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Abstract

We present HERO, a novel framework

for large-scale video+language omni-

representation learning. HERO encodes

multimodal inputs in a hierarchical structure,

where local context of a video frame is

captured by a Cross-modal Transformer via

multimodal fusion, and global video context is

captured by a Temporal Transformer. In addi-

tion to standard Masked Language Modeling

(MLM) and Masked Frame Modeling (MFM)

objectives, we design two new pre-training

tasks: (i) Video-Subtitle Matching (VSM),

where the model predicts both global and local

temporal alignment; and (ii) Frame Order

Modeling (FOM), where the model predicts

the right order of shuffled video frames.

HERO is jointly trained on HowTo100M and

large-scale TV datasets to gain deep under-

standing of complex social dynamics with

multi-character interactions. Comprehensive

experiments demonstrate that HERO achieves

new state of the art on multiple benchmarks

over Text-based Video/Video-moment Re-

trieval, Video Question Answering (QA),

Video-and-language Inference and Video

Captioning tasks across different domains.

We also introduce two new challenging

benchmarks How2QA and How2R for Video

QA and Retrieval, collected from diverse

video content over multimodalities.1

1 Introduction

Inspired by BERT (Devlin et al., 2019), large-

scale multimodal pre-training has prevailed in the

realm of vision-and-language research (Lu et al.,

2019; Tan and Bansal, 2019; Chen et al., 2020b).

There are many early players in the area, including

ViLBERT (Lu et al., 2019), LXMERT (Tan and

∗ Equal contribution.
1Code and new datasets publicly available at: https:

//github.com/linjieli222/HERO.

Bansal, 2019), UNITER (Chen et al., 2020b), VL-

BERT (Su et al., 2020) and Unicoder-VL (Li et al.,

2020a). However, most large-scale pre-trained

models are tailored for static images, not dynamic

videos. VideoBERT (Sun et al., 2019b) is the first

to apply BERT to learn joint embedding for video-

text pairs. But since only discrete tokens are used

to represent video frames, rich video frame features

are not fully utilized. To remedy this, CBT (Sun

et al., 2019a) proposes to use a contrastive loss,

but mainly for video representation learning alone,

with text input only considered as side information.

UniViLM (Luo et al., 2020) takes a step further and

considers both understanding and generation tasks.

Several constraints inherently limit the success

of existing models. (i) Most model designs are di-

rect adaptation of BERT, taking simple concatena-

tion of subtitle sentences and visual frames as input,

while losing the temporal alignment between video

and text modalities. (ii) Pre-training tasks are di-

rectly borrowed from image+text pre-training meth-

ods, without exploiting the sequential nature of

videos. (iii) Compared to diverse image domains

investigated in existing work, video datasets used in

current models are restricted to cooking or narrated

instructional videos (Miech et al., 2019), exclud-

ing video sources that contain dynamic scenes and

complex social interactions.

To tackle these challenges, we present a new

video-and-language large-scale pre-training frame-

work - HERO (Hierarchical EncodeR for Omni-

representation learning). As illustrated in Figure 1,

HERO takes as input a sequence of video clip

frames and their accompanying subtitle sentences.2

Instead of adopting a flat BERT-like encoder, HERO

encodes multimodal inputs in a hierarchical fash-

ion, with (i) a Cross-modal Transformer to fuse a

subtitle sentence and its accompanying local video

2ASR can be applied when subtitles are unavailable.



2047

frames, followed by (ii) a Temporal Transformer to

obtain a sequentially contextualized embedding for

each video frame, using all the surrounding frames

as global context. The proposed hierarchical model

first absorbs visual and textual local context on

frame level, which is then transferred to a global

video-level temporal context. Experiments show

that this novel model design achieves better perfor-

mance than a flat BERT-like architecture.

Four pre-training tasks are designed for HERO:

(i) Masked Language Modeling (MLM); (ii)

Masked Frame Modeling (MFM); (iii) Video-

Subtitle Matching (VSM); and (iv) Frame Order

Modeling (FOM). Compared to prior work, the key

novelty is VSM and FOM, which encourage ex-

plicit temporal alignment between multimodalities

as well as full-scale exploitation of the sequential

nature of video input. In VSM, the model consid-

ers not only global alignment (predicting whether

a subtitle matches the input video clip), but also

local temporal alignment (retrieving the moment

where the subtitle should be localized in the video

clip). In FOM, we randomly select and shuffle a

subset of video frames, and the model is trained

to restore their original order. Extensive ablation

studies demonstrate that both VSM and FOM play

a critical role in video+language pre-training.

To empower the model with richer knowledge

beyond instructional videos used in prior work, we

jointly train HERO with both HowTo100M (nar-

rated instructional videos) (Miech et al., 2019) and

a large-scale TV dataset (containing TV episodes

spanning across different genres) (Lei et al., 2018,

2020a,b; Liu et al., 2020). Compared to factual de-

scriptions in HowTo100M, the TV dataset contains

more complex plots that require comprehensive in-

terpretation of human emotions, social dynamics

and causal relations of events, making it a valuable

supplement to HowTo100M and a closer approxi-

mation to real-life scenarios.

Existing pre-trained models are evaluated on

YouCook2 (Zhou et al., 2018a) and MSR-VTT (Xu

et al., 2016a) datasets. YouCook2 focuses on cook-

ing videos only, and the captions in MSR-VTT are

very simple. To evaluate our model on more chal-

lenging benchmarks, we collect two new datasets

on video-moment retrieval and question answer-

ing, How2R and How2QA. In addition, we evaluate

HERO on popular retrieval and QA tasks such as

TVR (Lei et al., 2020b) and TVQA (Lei et al.,

2018), where HERO outperforms existing models

by a large margin. We further demonstrate the

generalizability of our model by adapting it to (i)

diverse downstream tasks: video-and-language in-

ference and video captioning tasks, achieving new

state of the art on VIOLIN (Liu et al., 2020) and

TVC (Lei et al., 2020b) benchmarks; (ii) differ-

ent video types: single-channel videos (video-only)

and multi-channel videos (video + subtitle), report-

ing superior performance over existing state of the

art on DiDeMo (Anne Hendricks et al., 2017a) and

MSR-VTT.

