was feasible to run
our direct assignment reference implementation
within one week.

Trace plots for the log marginal likelihood for
z given Ψ and the number of active topics, i.e.,
those topics assigned at least one token, can be
seen in Figure 1(a,d) and Figure 1(b,e), respec-
tively. The direct assignment algorithm converges
slower, but achieves a slightly better local optimum
in terms of marginal log-likelihood, compared to
our method. This fact indicates that the direct as-
signment method may stabilize around a different
local optimum, and may represent a potential limi-
tation of the partially collapsed sampler in settings
where non-parallel methods are practical.

To better understand the distributional differ-
ences between the algorithms, we examined the

number of tokens per topic, which can be seen in
Figure 1(c,f). The partially collapsed sampler is
seen to assign more tokens to smaller topics, in-
dicating that it stabilizes around a local optimum
with slightly broader semantic themes.

To visualize the effect this has on the topics,
we examined the most common words for each
topic. Since the algorithms generate too many top-
ics to make full examination practical, we instead
compute a quantile summary with five topics per
quantile. The quantile is computed by ranking all
topics by the number of tokens, choosing the five
closest topics to the 100%, 75%, 50%, 25%, and
5% quantiles in the ranking, and computing their
top words. This approach gives a representative
view of the algorithm’s output for large, medium,
and small topics. Results may be seen in Appendix
D and Appendix C—we find the direct assignment
and partially collapsed samplers to be mostly com-

Corpus V D N Iterations Threads Runtime
AP 7 074 2 206 393 567 100 000 8 3.8 hours
CGCBIB 6 079 5 940 570 370 100 000 12 2.7 hours
NeurIPS 12 419 1 499 1 894 051 255 500 8 24 hours
PubMed 89 987 8 199 999 768 434 972 25 000 20 82.4 hours

Table 2: Corpora used in experiments, together with compute configuration.
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parable, with substantial overlap in top words for
common topics.

Next, we assess Algorithm 2 in a more demand-
ing setting and compare against previous parallel
state-of-the-art. There are various scalable sam-
plers available for the HDP. For a fair comparison,
we restrict ourselves to those samplers designed
for topic models and explicitly incorporate sparsity
of natural language in their construction. Among
these, we selected the parallel subcluster split-
merge algorithm of Chang and Fisher (2014) as our
baseline because it was used in the largest-scale
benchmark of the HDP topic model performed to
date to our awareness, and shows comparable per-
formance to other methods (Ge et al., 2015). The
subcluster split-merge algorithm is designed to con-
verge with fewer iterations, but is more costly to
run per iteration. Thus, we used a fixed compu-
tational budget of 24 hours of wall-clock time for
both algorithms. Computation was performed on a
system with a 4-core 8-thread CPU and 8GB RAM.

Results can be seen in Figure 1(g)—note that the
subcluster split-merge algorithm is parametrized
using sub-topic indicators and sub-topic probabili-
ties, so its numerical log-likelihood values are not
directly comparable to ours and should be inter-
preted purely to assess convergence. Algorithm 2
stabilizes much faster with respect to both the num-
ber of active topics in Figure 1(g), and marginal
log-likelihood in Figure 1(h). The subcluster split-
merge algorithm adds new topics one-at-a-time,
whereas our algorithm can create multiple new top-
ics per iteration—we hypothesize this difference
leads to faster convergence for Algorithm 2.

In Figure 1(i), we observe that the amount of
computing time per iteration increases substantially
for the subcluster split-merge method as it adds
more topics. For Algorithm 2, this stays approxi-
mately constant for its entire runtime.

To evaluate the topics produced by the algo-
rithms, we again examined the most common
words for each topic via a quantile summary, given
in Appendix E. We find the subcluster split-merge
algorithm appears to generate topics with slightly
more semantic overlap compared to Algorithm 2,
but otherwise produces comparable output.

Finally, to assess scalability, we ran 25 000 itera-
tions of Algorithm 2 on PubMed, which contains
768m tokens. To our knowledge, this dataset is an
order of magnitude larger than any datasets used
in previous MCMC-based approaches for the HDP.

Computation was performed on a compute node
with 2x10-core CPUs with 20 threads and 64GB of
RAM. The marginal likelihood and number of ac-
tive topics are given in Figure 1(j) and Figure 1(k).

To evaluate the topics discovered by the algo-
rithm, we examined their most common words—
these may be seen in full in Appendix F. We ob-
serve that the semantic themes present in the topics
vary according to how many tokens they have: top-
ics with more tokens appear to be broader, whereas
topics with fewer tokens appear to be more specific.
This behavior illustrates a key difference between
the HDP and methods like LDA, which do not con-
tain a learned global topic distribution Ψ in their
formulation. We suspect the effect is particularly
pronounced on PubMed compared to CGCBIB and
NeurIPS due to its large number of tokens.

4 Discussion

In this work, we introduce the parallel partially col-
lapsed Gibbs sampler—Algorithm 1—for the HDP
topic model, which converges to the correct target
distribution. We propose a doubly sparse approx-
imate sampler—Algorithm 2—which allows the
HDP to be implemented with per-token sampling
complexity of O

[
min

(
K

(m)
d(i) ,K

(Φ)
v(i)

)]
which is the

same as that of Pólya Urn LDA (Terenin et al.,
2019). Compared to other approaches for the HDP,
it offers the following improvements.

