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Abstract
Existing OIE (Open Information Extraction)
algorithms are independent of each other such
that there exist lots of redundant works; the
featured strategies are not reusable and not
adaptive to new tasks. This paper proposes a
new pipeline to build OIE systems, where an
Open-domain Information eXpression (OIX)
task is proposed to provide a platform for all
OIE strategies. The OIX is an OIE friendly
expression of a sentence without information
loss. The generation procedure of OIX con-
tains shared works of OIE algorithms so that
OIE strategies can be developed on the plat-
form of OIX as inference operations focus-
ing on more critical problems. Based on the
same platform of OIX, the OIE strategies are
reusable, and people can select a set of strate-
gies to assemble their algorithm for a spe-
cific task so that the adaptability may be sig-
nificantly increased. This paper focuses on
the task of OIX and propose a solution –
Open Information Annotation (OIA). OIA is
a predicate-function-argument annotation for
sentences. We label a data set of sentence-
OIA pairs and propose a dependency-based
rule system to generate OIA annotations from
sentences. The evaluation results reveal that
learning the OIA from a sentence is a chal-
lenge owing to the complexity of natural lan-
guage sentences, and it is worthy of attracting
more attention from the research community.

1 Introduction

In the past decades, various OIE (Open Informa-
tion Extraction) systems (Banko et al., 2007; Yates
et al., 2007; Wu and Weld, 2010; Etzioni et al.,
2011; Fader et al., 2011; Mausam et al., 2012)
have been developed to extract various types of
facts. Earlier OIE systems extract verbal relations
between entities, while more recent systems en-
large the types of relations. For example, Rel-
NOUN (Pal and Mausam, 2016) extract nominal

properties. Sun et al. (2018a; 2018b) can extract
four types of facts: verbal, prepositional, nominal,
and conceptional. OLLIE (Mausam et al., 2012)
and ClauseIE (Corro and Gemulla, 2013) extract
relations between clauses. In addition to extracting
the fact tuples, NestIE (Bhutani et al., 2016) and
StuffIE (Prasojo et al., 2018) extract nested facts.
Furthermore, MinIE (Gashteovski et al., 2017) add
factuality annotations to the facts.

Currently, existing OIE systems were typically
developed from scratch, generally independent
from each other. Each of them has their own con-
cerned problem and builds its own pipeline from
a sentence to the final set of facts (See Figure 1a).
Generally, each OIE system is a complex composi-
tion of several extraction strategies (for rule-based
systems) or data labeling strategies (for end-to-end
supervised learning). It is rather straightforward
for specific problems. However, this practice has
several major drawbacks outlined as follows:

• Redundant works. Some common works are
implemented again and again in different ways
in each OIE system, such as converting simple
sentences with clear subj and obj dependencies
into a predicate-argument structure.

• Strategies are not reusable. During the years
of OIE practice, several sub-problems are be-
lieved valuable, e.g., nested structure identifica-
tion (Bhutani et al., 2016), informative predi-
cate construction (Gashteovski et al., 2017), at-
tribute annotation (Corro and Gemulla, 2013;
Gashteovski et al., 2017), etc. Each sub-problem
is worthy of being standardized and continually
studied given a well defined objective and data
sets so that the performance could be fairly eval-
uated and the progress can be continually made.
However, it is not easy in the current methodol-
ogy, since each pipeline’s strategies are closely
bonded to own implementation.
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(a) Traditional OIE systems. (b) OIX based OIE system.

Figure 1: Methodologies to construct OIE systems

• Unable to adapt. Because of the above two fac-
tors, there is no platform to implement the shared
requirement to provide unified data set, and the
strategies are not reusable. Furthermore, each
OIE system extracts the interested facts in the de-
sired form at the time of development and omits
the uninterested facts. Consequently, they are
not adaptable to new requirements. If the inter-
ests or the requested form of facts change, one
may need to write an entire new OIE pipeline.