Our main contributions are summarized as

follows. (i) We present HERO, a hierarchical

Transformer-based model for video+language rep-

resentation learning. (ii) We propose new pre-

training tasks VSM and FOM, which complement

MLM and MRM objectives by better capturing tem-

poral alignment between multimodalities in both

global and local contexts. (iii) Different from previ-

ous work that mainly relies on HowTo100M, we in-

clude additional video datasets for pre-training, en-

couraging the model to learn from richer and more

divserse visual content. (iv) We collect two new

datasets based on HowTo100M for video-moment

retrieval/QA, and will release the new benchmarks

to foster future study. HERO achieves new state of

the art across all the evaluated tasks.

2 Related Work

Since the birth of BERT (Devlin et al., 2019),

there has been continuing advancement in language

model pre-training, such as XLNet (Yang et al.,

2019), RoBERTa (Liu et al., 2019), ALBERT (Lan

et al., 2020), UniLM (Dong et al., 2019), and

T5 (Raffel et al., 2019), which epitomizes the su-

perb power of large-scale pre-training. Satellited

around BERT, there is parallel growing interest in

model compression (Sun et al., 2019c; Shen et al.,

2020) and extension to generation tasks (Chen et al.,

2020a; Wang and Cho, 2019).

Branching out from language processing to mul-

timodal, subsequent studies also emerge in vi-

sion+language space. Prominent work includes

ViLBERT (Lu et al., 2019), LXMERT (Tan

and Bansal, 2019), VL-BERT (Su et al., 2020),

Unicoder-VL (Li et al., 2020a), B2T2 (Alberti

et al., 2019), UNITER (Chen et al., 2020b) and

VILLA (Gan et al., 2020). A detailed review can

be found in Appendix A.7.

Contrast to the boom in image+text area, pre-

training for video+language is still in its infancy.
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So far, VideoBERT (Sun et al., 2019b), CBT (Sun

et al., 2019a), MIL-NCE (Miech et al., 2020), Act-

BERT (Zhu and Yang, 2020) and UniViLM (Luo

et al., 2020) are the only existing work exploring

this space, covering downstream tasks from text-

based video retrieval (Zhou et al., 2018a; Xu et al.,

2016b) and video question answering (Maharaj

et al., 2017; Lei et al., 2020a) to video caption-

ing (Zhou et al., 2018b).

In this paper, we aim to propel video+language

omni-representation learning in four dimensions:

(i) better model architecture design; (ii) better pre-

training task design; (iii) diversification of training

corpora; and (iv) new high-quality benchmarks for

downstream evaluation.

3 Hierarchical Video+Language Encoder

In this section, we explain the proposed HERO

architecture and the four pre-training tasks in detail.

3.1 Model Architecture

Model architecture of HERO is illustrated in Fig-

ure 1, which takes the frames of a video clip and

the textual tokens of subtitle sentences as inputs.

They are fed into a Video Embedder and a Text

Embedder to extract initial representations. HERO

computes contextualized video embeddings in a

hierarchical procedure. First, local textual con-

text of each visual frame is captured by a Cross-

modal Transformer, computing the contextualized

multi-modal embeddings between a subtitle sen-

tence and its associated visual frames. The encoded

frame embeddings of the whole video clip are then

fed into Temporal Transformer to learn the global

video context and obtain the final contextualized

video embeddings.

Input Embedder We denote visual frames of

a video clip as v = {vi}
Nv

i=1 and its subtitle as

s = {si}
Ns

i=1 (Nv is the number of visual frames

in a video clip and Ns is the number of sentences

in each subtitle). For Text Embedder, we follow

Liu et al. (2019) and tokenize a subtitle sentence si
into a sequence of WordPieces (Wu et al., 2016),

i.e., wsi = {wj
si}

L
j=1 (L is the number of tokens

in si). The final representation for each sub-word

token is obtained via summing up its token em-

bedding and position embedding, followed by a

layer normalization (LN) layer. For Video Em-

bedder, we first use ResNet (He et al., 2016) pre-

trained on ImageNet (Deng et al., 2009) and Slow-

Fast (Feichtenhofer et al., 2019) pre-trained on Ki-

netics (Kay et al., 2017) to extract 2D and 3D visual

features for each video frame. These features are

concatenated as visual features and fed through

a fully-connected (FC) layer to be projected into

the same lower-dimensional space as token em-

beddings. Since video frames are sequential, their

position embeddings can be calculated in the same

way as in the Text Embedder. The final embedding

of a frame is obtained by summing up FC outputs

and position embeddings and then passing through

an LN layer. After Input Embedder, token and

frame embeddings for wsi and vsi
3 are denoted

as Wemb
si

∈ R
L×d and Vemb

si
∈ R

K×d (d is the

hidden size).

Cross-modal Transformer To utilize the inher-

ent alignment between subtitles and video frames,

for each subtitle sentence si, we first learn contex-

tualized embeddings between the corresponding

tokens wsi and its associated visual frames vsi

through cross-modal attention. Inspired by the re-

cent success (Chen et al., 2020b; Lu et al., 2019)

of using Transformer (Vaswani et al., 2017) for

multimodal fusion, we also use a multi-layer Trans-

former here. The outputs from Cross-modal Trans-

former is a sequence of contextualized embeddings

for each subtitle token and each video frame:

Vcross
si

,Wcross
si

= fcross(V
emb
si

,Wemb
si

) , (1)

where fcross(·, ·) denotes the Cross-modal Trans-

former, Vcross
si

∈ R
K×d and Wcross

si
∈ R

L×d.

Temporal Transformer After collecting all the

visual frame embeddings Vcross = {Vcross
si

}Ns

i=1 ∈
R
Nv×d from the output of Cross-modal Trans-

former, we use another Transformer as tempo-

ral attention to learn contextualized video embed-

dings from the global context of a video clip.

To avoid losing positional information, we use

residual connection (He et al., 2016) to add back

Vemb ∈ R
Nv×d. The final contextualized video

embeddings are calculated as:

Vtemp = ftemp(V
emb +Vcross) , (2)

where ftemp(·) denotes the Temporal Transformer,

and Vtemp ∈ R
Nv×d. Compared to flat BERT-like

encoder, which directly concatenates all textual

tokens and visual frames as inputs, the proposed

model effectively utilizes the temporal alignment

3
vsi = {vjsi}

K
j=1 denotes the set of visual frames paired

with subtitle sentence si, based on their timestamps. Refer to
Appendix A.4 for details.
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Figure 1: HERO Architecture (best viewed in color), consisting of Cross-Modal Transformer and Temporal Trans-

former, learned via four pre-training tasks hierarchically. Initial frame features are obtained by SlowFast and

ResNet feature extractors, and word embeddings are learned via an embedding layer initialized from RoBERTa.

between subtitle sentences and video frames for

multimodal fusion in a more fine-grained manner.

