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Abstract

Balancing accuracy and latency is a great chal-

lenge for simultaneous translation. To achieve

high accuracy, the model usually needs to

wait for more streaming text before translation,

which results in increased latency. However,

keeping low latency would probably hurt accu-

racy. Therefore, it is essential to segment the

ASR output into appropriate units for transla-

tion. Inspired by human interpreters, we pro-

pose a novel adaptive segmentation policy for

simultaneous translation. The policy learns to

segment the source text by considering pos-

sible translations produced by the translation

model, maintaining consistency between the

segmentation and translation. Experimental re-

sults on Chinese-English and German-English

translation show that our method achieves a

better accuracy-latency trade-off over recently

proposed state-of-the-art methods.

1 Introduction

In recent years, simultaneous translation has at-

tracted increasing interest both in research and in-

dustry community. It aims at a real-time trans-

lation that demands high translation quality and

an as-short-as-possible delay between speech and

translation output.

A typical simultaneous translation system con-

sists of an auto-speech-recognition (ASR) sys-

tem that transcribes the source speech into source

streaming text, and a machine translation (MT) sys-

tem that performs the translation from the source

into the target text. However, there is a gap between

the output of ASR and the input of MT. The MT

system takes sentences as input, while the stream-

ing ASR output has no segmentation boundaries.

Therefore, exploring a policy to split ASR output

into appropriate segments becomes a vital issue

for simultaneous translation. If translation starts
∗ Corresponding author.

before adequate source content is delivered, the

translation quality degrades. However, waiting for

too much source text increases latency.

The policies of recent work generally falls into

two classes:

• Fixed Policies are hard policies that follow a

pre-defined schedule independent of the con-

text. They segment the source text based on

a fixed length (Ma et al., 2019; Dalvi et al.,

2018). For example, the wait-k method (Ma

et al., 2019) first reads k source words, and

then generates one target word immediately

after each subsequent word is received. Poli-

cies of this type are simple and easy to imple-

ment. However, they do not consider contex-

tual information and usually result in a drop

in translation accuracy.

• Adaptive Policies learn to do segmentation

according to dynamic contextual information.

They either use a specific model to chunk the

streaming source text (Sridhar et al., 2013;

Oda et al., 2014; Cho and Esipova, 2016; Gu

et al., 2017; Zheng et al., 2019a, 2020) or

jointly learn segmentation and translation in

an end-to-end framework (Arivazhagan et al.,

2019; Zheng et al., 2019b; Ma et al., 2020).

The adaptive methods are more flexible than

the fixed ones and achieve state-of-the-art.

In this paper, we propose a novel adaptive seg-

mentation policy for simultaneous translation. Our

method is motivated by two widely used strategies

in simultaneous interpretation:

• Meaningful Unit (MU) Chunking. While lis-

tening to speakers, interpreters usually pre-

emptively group the streaming words into

units with clear and definite meaning, referred

to as meaningful units that can be directly

translated without waiting for more words.
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Source:
shàngwǔ diǎn wǒ qùle tàng gōngyuán

上午 10 点 我 去了 趟 公园
morning 10 o’clock I go to park

Text Translation: I went to the park at 10 a.m.

Source with MU: 上午 10 点 || 我 去了 趟 || 公园
Simul. Interpretation: At 10 a.m. || I went to || the park.

Table 1: A comparison of Chinese-English text translation and simultaneous interpretation. A text translator

translates the full sentence after reading all the source words and produces a translation with a long-distance

reordering by moving the initial part (as underlined) of the source sentence to the end of the target side. But

when doing simultaneous interpreting, an interpreter starts to translate as soon as he or she judges that the current

received streaming text constitutes an MU (“||”) and translate them monotonically.

• Interpreters are often obliged to keep close

to the source speech and render the transla-

tion of MUs in order, i.e., perform translation

monotonically while making the translation

grammatically tolerable.

See Table 1 for illustration. Unlike text translator,

a simultaneous interpreter dynamically segments

the source text into 3 MUs and translates them

monotonically.