As the OIE task has attracted more and more in-
terest (Christensen et al., 2013, 2014; Fader et al.,
2014; Mausam, 2016; Stanovsky et al., 2015; Khot
et al., 2017), the above mentioned drawbacks have
delayed the progress of OIE techniques. The key to
conquering those obstacles is to provide a shared
platform for all OIE algorithms, which express all
the information in sentences in the form of OIE
facts (that is, predicate-arguments tuples) without
losing information. OIE strategies can focus on in-
ferring new facts from existing ones without know-
ing the existence of the sentence. With this plat-
form, the strategies are reusable and can be fairly
compared. When confronting a specific task, one
can select a set of strategies or develop new strate-
gies and run the strategies on the platform to build
a new OIE pipeline. In this manner, the adaptability
is much improved. This new methodology of OIE
is shown in Figure 1b.

We name the task of implementing such a
platform as Open Information eXpression (OIX),
where eXpression is used to distinguish from Ex-
traction to emphasize that it focuses on express-
ing all the information in the sentence rather than
extracting the interested part of the information.
This methodology potentially results in a multi-
task learning scenario where many agents (each

one is interested in a part of information) compete
with each other for words. This competition may
result in more robust expressions than those who
only extract part of the information. This paper
focuses on investigating the OIX task requirements
and finding a solution for this task.

In Section 2, we discuss the principle of design
solution for OIX and propose a solution – the Open
Information Annotation (OIA) – to fulfill those
principles. The OIA of a sentence is a single-rooted
directed-acyclic graph (DAG) with nodes repre-
senting phrases and edges connecting the predicate
nodes to their argument nodes. We describe the
detailed annotation strategies of OIA in Section 3.
Based on the OIA, several featured strategies from
existing OIE algorithms can be ported to work on
the OIA. Section 4 discusses the possible imple-
mentation of those strategies on the OIA. We la-
bel a data set of OIA graphs, build a rule-based
pipeline for automatically generating OIA graphs
from sentences, and evaluate the pipeline’s per-
formance on the labeled data set. All these work
are stated in Section 5. We discuss the connec-
tion from OIA to Universal Dependency, Abstract
Meaning Representation (Banarescu et al., 2013),
and SAOKE (Sun et al., 2018b) in Section 6. We
conclude the paper in Section 7.

2 Open Information eXpression

2.1 Design Principles of the Expression Form

We consider the following factors in designing the
expression form for the OIX task:

• Information Lossless As the OIX task is to pro-
vide a platform for following OIE strategies, the
loss of any information is unacceptable. A sim-
ple constraint can guarantee this: any word in the
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sentence must appear in the target form of OIX.

• Validity It must implement the information
structure of OIE tasks, that is, the predicate-
argument structure. It builds a boundary for
the OIE pipeline: after the OIX task, followed
strategies all work on open-domain facts, with-
out knowing the original sentences.

• Capacity The form should be able to express all
kinds of information involved in the sentences,
including 1) relation between entities; 2) the
nested facts, that is, fact as an argument of an-
other fact; 3) the relationships between facts, in-
cluding the logical connections such as “if-else”
and discourse relations such as “because”, “al-
though”; 4) information in the natural language
other than declarative sentences, such as ques-
tions that ask to return one or a list of possible
answers (Karttunen, 1977).

• Atomicity Since the form is a common expres-
sion of facts to serve different OIE strategies, we
have no bias in the form of predicate and per-
form atomic expression so that followed strate-
gies can assemble them according to their prefer-
ence. For example (Gashteovski et al., 2017), for
the sentence “Faust made a deal with the Devil”,
ClausIE produces (Faust, made, a deal with the
Devil), while the MinIE extracts (Faust, made
a deal with, the Devil). Instead, we would like
a nested structure ((Faust, made, a deal), with,
Devil) so that followed strategies can assemble
the predicate according to the favor of either
ClauseIE or MinIE. Notice that the atomicity
does not means it is in word-level. We still need
a phrase-level expression of facts, following the
traditional OIE system’s preference for simple
phrase (detailed in later sections).