In the experiments, we show that our model design

far outperforms a flat BERT-like baseline.

3.2 Pre-training Tasks

We introduce four tasks for pre-training. During

training, we sample one task per mini-batch to pre-

vent different tasks from corrupting each others’ in-

put. As shown in Figure 1, MFM and MLM are in

analogy to BERT (Devlin et al., 2019). Word mask-

ing is realized by replacing a word with special

token [MASK], and frame masking by replacing a

frame feature vector with zeros. Following Chen

et al. (2020b), we only mask one modality each

time while keeping the other modality intact. VSM

is designed to learn both local alignment (between

visual frames and a subtitle sentence) and global

alignment (between a video clip and a sequence

of subtitle sentences). FOM is designed to model

sequential characteristics of video, by learning the

original order of randomly reordered frames.

3.2.1 Masked Language Modeling

The inputs for MLM include: (i) sub-word to-

kens from the i-th subtitle sentence wsi ; (ii) visual

frames vsi aligned with wsi ; and (iii) mask indices

m ∈ N
M .4

In MLM, we randomly mask out input words

with a probability of 15%, and replace the masked

tokens wm

si
with special tokens [MASK].5 The goal

is to predict these masked words based on the ob-

servation of their surrounding words w
\m
si and the

visual frames aligned with the sentence vsi , by

minimizing the negative log-likelihood:

LMLM(θ) = −ED logPθ(w
m

si
|w\m

si
,vsi) , (3)

where θ denotes trainable parameters. Each pair

(wsi ,vsi) is sampled from the training set D.

3.2.2 Masked Frame Modeling

Similar to MLM, we also sample frames and mask

their visual features with a probability of 15%.

However, the difference is that MLM is performed

on a local context (i.e., the output of Cross-modal

Transformer), while MFM is performed on a global

context (i.e., the output of Temporal Transformer).

The model is trained to reconstruct masked frames

vm, given the remaining frames v\m and all the

subtitle sentences s. The visual features of masked

4
N is a natural number, M is the number of masked tokens,

and m is the set of masked indices.
5Following BERT, we decompose the 15% randomly

masked-out words into 10% random words, 10% unchanged,
and 80% [MASK].
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frames are replaced by zeros. Unlike textual to-

kens that are represented as discrete labels, visual

features are high-dimensional and continuous, thus

cannot be supervised via class likelihood. Instead,

we propose two variants for MFM, which share the

same objective base:

LMFM(θ) = EDfθ(vm|v\m, s) . (4)

Masked Frame Feature Regression (MFFR)

MFFR learns to regress the output on each masked

frame v
(i)
m to its visual features. Specifically, we

apply an FC layer to convert the output frame rep-

resentations into a vector hθ(v
(i)
m ) of the same

dimension as the input visual feature r(v
(i)
m ).

Then we apply L2 regression between the two:

fθ(vm|v\m, s) =
∑M

i=1 ‖hθ(v
(i)
m )− r(v

(i)
m )‖22.

Masked Frame Modeling with Noise Con-

trastive Estimation (MNCE) Instead of directly

regressing the real values of masked visual features,

we use the softmax version of Noise Contrastive

Estimation (NCE) loss (Jozefowicz et al., 2016),

which is widely adopted in self-supervised repre-

sentation learning (Sun et al., 2019a; Hjelm et al.,

2019; Oord et al., 2018). NCE loss encourages

the model to identify the correct frame (given the

context) compared to a set of negative distractors.

Similar to MFFR, we feed the output of the

masked frames v
(i)
m into an FC layer to project them

into a vector gθ(v
(i)
m ). Moreover, we randomly sam-

ple frames from the output of unmasked frames

as negative distractors vneg = {v
(j)
neg|v

(j)
neg ∈

v\m}, which are also transformed through the

same FC layer as gθ(v
(j)
neg). The final objec-

tive minimizes the NCE loss: fθ(vm|v\m, s) =
∑M

i=1 logNCE(gθ(v
(i)
m )|gθ(vneg)).

3.2.3 Video-Subtitle Matching

The inputs to VSM are: (i) a sampled query sq
from all subtitle sentences; (ii) the whole video

clip v; and (iii) the remaining subtitle sentences

s\q for the video clip. We expect the model to

learn: (i) local alignment - the start and end index

yst, yed ∈ {1, ..., Nv}, indicating the span of visual

frames aligned with the query;6 and (ii) global

alignment - to which video the sampled query is

matched.

6Timestamps are used to perform local alignment, which
are either included with video (e.g., TV) or generated by ASR
(e.g., HowTo100M). Refer to A.4 for details.

In VSM, we follow XML (Lei et al., 2020b) to

compute the matching scores between the query

and visual frames at both local and global levels.

Specifically, we extract the output of Temporal

Transformer as the final visual frame representa-

tion Vtemp ∈ R
Nv×d. The query is fed into Cross-

modal Transformer to compute its textual represen-

tations Wcross
sq

= fcross(0,W
embed
sq

). Based on

this, we use a query encoder (Lei et al., 2020b),

consisting of a self-attention layer, two linear lay-

ers and an LN layer, to obtain the final query vector

q ∈ R
d from Wcross

sq
.

Local Alignment The local query-video match-

ing score is computed using dot product:

Slocal(sq,v) = Vtempq ∈ R
Nv . (5)

Two trainable 1D convolution filters are applied to

the scores, followed by a softmax layer, to generate

two probability vectors pst,ped ∈ R
Nv , represent-

ing the probabilities of every position being the

start and end of the ground-truth span. During train-

ing, we sample 15% subtitle sentences as queries

for each video, and use the cross-entropy loss to

predict the start and end index for local alignment:

Llocal = −ED log(pst[yst]) + log(ped[yed]) ,

where p[y] denotes indexing the y-th element of

the vector p.

Note that, XML computes the query-video

matching score for each modality separately, and

the final matching score is the sum of the two

scores. In our HERO model, multimodal fusion

is performed in a much earlier stage.