1. The algorithm is fully parallel in all steps.

2. The topic indicators z utilize all available
sources of sparsity to accelerate sampling.

3. All steps not involving z have constant com-
plexity with respect to data size.

4. The proposed sparse approximate algorithm
becomes exact as N →∞ and K∗ →∞.

These improvements allow us to train the HDP
on larger corpora. The data-parallel nature of
our approach means that the amount of available
parallelism increases with data size. This paral-
lelism avoids load-balancing-related scalability lim-
itations pointed out by Gal and Ghahramani (2014).

Nonparametric topic models are less straightfor-
ward to evaluate empirically than ordinary topic
models. In particular, we found topic coherence
scores (Mimno et al., 2011) to be strongly affected
by the number of active topics K, which causes
preference for models with fewer topics and more
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k Topic 1 Topic 5 Topic 9 Topic 13 Topic 17
nk,• 42 395 289 23 907 517 22 167 377 20 925 933 18 924 590

care cancer protein protein cell
health tumor binding cell neuron
patient patient membrane kinase electron
medical cell acid expression brain
research carcinoma activity receptor rat
system breast cell activation nerve
clinical tumour gel pathway fiber

cost survival human phosphorylati nucleus

k Topic 21 Topic 25 Topic 29 Topic 33 Topic 37
nk,• 18 033 777 16 308 024 15 128 822 13 562 338 10 819 160

cell rat gene infection plant
growth day mutation strain strain

expression mice genetic antibiotic acid
factor liver chromosome bacterial growth
beta animal analysis isolates extract

human effect genes bacteria activity
mrna control polymorphism resistance cell

endothelial mg dna coli production

Figure 2: Top 8 words for topics obtained by Algorithm 2 on PubMed, together with topic index k and total number
of words nk,• present in the topic. We observe that the topics range from broad to specific: this is a consequence
of the hierarchical Dirichlet process prior via the inclusion of the global topic proportions Ψ. Topics obtained by
Algorithm 2 on all corpora may be seen in Appendix C, Appendix D, Appendix E, and Appendix F.

semantic overlap per topic. We view the devel-
opment of summary statistics that are K-agnostic
and those measuring other aspects of topic quality
such as overlap, to be an important direction for
future work. We are particularly interested in tech-
niques that can be used to compare algorithms for
sampling from the same model defined over fully
disjoint state spaces, such as Algorithm 2 and the
subcluster split-merge algorithm in Section 3.

Partially collapsed HDP can stabilize around a
different local mode than fully collapsed HDP as
proposed by Teh et al. (2006). There have been
attempts to improve mixing in that sampler (Chang
and Fisher, 2014), including the use of Metropolis-
Hastings steps for jumping between modes (Jain
and Neal, 2004). These techniques are largely com-
plementary to ours and can be explored in combi-
nation with the ideas presented here.

The HDP posterior is a heavily multimodal tar-
get for which full posterior exploration is known
to be difficult (Chang and Fisher, 2014; Gal and
Ghahramani, 2014; Buntine and Mishra, 2014),
and sampling schemes are generally used more in
the spirit of optimization than traditional MCMC.
These issues are mirrored in other approaches, such
as variational inference. There, restrictive mean-
field factorization assumptions are often required,

which reduces the quality of discovered topics. We
view MAP-based analogs of ideas presented here
as a promising direction, since these may allow ad-
ditional flexibility that may enable faster training.

Many of the ideas in this work, such as the bino-
mial trick, are generic and apply to any topic model
structurally similar to the HDP’s GEM represen-
tation (Teh et al., 2006) given in Section 2. For
example, one could consider an informative prior
for Ψ in lieu of GEM(γ), potentially improving
convergence and topic quality, or developing paral-
lel schemes for other nonparametric topic models
such as Pitman-Yor models (Teh, 2006), tree-based
models (Hu and Boyd-Graber, 2012; Paisley et al.,
2015), embedded topic models (Dieng et al., 2020),
as well as nonparametric topic models used within
data-efficient language models (Guo et al., 2020)
in future work.

Conclusion

We introduce the doubly sparse partially collapsed
Gibbs sampler for the hierarchical Dirichlet process
topic model. By formulating this algorithm using a
representation of the HDP which connects it with
the well-studied Latent Dirichlet Allocation model,
we obtain a parallel algorithm whose per-token
sampling complexity is the minima of two sparsity
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terms. The ideas used apply to a large array of topic
models which possess the same full conditional
for the topic indicators z. Our algorithm for the
HDP scales to a 768m-token corpus (PubMed) on
a single multicore machine in under four days.

The proposed techniques leverage parallelism
and sparsity to scale nonparametric topic models to
larger datasets than previously considered feasible
for MCMC or other methods possessing similar
convergence properties. We hope these contribu-
tions enable wider use of Bayesian nonparametrics
for large collections of text.
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