2.2 Information in Natural Languages

Natural languages talk about entities, the fac-
tual/logical relationship among them, and describe
the status/attributes of them. When talking about
entities, the human may talk about some explicit
entity or refer a delegate of some unknown enti-
ties. When talking about relationships, the rela-
tionship may be among entities and can be among
entities and relationships; that is, the relationship
can be nested. So, from the logical view, we need
the following components to express the informa-
tion in languages:

• Constants: express entities, such as “the solar
system”, “the Baidu company”; or status of en-
tities/events/relationships, such as “expensive”,
“hardly”.

• Functions: f(arg1, · · · , argn) → {e}, express
query of entities or delegation of entities, such
as “the CEO of X”, “when Y”, where X and Y
denote the arguments of the functions;

• Predicates: p(arg1, · · · , argn) → {0, 1}, ex-
press factual relationships and logical connec-
tions among entities, predicates, and functions,
such as “X buy Y”, “X says Y ”, “Y, because Z”.

where argi could be a constant, predicate or func-
tion, and {e} is some unknown set of entities re-
turned by the function. With these components,
the constants and the instantiated functions become
terms, the instantiated factual predicates become
atom formulas, the instantiated logical predicates
become general formulas, and finally, a sentence
can be expressed as a formula. Through this kind of
expression, the gap between the language and the
knowledge is narrowed. We propose Open Infor-
mation Annotation to implement this methodology.

2.3 Open Information Annotation

Open Information Annotation (OIA) annotation
of a sentence is a single-rooted directed-acyclic
dependency graph (DAG), where nodes are pred-
icates/functions/arguments and edges connect the
predicates or functions to their arguments. OIA
minimizes the information loss by requiring all the
words (except the punctuation) in source sentences
to appear in the graph. It is single-rooted, which
meets the sentence’s hierarchical semantic struc-
ture, and is for better visualization, understanding,
and annotation. Figure 2 gives two sample sen-
tences and their corresponding OIA annotations for
intuitive understanding. We give a formal descrip-
tion of the OIA graph as follows:

Nodes. The OIA takes the simple phrases as the
basic information units and build nodes based on
these simple phrases. By simple phrase, we mean
a fixed expression, or a phrase with a headword
together with its auxiliary, determiner dependents,
or adjacent ADJ/ADV modifiers. There are three
types of nodes: constant, predicate, and function:

• Constant Nodes: simple nominal phrases, repre-
senting entities in a knowledge base, or simple
description phrases, representing a description
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the deaths of 
 the security guards 

 and police

by

the people of Fallujah

a Declaration

{1} , {2} , and {3}

condemning announcing calling

three days of mourning for

in

the town

Sunni clerics

a general strike today

reported

Reuters issued

pred.arg.1 pred.arg.2

pred.arg.2 pred.arg.1

as:pred.arg.1

pred.arg.2

as:pred.arg.1

pred.arg.3 pred.arg.1  pred.arg.2

pred.arg.2pred.arg.2

pred.arg.2

as:pred.arg.1            mod

pred.arg.2

(a) Case I – Reuters reported “Sunni clerics in the town is-
sued a ’Declaration by the people of Fallujah’ condemning
the deaths of the security guards and police, announcing
three days of mourning, and calling for a general strike
today.”

I the Into TVA Option as

if

this anything

what

had

you all in

mind

tied to

the MOPA delivery term and quantity

a series of calls

 pred.arg.1 pred.arg.2

  
drafted not sure

Parataxis

pred.arg.1 pred.arg.2 as:pred.arg.1

pred.arg.2

func.arg.1

 as:pred.arg.1

 pred.arg.2 
close to

pred.arg.2

as:pred.arg.1

pred.arg.2

as:pred.arg.2

pred.arg.1 as:pred.arg.1

pred.arg.2

(b) Case II – I drafted the Into TVA Option as a series of calls
tied to the MOPA delivery term and quantity - not sure if this
anything close to what you all had in mind.