Global Alignment The global matching score is

computed by max-pooling the cosine similarities

between each frame and the query:

Sglobal(sq,v) = max

(

Vtemp

||Vtemp||

q

||q||

)

. (6)

We use a combined hinge loss Lh (Yu et al., 2018a)

over positive and negative query-video pairs. For

each positive pair (sq,v), we replace v or sq with

one other sample from in the same mini-batch to

construct two sets of negative examples: (sq, v̂)
and (ŝq,v). The training loss is specified as:

Lh(Spos, Sneg) = max(0, δ + Sneg − Spos) ,

Lglobal = −ED[Lh(Sglobal(sq,v), Sglobal(ŝq,v))

+ Lh(Sglobal(sq,v), Sglobal(sq, v̂))] , (7)
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where δ is the margin hyper-parameter. The final

loss LVSM = λ1Llocal + λ2Lglobal, where λ1 and

λ2 are hyper-parameters balancing the two terms.

3.2.4 Frame Order Modeling

The inputs for FOM are: (i) all subtitle sentences s;

(ii) visual frames v; and (iii) the reorder indices

r = {ri}
R
i=1 ∈ N

R.7 We randomly select 15%

of the frames to be shuffled, and the goal is to

reconstruct their original timestamps, denoted as

t = {ti}
R
i=1, where ti ∈ {1, ..., Nv}. We formulate

FOM as a classification problem, where t is the

ground-truth labels of the reordered frames.

Specifically, reordering happens after the mul-

timodal fusion of subtitle and visual frames. The

reordered features are fed into Temporal Trans-

former to produce reordered visual frame embed-

dings V
temp
r . These embeddings are transformed

through an FC layer, followed by a softmax layer to

produce a probability matrix P ∈ R
Nv×Nv , where

each column pi ∈ R
Nv represents the scores of Nv

timestamp classes that the i-th timestamp belongs

to. The final objective is to minimize the negative

log-likelihood:

LFOM = −ED

∑R
i=1 logP[ri, ti] . (8)

4 Experiments

In this section, we describe comprehensive ex-

periments on downstream tasks and provide ab-

lation studies for in-depth analysis of different pre-

training settings.

To validate the effectiveness of HERO, we evalu-

ate on a wide variety of downstream tasks, includ-

ing Text-based Video/ Video-moment Retrieval,

Video Question Answering, Video-and-language

Inference, and Video Captioning. We consider

6 existing benchmarks: TVR (Lei et al., 2020b),

TVQA (Lei et al., 2018), VIOLIN (Liu et al., 2020),

TVC (Lei et al., 2020b), DiDeMo (Anne Hendricks

et al., 2017a), and MSR-VTT (Xu et al., 2016b).

Detailed descriptions and evaluation metrics on

each task can be found in Appendix A.6.

4.1 Pre-training Datasets

Our pre-training dataset is composed of 7.6M video

clips with their accompanying subtitles from TV

and HowTo100M datasets. We exclude all the

videos that appear in the downstream tasks to avoid

contamination in evaluation.

7
R is the number of reordered frames, and r is the set of

reorder indices.

TV Dataset (Lei et al., 2018) was built on

6 popular TV shows across 3 genres: medical

dramas, sitcoms and crime shows. It contains

21,793 video clips from 925 episodes. Each video

clip is 60-90 seconds long, covering long-range

scenes with complex character interactions and so-

cial/professional activities. Dialogue for each video

clip is also provided.

HowTo100M Dataset (Miech et al., 2019) was

collected from YouTube, mostly instructional

videos. It contains 1.22 million videos, with ac-

tivities falling into 12 categories (e.g., Food & En-

tertaining, Home & Garden, Hobbies & Crafts).

Each video is associated with a narration as sub-

titles that are either written manually or from an

Automatic Speech Recognition (ASR) system. The

average duration of videos in HowTo100M is 6.5

minutes. We cut the videos into 60-second clips

to make them consistent with the TV dataset, and

exclude videos in non-English languages. These

pre-processing steps result in a subset of 7.56M

video clips, accompanied with English subtitles.

4.2 New Benchmarks

Existing benchmarks are mostly built on videos

from either a single domain or a single modality. In

order to evaluate on diverse video content that re-

flects multimodality challenges, we introduce two

new datasets as additional benchmarks: How2R for

text-based video-moment retrieval, and How2QA

for video question answering.

How2R Amazon Mechanical Turk (AMT) is

used to collect annotations on HowTo100M videos.

Figure 6a in Appendix shows the interface for an-

notation. We randomly sample 30k 60-second clips

from 9,421 videos and present each clip to the turk-

ers, who are asked to select a video segment con-

taining a single, self-contained scene. After this

segment selection step, another group of workers

are asked to write descriptions for each displayed

segment. Narrations are not provided to the work-

ers to ensure that their written queries are based on

visual content only. These final video segments are

10-20 seconds long on average, and the length of

queries ranges from 8 to 20 words.

From this process, we have collected 51,390

queries for 24k 60-second clips from 9,371 videos

in HowTo100M, on average 2-3 queries per clip.

We split the video clips and its associated queries

into 80% train, 10% val and 10% test.
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Pre-training Data Pre-training Tasks TVR TVQA How2R How2QA

R@1 R@10 R@100 Acc. R@1 R@10 R@100 Acc.

TV

1 MLM 2.92 10.66 17.52 71.25 2.06 9.08 14.45 69.79

2 MLM + MNCE 3.13 10.92 17.52 71.99 2.15 9.27 14.98 70.13

3 MLM + MNCE + FOM 3.09 10.27 17.43 72.54 2.36 9.85 15.97 70.85

4 MLM + MNCE + FOM + VSM 4.44 14.69 22.82 72.75 2.78 10.41 18.77 71.36

5 MLM + MNCE + FOM + VSM + MFFR 4.44 14.29 22.37 72.75 2.73 10.12 18.05 71.36

Howto100M 6 MLM + MNCE + FOM + VSM 3.81 13.23 21.63 73.34 3.54 12.90 20.85 73.68

TV + HowTo100M 7 MLM + MNCE + FOM + VSM 5.13 16.26 24.55 74.80 3.85 12.73 21.06 73.81

Table 1: Evaluation on pre-training tasks and datasets. Dark and light grey colors highlight the top and second best

results across all the tasks trained with TV Dataset. The best results are in bold.