In our approach, we model the policy as an MU

segmentation model, which dynamically splits the

streaming text into meaning units. Once a mean-

ing unit is detected 1, it is fed to the MT model

to generate translation. The MU segmentation is

implemented by a classification model under the

pre-training & fine-tuning framework (Devlin et al.,

2018; Sun et al., 2019). As there are no standard

training corpora to train the MU segmentation clas-

sifier, we propose a novel translation-prefix based

method to generate training data. Basically, the

method detects whether the translation of a se-

quence of words is a prefix of the full sentence’s

translation. If so, the sequence is considered as an

MU. This makes the segmentation model consis-

tent with the translation model. We further propose

a refined method to extract fine-grained MUs to

reduce latency.

Experimental results on NIST Chinese-English

and WMT 2015 German-English datasets show

that our method outperforms the previous state-of-

the-art methods in balancing translation accuracy

and latency. The contributions of this paper can be

summarized as follows:

• Inspired by human interpreters, we propose a

novel adaptive segmentation policy that splits

the ASR output into meaning units for simul-

taneous translation. The meaning units ensure

1In this paper, we use segmentation and detection inter-
changeably.

the MT model to produce high-quality trans-

lation with low latency.

• We propose a novel prefix-attention method to

extract fine-grained MUs by training a neural

machine translation (NMT) model that gener-

ates monotonic translations.

• Our method is simple yet effective. It can be

easily integrated into a practical simultaneous

translation system.

2 Adaptive Segmentation Policy

Our idea is inspired by human interpreters who start

translating as soon as they recognize an MU. In this

paper, we aim to split the streaming text into MUs

to get a trade-off between translation quality and

latency. See Figure 1 for illustration. We model the

MU segmentation as a classification problem and

train a classifier, which receives a streaming text

from ASR output and detects whether it constitutes

an MU (Figure 1 (a) and (b)). Once an MU is

detected, it is sent to the MT model to produce

translation (Figure 1 (c)). Meanwhile, the MU

segmentation model keeps receiving source words.

To build an MU segmentation model, there are

three key issues:

1. What is an MU? Though it is a widely adopted

concept in simultaneous interpretation, it has

no precise definition. We will discuss it in

Section 2.1.

2. How to construct a training corpus for the MU

segmentation model? We propose two meth-

ods to extract MUs from the training corpus

automatically. In the basic method, we pro-

pose a generation framework (Section 2.2).

To further generate fine-grained MU, we then

propose a refined method (Section 2.3 ).
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Figure 1: Illustration of our simultaneous translation system. The MU segmentation model receives streaming

ASR output and detects whether the streaming source text forms a meaning unit. (a). Detect whether the sequence

in the left rectangle constitutes an MU, with the reference of two future words in the right rectangle. The output

probability of class 1 (predicts the sequence as an MU) is lower than threshold δ (e.g. δ = 0.7). (b). The model

reads more source words and the probability of class 1 is greater than δ now. (c). As soon as an MU is detected,

it is sent to the translation model to generate translation. Once an MU is translated, the translation will not be

changed by the incoming source text. We thus use a force decoding to ensure the monotonic translation.

3. How to train the MU segmentation model?

We train the classifier under a pre-training &

fine-tuning framework (Section 2.4).

Finally, the MU segmentation model is inte-

grated into a cascaded simultaneous translation sys-

tem. It receives ASR output and produces MUs as

MT input.

2.1 MU Definition

As mentioned, an MU in simultaneous interpre-

tation refers to a group of streaming words with

definite or clear meaning. However, it is not easy

to give it a precise definition. Even human inter-

preters cannot determine the exact boundary of

MUs during interpreting.

Before we describe our definition, we first try to

list the properties of an ideal MU:

1. An MU should be short to reduce latency.

2. The translation of an MU should not be

changed (or affected) by the incoming source

words. 2 This requires that an MU should con-

tain enough information to produce a transla-

tion.

Accordingly, we define an MU as the minimum

segment whose translation will not be changed by

subsequent text.

2Once an MU is detected, the simultaneous translation
system should output its translation immediately, and the
translation cannot be modified. Rewriting the generated MU
translation in a practical system will hurt user experience.