Figure 2: Two example cases of Open Information Annotations

for an event. They are visualized as the ellipse
shapes;

• Function Nodes: the question phrases (what,
where) since they are desired to return a set of
entities in a knowledge base, or the “of” phrase
that delegates an unknown entity. They are visu-
alized as the house shapes;

• Predicate Nodes: predicate phrases, including
the simple verbal phrase, simple prepositional
phrase, simple conjunction phrases, simple mod-
ification phrases, etc. They are visualized as the
box shapes;

The principles of OIX require that each word (ex-
cept punctuation) in the sentences must belong to
one and only one of the nodes. However, there is
some information hidden in natural language that
is not expressed by words. To honestly express
the information, we introduce predefined functions
and predicates, as shown in Table 1. Many prede-
fined predicates are borrowed from the Universal
Dependency (Nivre et al., 2020).

Edges. Edges in OIA are connecting each predi-
cate node or function node to its argument, which
can be any constant node, predicate node or func-
tion node. There are only two basic types of con-
necting edges: pred.arg.{n} for predicates and

Function Meaning
Whether whether-or-not function
2-ary Predicate Meaning
Modification modification
Reference reference
Discourse discourse element
Vocative the dialogue participant
Appos apposition
Reparandum speech repair
n-ary Predicate Meaning
Parataxis parataxis of args
List args are elements of a list

Table 1: Predefined Functions and Predicates, where
for 2-ary predicates, their meanings are “arg1 has a
{Meaning} arg2”.

func.arg.{n} for functions, where n is the index
of the argument.

When a term is modified by a relative clause,
the term is acting as an argument of the predicate
expressed by the relative clause, but the predicate is
used to modify the term. To express such relation,
we reverse the edge and add a prefix as: to the argu-
ment edge, such as as:pred.arg.1 or as:func.arg.2.

For those predefined predicates with two argu-
ments, to reduce the graph’s complexity, we al-
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Edge Meaning

p
pred.arg.i−−−−−−→ argi predicate to its i-th arg

f
func.arg.i−−−−−−→ argi function to its i-th arg

argi
as:+−−−→ p/f i-th arg to its predi-

cate/function

arg1
P−→ arg2 P(arg1, arg2)

arg1
as:P−−−→ arg2 is P of(arg1, arg2)

Table 2: Edges in OIA. “as:+” means add prefix “as:”
to the previous listed predicates, and P denotes any pre-
defined predicate with two arguments.

low the use of an edge connecting two arguments
with the label of that predicates (lowercased) to
express the relationship (just as the UD annotation).
That is, the predicate Appos(arg1, arg2) would
be expressed by an edge arg1

appos−−−→ arg2 in the
OIA graph. The as: prefix applies these shortcut
edges too, expressing the meaning of “arg1 is the
{Meaning} of arg2”. We also give abbreviated
names for most frequently used edges: mod for
modification, and ref for reference.

3 Information Expression Using OIA

In this section, we show how to express information
involved in various language phenomenons with
our OIA. We can only brief the basic framework in
the limited content of this paper. More details can
be found on the online website for OIX 1.

3.1 Events

Eventive facts (Davidson and Harman, 2012;
Kratzer and Heim, 1998) are facts about entities’
actions or status, which is generally expressed by
the subj, obj and *comp dependencies. In OIA, the
pred.arg.1 always points to the subject of the event,
and pred.arg.2 to pred.arg.N refer to the (multi-
ple) objects. A simple example is illustrated by
Figure 3a. Events themselves can be arguments of
predicates as well, as illustrated by Figure 3d.

3.2 Modification

Adjective/Adverbial Modification. Simple modi-
fiers for nouns, verbs, and prepositions are directly
merged into the corresponding phrase. For a com-
plex or remote modifier, we use the predicate “Mod-
ification” with two arguments B and A (or an edge
from B to A with label mod) to express the relation

1https://sunbelbd.github.io/
Open-Information-eXpression/

of A modifies B. The “today” in Figure 3a is an
example.

Modification by Preposition. For preposition
phrases such as “A in B” or “A for B”, we take the
prepositions as the predicates and A, B as the ar-
guments. If A is an argument of another predicate,
to preserve the single-root property, we reverse the
edge from the preposition to A and add a as: pre-
fix to the label, that is, a new edge from A to the
preposition with the label as:pred.arg.1. Figure 3e
is such an example.