How2QA To collect another dataset for video

QA task, we present the same set of selected video

clips to another group of AMT workers for multi-

choice QA annotation. Each worker is assigned

with one video segment and asked to write one

question with four answer candidates (one correct

and three distractors). Similarly, narrations are

hidden from the workers to ensure the collected

QA pairs are not biased by subtitles.

We observe that human-written negative answers

suffer from serious bias (i.e., models can learn to

predict correctly without absorbing any informa-

tion from the video or subtitles). To mitigate this,

we use adversarial matching (Zellers et al., 2019)

to replace one of the three written negative answers

by a correct answer from another question that is

most relevant to the current one. Similar to TVQA,

we also provide the start and end points for the

relevant moment for each question. After filtering

low-quality annotations, the final dataset contains

44,007 QA pairs for 22k 60-second clips selected

from 9035 videos. We split the data into 80% train,

10% val and 10% test sets. More details about data

collection can be found in Appendix A.9.

4.3 Ablation Study

We analyze the effectiveness of model design, espe-

cially different combinations of pre-training tasks

and datasets, through extensive ablation studies.

Optimal Setting of Pre-training Tasks To

search for the optimal setting of pre-training tasks,

we conduct a series of extensive ablation studies to

test each setting, using video-moment retrieval and

QA downstream tasks as evaluation. Table 1 sum-

marizes ablation results on TVR, TVQA, How2R

and How2QA under different pre-training settings.

Models are trained on TV dataset only for com-

putational efficiency. Compared to using MLM

only (L1 in Table 1), adding MNCE (L2) shows

improvement on all downstream tasks. The best

performance is achieved by MLM + MNCE + FOM

+ VSM (L4).

Effect of FOM and VSM When MLM, MNCE

and FOM are jointly trained (L3), there is a large

performance gain on TVQA, and significant im-

provement on How2R and How2QA. Comparable

results are achieved on TVR. This indicates that

FOM, which models sequential characteristics of

video frames, can effectively benefit downstream

tasks that rely on temporal reasoning (such as QA

tasks).

We observe significant performance lift by

adding VSM (L4), and the local and global align-

ments between subtitle and visual frames learned

through VSM are especially effective on TVR and

How2R. Adding additional MFFR (L5) reaches

slightly worse results. Our observation is that

MFFR is competing with (instead of complimen-

tary to) MNCE during pre-training, which renders

the effect of MFFR negligible.

Effect of Pre-training Datasets We study the

effect of pre-training datasets by comparing TV

dataset with HowTo100M. In this study, we first

pre-train our model on HowTo100M dataset (L6).

We observe a performance drop on TVR, while

a performance boost on TVQA, How2R and

How2QA, compared to the model trained on TV

dataset (L4). Our hypothesis is that text-based

video-moment retrieval is more sensitive to video

domains. Although HowTo100M dataset contains

much more videos, the model still benefits more

from being exposed to similar TV videos during

pre-training.

Hierarchical Design vs. Flat Architecture To

validate the effectiveness of our model design, we

compare HERO with two baselines (with and with-

out pre-training): (i) Hierarchical Transformer (H-

TRM) baseline, constructed by simply replacing the

Cross-modal Transformer with a RoBERTa model
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Method \Task TVR How2R TVQA How2QA VIOLIN TVC

R@1 R@10 R@100 R@1 R@10 R@100 Acc. Acc. Acc. Bleu Rouge-L Meteor Cider

SOTA Baseline 3.25 13.41 30.52 2.06 8.96 13.27 70.23 - 67.84 10.87 32.81 16.91 45.38

HERO 6.21 19.34 36.66 3.85 12.73 21.06 73.61 73.81 68.59 12.35 34.16 17.64 49.98

(a) Results on multi-channel (video+subtitle) tasks: TVR12, How2R, TVQA, How2QA, VIOLIN and TVC.

Method \Task DiDeMo DiDeMo w/ ASR MSR-VTT MSR-VTT w/ ASR

R@1 R@10 R@100 R@1 R@10 R@100 R@1 R@5 R@10 R@1 R@5 R@10

SOTA Baseline 1.59 6.71 25.44 - - - 14.90 40.20 52.80 - - -

HERO 2.14 11.43 36.09 3.01 14.87 47.26 16.80 43.40 57.70 20.50 47.60 60.90

(b) Results on DiDeMo and MSR-VTT with video-only inputs (single-channel), compared with ASR-augmented inputs (multi-
channel).

Table 3: Results on the test set of six downstream tasks, compared to task-specific state-of-the-art (SOTA) mod-

els: XML (Lei et al., 2020b) for TVR, How2R and DiDeMo, HowTo100M (Miech et al., 2019) for MSR-VTT,

STAGE (Lei et al., 2020a) for TVQA (inapplicable to How2QA due to region-level features), Multi-stream (Liu

et al., 2020) for VIOLIN, and MMT (Lei et al., 2020b) for TVC.

and encoding subtitles only;8 (ii) Flat BERT-like

encoder (F-TRM).9

For this ablation experiment, we use TVR and

TVQA as evaluation tasks. Results are summarized

in Table 2: (i) Without pre-training, F-TRM is

much worse than HERO on both tasks. This is

due to H-TRM and HERO’s explicit exploitation of

the temporal alignment between two modalities of

videos. (ii) Pre-training lifts HERO performance

by a large margin, but not much for F-TRM or H-

TRM. This indicates that cross-modal interactions

and temporal alignments learned by HERO through

pre-training can provide better representations for

downstream tasks.

HERO vs. SOTA with and w/o Pre-training

We compare HERO with task-specifc state of the art

(SOTA) models, including XML (Lei et al., 2020b)

for TVR and STAGE (Lei et al., 2020a) for TVQA.

As shown in Table 2, our model consistently out-

performs SOTA models on both tasks, with or with-

out pre-training. Note that for TVQA, STAGE

is trained with additional supervision on spatial

grounding with region-level features for each frame.

Without additional supervisions, HERO is able to

achieve better performance.

8The inputs to Temporal Transformer in H-TRM are the
summation of initial frame embedding and max-pooled subti-
tle embeddings from RoBERTa.

9F-TRM takes as input a single sequence by concatenating
the embeddings of visual frames and all subtitle sentences,
and encodes them through one multi-layer Transformer.

10Model parameters are initialized with RoBERTa weights
following Lei et al. (2020b).

11F-TRM is pre-trained with MLM+MNCE. VSM and
FOM cannot be directly applied.