Formally, we can take a pre-trained MT system

Mnmt to extract MUs. Given a streaming source

sequence x = {x1, x2, ...xT }, we want to find a

list of MU segments SMU = {S1, S2, ...SK} i.e.,

to split x into K MUs, satisfying the above proper-

ties that each partial translation Mnmt(Sk) will not

change by the incoming words. And our goal is to

find a segmentation SMU with appropriate granular-

ity.

2.2 Basic Method for Constructing Training

Data

We propose a simple method to generate MUs

for a source sentence x = {x1, x2, ...xT }. The

main idea is that, for a prefix x≤t = {x1, x2, ...xt}
(1 ≤ t ≤ T ), if its translation yt = Mnmt(x≤t)
is also a prefix of the full sentence translation

ỹ = Mnmt(x), we take xt as a boundary of MU.

The reason is that, in this case, the translation of

x≤t is not affected by more source words, indicat-

ing that the information of the current source se-

quence is sufficient to generate an accurate partial

translation. To keep the MU as short as possible,

we incrementally input the source text word-by-

word to an MT model and detect whether the trans-

lation yt of current source sequence is a prefix of

the full-sentence translation ỹ. If the answer is true,

then we segment the current source sequence as an

MU. Otherwise, the model continues reading more

source words.

Note that once an MU is detected, its translation
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Algorithm 1: Extract MUs

Input: x = x1, ..., xT ⊲ streaming input

Output: SMU ⊲ list of MU segmentation

1 k = 0 ⊲ position of last MU boundary

2 ỹ = Mnmt(src= x, tgtforce = None )

⊲ full sentence decoding

3 while Reading xt do

4 yt = Mnmt(src= x≤t , tgtforce= yk)

5 if y
t is a prefix of ỹ then

6 SMU = SMU ∪ {xk+1, ..., xt}
7 k = t

8 return SMU

is fixed. To keep consistency, when detecting a new

MU, we first force decode the translation of previ-

ous MUs and then decode the new sequence. The

whole process is described in Algorithm 1. The

algorithm reads source sequence word-by-word

(Line 3), and generates translation by force de-

coding using the history translation of previous

detected MUs, denoting as tgtforce(Line 4). The

sequence is detected as an MU if its translation is a

prefix of the full-sentence translation ( Line 5).

The above algorithm is simple, however, there

are two main problems. First, the constraint that yt

is a prefix of ỹ (Line 5) is too strict. To alleviate this

problem, we expand the full-sentence translation ỹ

to a set of candidates through beam search 3.

The second problem is that the translation model

Mnmt is trained on sentence pairs used for text

translation rather than simultaneous translation.

There are often long-distance reorderings in the

training corpus, which have been learned by the

translation model and prevent the basic method

from extracting fine-grained MUs. See Figure 2 for

illustration, the initial part of the source is trans-

lated to a sequence at the end of the target (in bold)

in the basic method. This makes all the translation

of x prefixes fail to match the full translation, re-

sulting in only one MU could be extracted, as the

whole sentence itself. For this problem, we propose

a refined method to train an NMT model M ′
nmt

with fewer reorderings.

2.3 Refined Method for Constructing

Training Data

The process of the refined method is described as

below:

3In this paper, we keep top N = 10 results as candidates

translation

(Basic Method)
I went to the  park at 10  a.m.

translation

(Refined Method)
At 10 a.m., I went to the park.

( ) Morning

( ) Morning 10

( ) At 10 a.m.

( ) At 10 a.m. me

( ) At 10 a.m. I went there

( ) At 10 a.m. I went to

( ) At 10 a.m. I went to the park

extracted by

Refined Method

match prefix with full
translation (Refined Method)

Figure 2: A running example of extracting MUs. Us-

ing the refined method, we obtain three MUs accord-

ing to the matching of partial translation and full trans-

lation. While due to the long-distance reordering of

full translation in the basic method, we cannot extract

short MUs. The gray blocks denotes the tgtforce parts.

1. Use standard sentence aligned parallel corpus

to pre-train an NMT model Mnmt;

2. Generate monotonic translation for each

source sentence in the corpus using Mnmt

with prefix-attention. 4

3. Use the generated training data to train a

monotonic translation model M ′
nmt by fine-

tuning on Mnmt.