Modification by Relative clause. When the rel-
ative clause B modifies an argument a of some
other predicate/function, that is, B itself conveys a
predicate/function with argument a, we reverse the
related edge in B and add the as: prefix as we do for
“Modification” by Preposition. Figure 3f illustrates
this case. If B does not involve a as argument but
an argument b referencing a, like “which”, “who”,
we do the same thing to b, and add an edge from a
to b with label ref.

3.3 Cross-Fact Relations

Cross-sentential Connectives. Sentential connec-
tives are ignored in many OIE systems, but they are
the “first-class citizen” in our scheme. Sentential
connectives such as “therefore”, “so”, “if” and “be-
cause” can represent logical and temporal relations
between sentences. We treat them as predicates
and facts/propositions as arguments. An example
is shown in Figure 3c.

Conjunction/Disjunction. The conjunction and
disjunction are expressed by “and” and “or” among
a list of parallel components. OIA annotation adds
a connecting predicate node delegating the compo-
nents such as “and” for two components and “{1}
and {2} or {3}” for three components, and then
link to the arguments with pred.arg.{n}. This is
illustrated by Figure 3c. More complex situations
like Figure 3e are detailed in the online document.

Adverbial Clause. We first build the OIA sub-
graph for the adverbial clause, and then connect
the modified predicate to the root of the sub-graph
with edge mod.

3.4 Questions and Wh-Clauses

We treat question phrases and wh-phrases as func-
tions (Hamblin, 1976; Groenendijk and Stokhof,
1984; Groenendijk and Roelofsen, 2009) and as
the root of the OIA graph/sub-graph for sen-

https://sunbelbd.github.io/Open-Information-eXpression/
https://sunbelbd.github.io/Open-Information-eXpression/
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She

lent

me a book today

pred.arg.1 pred.arg.2        pred.arg.3 mod

(a) She lent me a book today.

you

know

Bob

func.arg.1

pred.arg.1  pred.arg.2

Whether

(b) Do you know Bob?

I

like

red

it

because

and

is passionate (be) optimistic

pred.arg.2 pred.arg.1

pred.arg.1  pred.arg.2 pred.arg.1 pred.arg.2

ref        pred.arg.1 pred.arg.1

(c) I like red because it is passionate and opti-
mistic.

She

heard

is helpful

the book

pred.arg.1 pred.arg.2

pred.arg.1

(d) She heard the book is
helpful

of by for

the people

{1} , {2} , {3}

the people the people

shall not perish

from

the earth

pred.arg.1 as:pred.arg.1

pred.arg.2as:pred.arg.1            as:pred.arg.1            as:pred.arg.1

as:pred.arg.1           as:pred.arg.2 as:pred.arg.3

pred.arg.2 pred.arg.2pred.arg.2

The goverment

(e) The government of the people, by the people, for the people,
shall not perish from the earth.

He

borrow

the book

recommended

she

pred.arg.1 pred.arg.2

as:pred.arg.2

 pred.arg.1

(f) He borrow the book she rec-
ommended.

Figure 3: Illustration of Information Expression in Open FPA Graph

tence/clauses. If the phrase (“what”, “who”, etc.)
is an argument of the head predicate of the sen-
tence/clause , the connecting edge is reversed and
the as: prefix is added to the label; otherwise
(“when”, “where”, etc.), we connect the phrase
to the head predicate of the sentence/clause with
the label func.arg.1. For polarity questions such
as “Do you know Bob?”, we introduce a prede-
fined function “Whether” (see Table 1) to avoid the
confusion caused by taking “Do” as the function
phrase. See Figure 2b and Figure 3b.

3.5 Reference

In natural language sentences, words like “it, that,
which” refer to an entity mentioned earlier. We
express this knowledge by adding an edge ref from
the entity to the reference word. Again, if this
edge violates the single-root rule, the edge will be

reversed as as:ref. Figure 3c shows the annota-
tion for reference.