Pre-training Model TVR TVQA

R@1 R@10 R@100 Acc.

No10

SOTA 2.76 9.08 15.97 70.50

F-TRM 1.99 7.76 13.26 31.80

H-TRM 2.97 10.65 18.68 70.09

HERO 2.98 10.65 18.25 70.65

Yes

F-TRM
11 2.69 9.21 15.98 49.12

H-TRM 3.12 11.08 18.42 70.03

HERO 4.44 14.69 22.82 72.75

Table 2: Ablation study on model design, comparing

HERO to a flat BERT-like encoder (F-TRM) baseline, a

Hierarchical Transformer (H-TRM) baseline, and task-

specific SOTA models on TVR and TVQA val set.

Key Conclusions The main observations from

these extensive ablation studies are summarized as

follows:

• The optimal pre-training setting is MLM +

MNCE + FOM + VSM, when trained on

HowTo100M dataset and TV dataset.

• FOM effectively helps downstream tasks that

rely on temporal reasoning (e.g., video QA

tasks).

• VSM encourages frame-subtitle alignment,

which is especially effective for video-

moment retrieval tasks.

• The hierarchical design in HERO explicitly

aligns subtitles and frames, while a flat model

architecture can only learn this alignment

through implicit attention.

• HERO consistently outperforms SOTA with

and without pre-training, which further

demonstrates the effectiveness of HERO

model design.
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4.4 Results on Downstream Tasks

Table 3 reports HERO results on the test splits

of all downstream tasks. HERO is pre-trained on

both TV and HowTo100M datasets, with the opti-

mal pre-training setting: MLM + MNCE + FOM

+ VSM. We compare HERO with task-specific

SOTA models on each downstream task, includ-

ing: XML (Lei et al., 2020b) for TVR, Didemo

and How2R; HowTo100M (Miech et al., 2019) for

MSR-VTT; STAGE (Lei et al., 2020a) for TVQA;

Multi-stream (Liu et al., 2020) for VIOLIN; and

MMT (Lei et al., 2020b) for TVC. Note that we

cannot directly apply STAGE to How2QA, as it

was specifically designed to leverage region-level

features. Our HERO model achieves new state of

the art across all benchmarks.

Results on Multi-channel Tasks Table 3a

shows results on downstream tasks consisting of

multi-channel videos (video + subtitle). On TVR

R@1, HERO results nearly double those from

XML.12 Further, without leveraging fine-grained

region-level features, HERO outperforms baseline

models by +3.28% on TVQA and +0.75% on VI-

OLIN. When evaluated on TVC, video and subti-

tles are encoded by HERO, then fed into a 2-layer

Transformer decoder to generate captions. Even

though no pre-training was applied to the decoder,

HERO surpasses SOTA baseline across all metrics,

especially +4.60% on Cider. In addition, HERO

establishes a strong baseline for new benchmarks

How2R and How2QA.

Results on Single-channel Tasks Table 3b

presents results on DiDeMo for text-based

video-moment retrieval task and MSR-VTT for

text-based video retrieval task. On DiDeMo,

HERO surpasses XML by +0.55/+4.72/+10.65 on

R@1/10/100, without leveraging Temporal End-

point Feature used in XML. On MSRVTT, HERO

outperforms existing video pre-training model

(HowTo100M) by +1.9/+3.2/+4.9 on R@1/5/10.

To evaluate in multi-channel setting, we also fine-

tuned HERO on MSR-VTT and DiDeMo using both

video channel and extracted subtitle channel (with

ASR tools). When augmenting DiDeMo/MSR-

VTT with ASR inputs, HERO performance is fur-

ther improved. Although our model design focuses

on “truly” multimodal videos (video+subtitle in-

put), these results demonstrate HERO’s superior

12To be consistent with TVR leaderboard, results are re-
ported on tIoU>0.7 without nms.

generalizability to different video types (multi- and

single-channel). More results and analysis are pro-

vided in Appendix A.1.

5 Conclusion

In this paper, we present a hierarchical encoder for

video+language omni-representation pre-training.

Our HERO model presents a hierarchical archi-

tecture, consisting of Cross-modal Transformer

and Temporal Transformer for multi-modal fusion.

Novel pre-training tasks are proposed to capture

temporal alignment both locally and globally. Pre-

trained on two large-scale video datasets, HERO ex-

ceeds state of the art by a significant margin when

transferred to multiple video-and-language tasks.

Two new datasets on text-based video-moment re-

trieval and video QA are introduced to serve as

additional benchmarks for downstream evaluation.

We consider extension of our model to other video-

and-language tasks as future work, as well as de-

veloping more well-designed pre-training tasks.
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A Appendix

A.1 Additional Experiments

For further analysis, Table 4 provides comparison

between HERO and task-specific SOTA models on

the validation splits of each downstream task.13 For

fair comparison, we re-run XML (Lei et al., 2020b)

and MMT (Lei et al., 2020b) experiments using our

visual frame features, which achieve slightly better

performance than the reported results in Lei et al.

(2020b). Note that we cannot directly apply our

frame-level visual features to STAGE (Lei et al.,

2020a) and Multi-stream (Liu et al., 2020), which

require region-level features for each video frame.

Overall, HERO achieves state-of-the-art results

on all downstream tasks. Our model consistently

outperforms XML on both TVR and How2R, with

or without pre-training. Table 5 also provides de-

tailed results on TVR and How2R in three dif-

ferent evaluation settings from Lei et al. (2020b):

(i) Video Retrieval, (ii) Moment Retrieval, and

(iii) Video-moment Retrieval. For both TVR and

How2R, pre-training significantly lifts model per-

formance in all three settings. Following Chen et al.

(2020b); Lu et al. (2019), we assess the embed-

dings learned in pre-training before any fine-tuning

occurs. On How2R, HERO without fine-tuning

achieves (2.11, 9.09, 14.83) for (R1, R10, R100).

While the performance is significantly lower than

the fine-tuned model (-1.62 for R1), it performs

reasonably well without seeing any How2R query,

indicating that HERO has learned to align videos

and subtitles (pseudo-query) during pre-training.

Note that for TVQA, STAGE is trained with ad-

ditional supervision on spatial grounding, which

requires region-level features for each frame of

the video. Without additional supervision on spa-

tial grounding or fine-grained region-level features,

HERO is able to achieve better performance than

STAGE on TVQA dataset. We also observe that

pre-training significantly boosts the performance

of HERO across TVR, How2R and TVQA tasks.