4. Use M ′
nmt to extract MUs on the training cor-

pus according to Algorithm 1.

Prefix-attention. To generate monotonic trans-

lation, we propose a method that each target

word yj is generated by a prefix source sequence

rather than by the full source sentence. For-

mally, given a source sentence x={x1, x2, ..., xT },
we define g(j) as a monotonic non-decreasing

function that denotes the current source position

the encoder observed from the beginning. At

decoding step j, only a prefix source sequence

x≤g(j) = {x1, x2, ..., xg(j)} can be used to gen-

erate yj , where 0 < g(j) ≤ T .

The key issue is how to carefully choose g(j)
for each target word yj . Our main idea is that, to

generate target word yj , we expect the model to

4From the translation results produced by Mnmt with pre-
fix attention, we filter out two kinds of low-quality sentences:
1) Remove those sentences whose word orders are identical
with their counterparts in corresponding full sentence trans-
lations. 2) Remove the translation whose score is lower than
full-sentence translation.
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source
I look TV you cook

= 2

g( ) = 2 y I    look

source
I look TV you cook

= 2

g( ) = 3 y I    watch

Figure 3: A Chinese-English example for our prefix

attention. In the upper case, the model fails to pro-

duce correct translation because of a lack of future con-

textual information. By expanding the source prefix

(lower case), the model produces correct translation.

att is the encoder-decoder attention, and the triangle

indicates the location of maximum attention for the cur-

rent decoding step.

observe limited but adequate contextual informa-

tion to produce correct translation. See Figure 3

for illustration where the full-sentence translation

should be “I watch TV, you cook”. For the upper

case of Figure 3, the current decoding step is j = 2,

and g(j) = 2, meaning that the NMT model uses

prefix x≤2 to generate y2. However, in this case,

the model makes an error to generate y2. Without

observing more context, the model is difficult to

make a decision whether y2 should be “look” or

“watch” or “see”, etc. For the lower case, the model

expands the source prefix by one more source word

and produces correct translation.

This raises a question of how do we know

whether a source prefix is sufficient or not for pro-

ducing a target word? Let’s take a look at the

encoder-decoder attention. To generate a target

word yj , the NMT model computes probabilities

between each source word xt (1 ≤ t ≤ g(j)) and

yj via encoder-decoder attention αjt. The higher

the attention weight is, the greater contribution

the corresponding source words make in decoding.

Therefore, we can find the source words that con-

tribute the most by locating the highest attention

weight. For example, in Figure 3, the source word

x2 contributes the most for y2. When the source

word with maximum attention appears at the end of

a prefix span, the model takes a risk that it cannot

observe future context for translation. In this case,

we should expand the span to reduce the risk.

Algorithm 2 shows the whole process of prefix-

attention decoding. Initially, we set g(j) = 1 for

j = 1. For each decoding step j, the algorithm

Algorithm 2: Prefix-attention Decoding

Input: x = x1, ..., xT ⊲ streaming input

Output: y ⊲ monotonic translation

1 j = 1 ⊲ decoding step

2 g(j) = 1 ⊲ initialize g

3 while Decoding step j do

4 aj = argmaxt∈[1,g(j)] αjt

⊲ the position with max attention

5 if 1 ≤ aj < g(j) then

6 p(yj |x) = p(yj |x≤g(j), y<j ;Mnmt)

7 j ← j + 1 ⊲ next step

8 g(j) = g(j − 1) ⊲ non-decreasing

9 else

10 g(j)+ = 1 ⊲ expand g(j) by 1 word

11 return y

first locates the maximum attention to aj (Line 4),

according to the following equation:

aj = arg max
t∈[1,g(j)]

(αjt) (1)

where,

αjt =
exp(ejt)

∑g(j)
t′=1 exp(ejt′)

(2)

If 1 ≤ aj < g(j), it means that the model can

observe both history and future source context to

generate yj . Otherwise, the model faces the risk of

lacking future context. In this case, we expand g(j)
by one more word.