4 Inference Operations on OIA Graph

After the OIA graph is constructed, inference oper-
ations can be applied to generate a new graph. In
this way, strategies from existing OIE algorithms
can be ported to the OIA pipeline. We describe
several possible operations as follows:

Constant Merging and Expansion. Noun phrases
with conjunction/dis-conjunction and preposition
involved (such as “the deaths of the security guards
and police”) may correspond to many nodes in the
default OIA graph, which raise the costs of reading
and annotation of the OIA graph. We can merge
those nodes as one constant node to reduce the cost
and expand it back when necessary. Figure 2 shows
the merged versions of the OIA graphs.
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Nested Facts. Nested fact extraction is a feature
of NestIE, which is naturally supported by the
OIA graph.

Idiom Discovery. Idioms like “in order to”, “as
soon ... as”, “be proud of” have specific meanings
and should be taken as one predicate. One can ap-
ply graph pattern mining on a set of OIA graphs
and learn the pattern for idioms, or directly use
the patterns discovered by previous OIE algorithms
such as OLLIE or ClauseIE. Once an idiom is dis-
covered and matched, we merge the relevant nodes
to form one single predicate.

Informativeness Improvement. MinIE proposed
this strategy to select informative expression of
predicates, that is, in favor of (Faust, made a deal
with, the Devil) instead of (Faust, made, a deal with
the Devil). The informativeness measurement can
be ported to OIA, and the target predicate can be
obtained by merging relevant nodes.

Factuality. We can extract factuality annotations
(negation, certainty/possibility) as in MinIE and
add property edges to OIA linking the predicate
node to the value node.

Condition and Attribution. The conditional rela-
tion considered in OLLIE is naturally supported
by the OIA by taking the conditional word as the
predicate. Attributions that mark facts by their con-
texts, such as “Some people say”, can be done by
examining the nested structure in OIA.

Hidden Information in Nouns. OLLIE, Rel-
NOUN, MinIE and Logician can extract relations
hidden in noun phrases. We can apply these algo-
rithms to extract the hidden facts and attach them
to the OIA graph for future usage.

Minimization. The minimization strategies pro-
posed by MinIE can be ported as a prune operation
on the OIA graph to drop words useless to the cur-
rent task.

5 Parsing Sentence into OIA Graph

This section introduces the automatic pipeline for
parsing sentences in English into OIA graphs,
which is illustrated in Figure 4. We first introduce
each component of the pipeline, and then evaluate
the proposed OIA parser’s performance.

5.1 Components of Pipeline
Universal Dependency Parser. The first step is to
convert the sentence into Universal Dependency
(UD) (Nivre et al., 2020) graph using a Universal

Dependency Parser. Among various types of depen-
dencies, we choose the Universal Dependency be-
cause 1) UD is designed cross-linguistically, which
makes our pipeline potentially possible to port to
languages other than English. 2) UD is one of
the biggest data sets for dependency grammar. In
this paper, we adopt the UD 2.0 standard as the
target form of UD graphs and employed the neu-
ral network-based StanfordNLP toolkit 2 (Qi et al.,
2018) to generate the Universal Dependency graphs
for sentences.

Enhanced++ Universal Dependencies. The sec-
ond step is to convert the original UD graph into an
Enhanced++ UD graph. The Enhanced++ Univer-
sal Dependencies (Schuster and Manning, 2016)
provide richer information about the relationships
between the components in sentences, and some of
them greatly help the construction of OIA graphs.
Since there is no UD 2.x compatible Enhanced++
annotator available (while UD 1.x compatible ver-
sion is available in the CoreNLP toolkit), we de-
velop a UD 2.x compatible Enhanced++ annotator
in Python by ourselves. Our Enhanced++ annota-
tor’s accuracy on the set of changed edges of the
UD English test data is 95.05%.

OIA Graph Annotator. The OIA Graph annota-
tor works in three steps: 1) Simplifying the UD
graph: Identify the simple phrases and merge the
relevant word nodes in Enhanced++ UD graph into
one node. Conjunction/dis-conjunction relation-
ships are processed by adding an extra predicate
node to the graph, connecting to all parallel compo-
nents as arguments. Thirty-nine heuristic rules are
developed to fulfill these procedures. 2) Mapping
to the OIA graph: Map the dependencies in the sim-
plified UD graph into the relationship between the
OIA nodes, according to the conversion described
in Section 3. In total, 37 heuristic rules are involved
in this step. 3) Making the DAG: Select the root of
the OIA graph (usually the predicate corresponding
to the root of the UD graph or a connection word
to that root) and then convert the graph to a DAG
by reversing conflicting arcs and changing labels
as described at Section 3.