On How2QA, since STAGE was specifically de-

signed to leverage region-level features, we cannot

directly apply STAGE. Thus, we only compare

HERO performance w/o and with pre-training. Re-

sults exhibit consistent patterns observed on other

downstream tasks: pre-training achieves better per-

formance than w/o pre-training.

13For VIOLIN, we report results on test set for fair com-
parison, since no validation results are reported in Liu et al.
(2020).
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Method \Task TVR How2R TVQA How2QA VIOLIN TVC

R@1 R@10 R@100 R@1 R@10 R@100 Acc. Acc. Acc. Bleu Rouge-L Meteor Cider

SOTA baseline 2.62 8.45 14.86 1.97 8.32 13.45 70.50 - 67.84 10.53 32.35 16.61 44.39

SOTA baseline † 2.76 9.08 15.97 2.06 8.96 13.27 - - - 10.90 32.68 16.83 45.86

HERO

w/o pre-training
2.98 10.65 18.42 2.17 9.38 15.65 70.65 71.36 65.72 10.75 32.72 16.42 43.62

HERO

w/ pre-training
5.13 16.26 24.55 3.85 12.73 21.06 74.80 73.81 68.59 12.25 34.10 17.54 50.46

Table 4: Results on the validation set of six multi-channel video downstream tasks, compared to task-specific

SOTA models: XML (Lei et al., 2020b) for TVR and How2R, STAGE (Lei et al., 2020a) for TVQA (inapplicable

to How2QA due to region-level features), Multi-stream (Liu et al., 2020) for VIOLIN, and MMT (Lei et al., 2020b)

for TVC. † indicates re-implementation of the model using our visual frame features.

Downstream Task Pre-training Video Ret. Moment Ret.18 Video Moment Ret.18

R@1 R@10 R@100 R@1 R@10 R@100 R@1 R@10 R@100

TVR
No 19.44 52.43 84.94 3.76 9.59 61.77 2.98 10.65 18.25

Yes 30.11 62.69 87.78 4.02 10.38 62.93 5.13 16.26 24.55

How2R
No 11.15 39.78 59.62 4.94 12.73 67.90 2.21 9.52 15.17

Yes 14.73 47.69 68.37 6.48 15.69 70.38 3.78 12.96 20.75

Table 5: Detailed results on TVR and How2R val set, including the main-task (Video Moment Retrieval) and two

sub-tasks (Video Retrieval and Moment Retrieval).

Pre-training greatly lifts HERO performance

on VIOLIN by approximately +2.9%. However,

HERO, without pre-training, presents worse per-

formance than the SOTA baseline. Unlike Multi-

stream, which leverages fine-grained region-level

features, our results are reported on global frame-

level features. Therefore, it may be difficult for

HERO to capture the inconsistency between hy-

pothesis and video content. For example, changes

of hypotheses about region-level attributes (color,

shape, and etc.) may result in different conclusions.

Extending HERO for region-level video representa-

tions could be an interesting future direction.

HERO is also extensible to generation task:

multi-modal video captioning. Our results on TVC

show that HERO with pre-training surpasses MMT

by a large margin. Although pre-training is only

applied to the encoder, it significantly improves

HERO performance on TVC across all metrics.

When no pre-training is applied, HERO is slightly

inferior to the SOTA baseline. Our hypothesis

is that TVC has short video context (with video

length of 9-second on average) but our model is

designed for long video representation learning

(TVR/TVQA with video length of 76-second on

average). How to design pre-training tasks for

MMT on TVC or including decoder pre-training

for HERO are left for future works.

A.2 Qualitative Analysis

Visualization of VSM One way to understand

how HERO aligns subtitles with video frames is to

visualize the Video-Subtitle Matching pre-training

task. We provide some examples of the top-1

moment predictions for VSM on both TV and

HowTo100M corpora. As shown in Figure 2, the

predicted moments (red) largely overlap with the

ground truth moments (green) with minor differ-

ences. In Figure 2a, we human could probably

identify the moment by the speaker information

and the visual clue of character’s emotion. For

Figure 2b, objects (rubber bands) might be the key

matching clue. The success of HERO to correctly

match the moments might be a positive signal that

its pre-training captures those human-identified pat-

terns, hence leads to its strong video understand-

ing capability. However, more thorough analysis,

both quantitative and qualitative, is needed to inter-

pret what video-language pre-trained models have

learned, which we leave to future works.

Attention Pattern Visualization Following Ko-

valeva et al. (2019) and Chen et al. (2020b), we

analyze observable patterns in the attention maps

of HERO. Figure 3 provides visualization examples

of the attention maps learned by the Cross-modal

Transformer. For completeness, we briefly discuss

each pattern here:

• Vertical: Attention to a specific frame.

• Diagonal: Locally-focused attention to the

token/frame itself or preceding/following to-

kens/frames.
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(a) TV Dataset.

(b) HowTo100M Dataset.

Figure 2: Visualization of top-1 moment predictions by HERO model for Video-Subtitle Matching on: (a) TV

Dataset; and (b) HowTo100M Dataset. Text inside the dashed boxes is the accompany subtitles, with sampled

subtitle query highlighted in blue. Groundtruth is highlighted with the green bar under the video frames. Predicted

moments are bounded with boxes in red. Best viewed in color.

• Vertical + Diagonal: Mixture of Vertical and

Diagonal.

• Block: Intra-modality attention, i.e., textual

self-attention or visual self-attention.

• Heterogeneous: Diverse attentions that cannot

be categorized and highly dependent on actual

input.

• Reversed Block: Cross-modality attention, i.e.,

text-to-frame and frame-to-text attention.

Note that we observe patterns slightly different

from Chen et al. (2020b): Vertical patterns (Fig-

ure 3a) are usually over a specific frame instead of

special tokens ([CLS] or [SEP]). We leave more

sophisticated attention analysis/probing to future

works.

A.3 Downstream Adaptation

The pre-trained model can be readily adapted to

downstream video+language tasks through end-to-

end finetuning. Below, we describe the detailed
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(a) Vertical (b) Diagonal (c) Vertical + Diagonal

(d) Block (e) Heterogeneous (f) Reversed Block

Figure 3: Visualization of the attention maps learned by Cross-modal Transformers of HERO model.