2.4 The MU Segmentation Model

Our MU segmentation model is illustrated in Figure

1 (a) & (b). Given a streaming source sequence

x = {x1, x2, ...}, the model aims to detect whether

a prefix of x constitutes an MU on-the-fly. The

model takes two inputs: the source sequence ct =
{x≤t} and future words ft = {xt+1, ..., xt+m},
and outputs the probability of predicted label lt,

denoting the context ct being an MU (class 1) or

not (class 0). m is a hyper-parameter as the number

of future words. Larger m means to wait for more

future words at inference time. In this paper, we

set m = 2. ct is considered as an MU if p(lt =
1|ct, ft; θmodel) is larger than a threshold δ.

In the training stage, we first extract the MUs in

the training corpus according to the basic method

(Section 2.3) or refined method (Section 2.2). Then

we generate the training data for the MU detection

model. For each sentence x = {x1, x2, ..., xN} in
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t ct ft(m = 2) lt
1 shàngwǔ 10 diǎn 0
2 shàngwǔ 10 diǎn wǒ 0
3 shàngwǔ 10 diǎn wǒ qùle 1
4 shàngwǔ 10 diǎn wǒ qùle tàng 0
5 shàngwǔ 10 diǎn wǒ qùle tàng gōngyuán 0
6 shàngwǔ 10 diǎn wǒ qùle tàng gōngyuán 1

...

Table 2: The training samples for the MU detection

model generated according to the MU segmentation re-

sult in Figure 2.

the training corpus, we generate N samples. Each

sample is a triple <ct, ft, lt> for t = {1, 2, ..., N}.
If xt is a boundary of MU, we set lt to 1; otherwise

0. Take the extracted MUs in Figure 2 as example,

we generate training samples as illustrated in Table

2. Note that for t larger than N − m, we only

use the remaining words in the sentence as future

words, which is less than m. Our training follows

the pre-training and fine-tuning framework (Devlin

et al., 2018; Sun et al., 2019).

3 Experiments

We carry out experiments on two translation

tasks: the NIST Chinese-English (Zh-En) trans-

lation task (2M sentences), and the WMT 2015

German-English (De-En) translation task (4.5M

sentences).we use BLEU (Papineni et al., 2002)

score to evaluate translation quality, and Average

Lagging 5 (Ma et al., 2019) to measure latency.

3.1 Data Preprocess

We use an open-source Chinese Tokenizer 6 to pre-

process Chinese and apply Moses Tokenizer 7 to

preprocess English and German. For Zh-En, we

validate on NIST newstest 2006 and report results

on newstest 2002, 2003, 2004, 2005, and 2008. We

use SententcePiece 8 to implement byte-pair encod-

ing (BPE) (Sennrich et al., 2016) for both Chinese

and English by setting the vocabulary size to 20K

and 18K, respectively. For De-En, we validate on

newstest 2013 and then report results on newstest

2015. We utilize a joint vocabulary, with a vocabu-

lary size of 32K. Notably, translation quality in all

experiments is measured using detokenized, cased

BLEU.

5https://github.com/SimulTrans-demo/STACL
6https://github.com/fxsjy/jieba
7https://github.com/moses-

smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
8https://github.com/google/sentencepiece

3.2 Model Settings

We compare our methods with previous state-of-

the-art methods:

• wait-k (Ma et al., 2019): first waiting for k

words, then emiting one token after reading

each word.

• chunk: extracting the training segments by

segmenting the source sentence into mini-

mally sized chunks such that crossing and

one-to-many links between source and target

words in an optimal GIZA++ alignment oc-

cur only within individual chunks. We borrow

this idea of training samples generation from

Rangarajan Sridhar et al. (2013).

• MILk (Arivazhagan et al., 2019): using hard

attention to schedule the policy and train the

policy together with the NMT model in an

end-to-end framework. It uses a weight λ in

the loss function to balance translation quality

and latency. 9

• MU: our proposed basic method of translat-

ing after detecting a meaning unit.

• MU++: our proposed refined method to de-

tect fine-grained meaning units.

The training of segmentation models for chunk,

MU and MU++ are based on the classification task

of BERT 10 and ERNIE 11, with the pre-trained lan-

guage model of German and Chinese, respectively.

We use the base model and take the learning rate

of 2e−5 at the fine-tuning stage.