5.2 Building the Pipeline and the Data Set

We used the Universal Dependencies project ver-
sion 2.4 for English data set 3 as the source to
build our pipeline. The data set contains about

2https://stanfordnlp.github.io/stanfordnlp
3http://hdl.handle.net/11234/1-2988
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UD Parsing Enhanced ++ annotationSentence OIA  Parsing OIA Graph

Figure 4: Pipeline to converting sentence into OIA graph

16,000 human-labeled pairs of the sentence and
its Enhanced++ UD annotation, split into the train,
develop, and test sets. With the existence of the
ground-truth UD graph, we can investigate how the
UD parser’s accuracy influences the accuracy of
the OIA pipeline.

We first implemented an initial version of the
pipeline and then ran the pipeline over all the sam-
ples from the UD training set. All the samples that
resulted in parsing errors like unexpected situations,
disconnected components, missing words were col-
lected and examined to improve our pipeline. The
procedure continued until the pipeline could suc-
cessfully run through almost all training samples.
Then we labeled 100 samples from the develop-
ment set of the UD data set and a small number of
sentences from the UD training set. We tested and
improved the pipeline on the labeled training data
by examining the detailed correctness and evalu-
ated the performance on the development data set.
If there was a large gap between the development
performance and train performance, we labeled
more data until the gap tended to vanish. (The eval-
uation metrics are introduced in the next section.)

Finally, 500 sentences from the UD training set
were labeled to obtain a converged pipeline. Fur-
thermore, we labeled all (about 2,000 ) sentences
from the UD testing set for performance evaluation.
All the data were labeled by two annotators, with
each labeling a half and then double-checking an-
other half. We make all our labeled data public on
the online website of OIX.

5.3 Evaluation

There are two configurations of OIA pipelines. One
uses the ground-truth Enhanced++ UD annotation
as input; the other uses the raw sentence as input
and uses UD parser and our Enhanced++ annotator
to generate the enhanced UD graph.

Evaluation on Generated OIA Graph. We mea-
sure how well the predicted OIA graphs match
the ground truth OIA graph at three levels: Node
Level, Edge Level, and Graph Level. The set of
representations is collected at each level, and the

precision, recall and F1 scores are evaluated. For
node level, the representation is the node label; for
edge level, the representation is a triplet <starting
node label, edge label, end node label>; for graph
level, the representation is the set of all edge triples.
At all levels, we find the matched representations
by exact match. The results of the pipeline with
Enhanced++ input are shown in Table 3, and the
results of the pipeline with raw sentence input are
shown in Table 4.

Level Precision Recall F1
Node 0.930 0.913 0.921
Edge 0.763 0.764 0.763
Graph 0.565 0.565 0.565

Table 3: Performance of our OIA converter given the
ground-truth Enhance++ annotations.

Level Precision Recall F1
Node 0.853 0.871 0.862
Edge 0.629 0.628 0.628
Graph 0.450 0.450 0.450

Table 4: Performance of the OIA pipeline given the raw
sentences.

Evaluation on Facts Extracted from OIA. Ex-
tracting open-domain facts from an OIA graph is
rather straightforward. First, we recover all the
short-cut edges back into its original predicate form.
Then, for each predicate node, we collect all its ar-
guments and produce the OIE fact tuples. The sets
of facts from predicted OIA graphs are compared
to those from the ground-truth OIA graphs to com-
pute the evaluation results. Exact match is used in
evaluation and the precision, recall and F1 scores
are computed as shown in Table 5.