Our translation models are trained on big Trans-

former (Vaswani et al., 2017). All the approaches

share the same machine translation corpus except

MU++, which is trained on the augmented training

corpus generated by prefix-attention (Section 2.3).

3.3 Overall Results

3.3.1 Chinese-English Translation

Figure 4 shows the translation quality and latency

on Chinese-English translation tasks. We have the

following observations:

• Our methods, both MU and MU++, outper-

form wait-k and chunk method in terms of

translation quality and latency.

9We compared MILk on German-English translation task
since they do not report Chinese-English results.

10https://github.com/google-research/bert
11https://github.com/PaddlePaddle/ERNIE
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Figure 4: Quality-latency results on the NIST dataset.

We report the averaged results on NIST02, NIST03,

NIST04, NIST05, and NIST08. Note that each method

has its own performance on full-sentence translation,

which is denoted as “+” with the same color with the

corresponding method. δ is the threshold of the MU

detection model (Section 2.4).

Figure 5: Quality-latency results on the WMT15

German-English dataset.

• With the increase of δ (the threshold for MU

detection, in Section 2.4), the quality is im-

proved while the latency is also increased. In

practice, δ can be tuned to obtain a trade-off

between quality and latency according to real

requirement.

• Compared to MU, MU++ significantly re-

duces latency while causing a drop in qual-

ity. A possible reason is that the references in

the test set are produced via text translation

and contain many long-distance reorderings.

But MU++ is designed to produce translation

with less reordering. We’ll further analyze

this issue in Section 3.4.

3.3.2 German-English Translation

Figure 5 shows the De-En translation results. When

the average lagging is larger than 8, our model’s

translation quality outperforms the other models.

Note that low latency in other models performance

causes a large decrease in BLEU scores.

For the joint learning method, MILk, its full-

sentence performance is limited by the RNN ar-

chitecture, which is inferior to the Transformer.

Furthermore, its full-sentence translation model

uses a bidirectional encoder, while the streaming

model uses unidirectional encoders, resulting in

the performance gap in its full-sentence model and

streaming model. Both models in our approaches,

on the contrary, use the bidirectional encoder, thus

avoiding such gaps.

It’s interesting to find that the trend of MU and

MU++ is different from that of the Zh-En exper-

iment. According to Figure 4, MU++ is infe-

rior to MU, achieving low latency while impairing

the translation quality. But in De-En translation,

MU++ performs better than MU. We analyze this

in the next section.

3.4 Test on Reference with Simulated

Simultaneous Interpretation

We randomly select 200 sentences in Zh-En and

De-En, respectively, from the corresponding test

set and ask human translators to translate them in

the way that they do simultaneous interpretation.

For example in Figure 6 (“Simul-Ref ”), “next week”

appears at the initial position of the target sentence,

keeping the order of the “Source”. We also list the

translation process of the comparing methods.

Using the re-translated text as references, we

evaluate both MU and MU++ with flexible latency

(δ = 0.3, 0.5, 0.7, 0.9) on the test sets. The per-

formance on the new Zh-En test set is depicted in

Figure 7. MU++ presents shorter latency as well

as more promising quality on this dataset compared

to MU. Another finding is the quality of MU de-

grades even with a larger δ. We attribute this to

the inconsistency between reference and transla-

tion of MU, because longer MU may further cause

long-distance reordering. This also explains that

the superiority of MU to MU++ in the original test

set is due to the distribution inconsistency.

The performance of De-En is illustrated in 8, in

which the performance of the two methods is in

line with that on the original test set: MU++ per-

forms slightly better than MU. The reason is that in
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Source:

police next week will

duì

for

bù fèn

part

shè àn

involved

rén yuán

people

tí sù

indict

Text-Ref: Police will indict some of the people involved in the case next week .

Simul-Ref: Next week, police will indict some of the people involved in the case.

chunk Police next week will prosecute part of the suspects.

Wait-3: Police to part of the people involved will be charged next week.

MU The police
will bring lawsuits against some of the suspects 

next week.

MU++ Next week, the police will bring lawsuits against some of the suspects.