Input Precision Recall F1
UD Graph 0.696 0.708 0.702

Sentence 0.479 0.484 0.481

Table 5: Fact level performances of the OIA pipeline.
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5.4 Error Analysis
From the above results, we can see that without
the input of ground-truth Enhanced++ annotation,
there are a roughly 10% increase in error for the
OIA graph and even 20% for facts. The error in
dependency parsing and Enhanced++ annotation is
the major part of the error for the pipeline without
ground-truth Enhanced++ annotation input.

We reviewed the error cases of predicted results
with Enhanced++ annotation input and found sev-
eral major sources of error: 1) the complexity of
natural language sentences that our convert rules
do not cover, especially in inversion sentences; 2)
mistaken or incomplete annotations in Enhanced++
while a human can correctly annotate; 3) the ambi-
guity of human-labeled OIA samples since various
inferences over the graph (see Section 4) are al-
lowed while all preserve the validity.

A possible way to cope with the above errors is to
formalize a standardized form of OIA graphs (see
online website for details) and learn the mapping
from sentence to the standard form in an end-to-
end way. Recent advances in neural graph learning
(You et al., 2018; Li et al., 2018; Sun and Li, 2019;
Rahmani and Li, 2020) are suitable for generating
the OIA graphs. Together with the recent advances
on pre-trained language model (Devlin et al., 2019;
Radford et al., 2019), the results are worth to be
expected. These directions could be in the pipeline
of our future work.

6 Discussion

Dependency Graph. One may wonder whether it
is necessary to propose a new OIX or OIA learn-
ing task since the information in OIA can also be
expressed by the dependency graph, especially En-
hanced ++. However, the above experiments reveal
that even with our very carefully written rule sys-
tem, the error rate is still high. Due to the com-
plexity of the natural language and the error in the
dependency pipeline, it is very difficult to improve
the rule-based pipeline. On the contrary, based on
phrases with much fewer types of edge, the OIA
is much simpler than the dependency graph, so
end-to-end learning may avoid the error introduced
by the dependency parser and obtain better results,
which belongs to our future work. Defining the task
and building a rule-based pipeline as the baseline
is the first step to learn a good OIA annotator.

AMR. Abstract Meaning Representation (AMR)
(Banarescu et al., 2013) is a symbolic representa-
tion of the sentence. Same as our OIA, information
lossless is also a principle of AMR. AMR contains
approximately 100 relations and selects symbol-
ized concepts from PropBank (Palmer et al., 2005).
It is also very abstract that sentences with the same
meaning but in very different expressions will share
the same AMR annotation. As a result, AMR is
difficult to label (cost about 10 min to label a sam-
ple4) and is very difficult to learn. OIA can be
viewed as an open-domain approximation of AMR
and maybe a valuable step for AMR learning.

SAOKE. SAOKE(Symbol Aided Open Knowl-
edge Expression) (Sun et al., 2018b) is our previous
attempt to express various types of knowledge uni-
formly. It is designed following four requirements:
Completeness, Accurateness, Atomicity, and Com-
pactness, which are the predecessors of the princi-
ples of OIX. However, due to the limitation of the
annotation form (a list of tuples), the expression
capability of SAOKE is restricted, while the OIA
greatly extends the expression capability. Several
end-to-end learning strategies, such as dual learn-
ing (Sun et al., 2018a) and reinforcement learn-
ing (Sun et al., 2018a; Liu et al., 2020b,a) are de-
veloped to learn the SAOKE annotation, which can
be ported to the learning of OIA graphs.

7 Conclusions and Future Work

This paper proposes a reusable and adaptive
pipeline to construct OIE systems. As the core
of the pipeline, the Open-domain Information eX-
pression (OIX) task is thoroughly studied, and an
Open Information Annotation (OIA) is proposed as
a solution to the OIX task. We discuss how to port
the strategies of various existing OIE algorithms to
the OIA graph. We label data for OIA annotation
and build a rule-based baseline method to convert
sentences into OIA graphs.

There are many potential directions for future
work on OIA, including 1) more labeled data;
2) better learning algorithm; 3) becoming cross-
lingual by adding support for more natural lan-
guages; 4) porting existing OIE strategies on OIA
and evaluating the performance compared with the
original ones.

4https://amr.isi.edu/editor.html

https://amr.isi.edu/editor.html
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