Figure 6: A Chinese-English example in the test set with the original text translation reference (“Text-Ref ”) and the

simultaneous interpretation reference (“Simul-Ref ”). Both chunk and wait-3 generates incorrect translation. But

MU and MU++ translates accurately. Furthermore, MU++ avoids long-distance reordering by keeping “xiàzhoū

(next week)” in order with the source sentence, and thus reduces latency.

Figure 7: Performance of Zh-En on 200 sentences with

simultaneous interpretation reference (Simul-Ref ).

Figure 8: Performance of De-En on 200 sentences with

simultaneous interpretation reference (Simul-Ref ).

German, there are a lot of “SOV” structures, while

English is an “SVO” language. In this case, both

MU and MU++ should wait until a verb at the end

of a sentence before generating an accurate transla-

tion. Thus the performance of MU and MU++ is

similar.

We further ask human translators to evaluate

the quality of MU and MU++. They rated each

translation in Bad, OK and Good based on the

translations’ adequacy, correctness and fluency:

• Bad indicates the translation is unacceptable

and incorrect or inadequate.

• OK denotes the translation is comprehensible

and adequate, but with minor errors such as in-

correct function words and less fluent phrases.

• Good means a translation is correct and con-

Method Bad OK Good Acceptablity

Zh-En
MU 28.5% 49% 22.5% 71.5%
MU++ 30.0% 46.5% 23.5% 70.0%

De-En
MU 23.5% 54.5% 22.0% 76.5%
MU++ 22.0% 57.0% 21.0% 78.0%

Table 3: The human evaluation of the Zh-En and De-En

translation on 200 sentences with δ = 0.7.

tains no obvious errors.

We evaluate the performance of MU and MU++

at delta = 0.7, which is the point of achieving rel-

atively high translation quality with limited latency.

The evaluated performance of the 200 sentences in

Zh-En and De-En is reported in Table 3. We define

the overall acceptability as a percentage of the sum

of OK and Good cases. It is obvious that the ac-

ceptability of MU and MU++ shows a consistent

trend with their BLEU in Figure 7 and Figure 8

that MU++ performs slightly worse in Zh-En but

the opposite in De-En. However in both language

pairs, MU++ achieves a lower latency.

4 Related Work

Recent simultaneous translation work focuses on

exploring a policy to decide whether to wait for an-

other source word or generate a target word. Ran-

garajan Sridhar et al. (2013) investigated a variety

of policies depending on lexical cues. Oda et al.

(2014) proposed to optimize a segmentation model

with the target of achieving better translation qual-

ity. However, their performance is limited largely

by weak features such as N-gram and POS. Some

research learns the policy depending on reinforce-

ment learning, with the goal of good translation

quality and low latency (Grissom II et al., 2014;

Satija and Pineau, 2016; Gu et al., 2017; Aline-
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jad et al., 2018). But reinforcement learning is

notorious for its unstable training process. Cho

and Esipova (2016) proposed a heuristic measure

to determine the policy at inference time, without

using a deep model. Ma et al. (2019) and Dalvi

et al. (2018) applied fixed policy independent of

contextual information, which inevitably need to

guess the future context in translation (Zheng et al.,

2019a). Some work applied advanced attention

mechanisms that replace the softmax attention with

a stepwise Bernoulli selection probability (Raffel

et al., 2017). Arivazhagan et al. (2019) proposed

infinite lookback to integrate the hard monotonic

attention with soft attention. Ma et al. (2020) pro-

posed multi-head monotonic attention and obtained

further improvements. However, the autoregressive

training process makes its exploration inefficient.

5 Conclusions

In this paper, we propose a novel adaptive segmen-

tation policy for simultaneous translation. Moti-

vated by human interpreters, the model constantly

reads streaming text and dynamically segments it

into meaning units. We first generate training data

for MU via a translation-prefix based method, keep-

ing consistency between the segmentation model

and the translation model. Further, we propose a

refined-method to extract fine-grained MUs to re-

duce latency. Experimental results on both Chinese-

English and German-English show that our model

outperforms the previous state-of-the-art. The

method obtains a good trade-off between transla-

tion accuracy and latency and can be easily imple-

mented into a practical simultaneous translation

system.
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