Figure 4: HERO model adapted to downstream task: Text-based Video Moment Retrieval.

adaptation approach to four downstream tasks: (i)

text-based video moment retrieval, (ii) video ques-

tion answering, (iii) video-and-language inference

and (iv) multimodal video captioning.

Text-based Video-moment Retrieval The input

video clip with accompanying subtitles is encoded

by HERO as illustrated in Figure 4. The input query

is encoded by the query encoder from the VSM

pre-training task. We follow the same procedure as

in VSM to compute query-video matching scores

both locally (frame-level, for moment retrieval) and

globally (clip-level, for video retrieval). The model

is finetuned end-to-end using loss LVSM. Similarly,

we let the margin δ = 0.1 and set λ1 = 0.01 and

λ2 = 8 in the loss term LVSM.

Video Question Answering For Video QA, we

consider the multiple-choice setting. As illustrated

in Figure 5, for each answer candidate, the cor-

responding QA pair is appended to each of the

subtitle sentences and fed into the Cross-modal

Transformer to perform early fusion with local tex-

tual context. In addition, these QA pairs are also
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Figure 5: HERO model adapted to downstream task: Video Question Answering.

appended to the input of Temporal Transformer to

be fused with global video context. We use a sim-

ple attention layer to compute the weighted-sum-

across-time of the QA-aware frame representations

from the Temporal Transformer output.

These final QA-aware global representations are

then fed through an MLP and softmax layer to

obtain the probability score p
(i)
ans of all the answers

for question i. The training objective is

Lans = −
1

N

N
∑

i=1

logp(i)
ans[yi] , (9)

where yi is the index of the ground-truth answer

for question i. When supervision is available,14 we

also include the span prediction loss:

Lspan = −
1

2N

N
∑

i=1

(logp
(i)
st [y

st
i ] + logp

(i)
ed [y

ed
i ]) ,

(10)

where p
(i)
st and p

(i)
ed are the prediction scores of

the start and end position, obtained by applying

weighted-sum-across-answers attention to the Tem-

poral Transformer output followed by two MLPs

and a softmax layer. ysti , yedi are the indices of the

ground-truth start and end positions for question i.

The final loss LQA = Lans + λLspan, where λ

is the hyper-parameter that balance the above two

terms. Empirically, we found that λ = 0.5 yields

the best model performance.

14Some existing Video QA tasks require localizing ‘frames
of interest’ for the question, e.g., TVQA+ (Lei et al., 2020a).

Video-and-Language Inference Similar to

Video QA, each natural language hypothesis (or

query) is appended to each of the subtitle sentences

and also to the input of Temporal Transformer. A

simple attention pooling layer is added to HERO to

obtain the final query-aware global representations.

Video-and-language inference task can be re-

garded as a binary classification problem. We su-

pervise the training using cross-entropy loss.

Multimodal Video Captioning With a simple

addition of a Transformer decoder (Vaswani et al.,

2017), we can extend HERO for multimodal video

captioning. We feed the whole subtitle-aligned

video clip into HERO and obtain the subtitle-fused

video representation for each frame. Next, frame

representations are grouped by the “moment of in-

terest” using the time interval provided in the cap-

tion annotation. The decoder-to-encoder attention

is applied on the representations of the correspond-

ing video moment and the decoder is trained with

conventional left-to-right language modeling cross-

entropy loss together with the HERO encoder end-

to-end. To make the comparison to MMT (Lei et al.,

2020b) as fair as possible, we use shallow Trans-

former decoder (2-layer) with 768 hidden size. We

do not use self-critical RL or its variants to optimize

test metrics. Following MMT, greedy decoding is

used at inference.

Single-channel Tasks Although HERO is de-

signed for multi-channel videos (video+subtitle),

we can easily extend it to single-channel video

(video-only) tasks by adding an empty-string subti-
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tle input and pair it with the whole frame sequence.

For DiDeMo, we follow the same procedure as in

VSM to compute both frame-level (for moment

retrieval) and clip-level (for video retrieval) query-

video matching scores. For MSR-VTT, a text-based

video retrieval task, only clip-level scores are com-

puted.

A.4 Frames/Subtitles Pre-processing

Given a pair of video clip and its associated sub-

title, we first extract a sequence of visual frames

v = {vi}
Nv

i=1 at a fixed frame rate (Nv is the num-

ber of visual frames in a video clip). The subtitle

is parsed into sentences s = {si}
Ns

i=1 (Ns is the

number of sentences in each subtitle). Note that

Nv 6= Ns in most cases, since a subtitle sentence

may last for several visual frames. We then align

the subtitle sentences temporally with the visual

frames. Specifically, for each subtitle sentence si,

we pair it with a sequence of visual frames whose

timestamps overlap with the subtitle timestamp,

and denote these visual frames as vsi = {vjsi}
K
j=1

(K is the number of overlapping frames with si).

In the case that multiple sentences overlap with the

same visual frame, we always pair the frame with

the one with maximal temporal Intersection over

Union (tIoU) to avoid duplication. It is possible

that a subtitle sentence is not paired with any visual

frame, and in this case, we concatenate it to the

neighboring sentences to avoid information loss.

A.5 Implementation Details

We extract 2304-dimensional Slowfast (Feichten-

hofer et al., 2019) features at a fixed frame rate (TV:

2/3 frame per second, HowTo100M: 1/2 frame per

second). and 2048-dimensional ResNet-101 (He

et al., 2016) features at doubled frame rate and max-

pooled to get a clip-level feature. The final frame

features is concatenation of the two features with

dimension 4352. The model dimensions are set

to (L=6, H=768, A=12) for Cross-Modal Trans-

former and (L=3, H=768, A=12) for Temporal

Transformer, where L is the number of stacked

Transformer blocks; H stands for hidden activa-

tion dimension and A is the number of attention

heads. For pre-training task VSM, we let the mar-

gin δ = 0.1 and set λ1 = 0.01 and λ2 = 8 in the

loss term LVSM.

Our models are implemented based on Py-

Torch (Paszke et al., 2017).15 To speed up training,

15https://pytorch.org/

we use Nvidia Apex16 for mixed precision train-

ing. Gradient accumulation (Ott et al., 2018) is

applied to reduce multi-GPU communication over-

heads. All pre-training experiments are run on

Nvidia V100 GPUs (32GB VRAM; NVLink con-

nection). We use AdamW optimizer (Loshchilov

and Hutter, 2019) with a learning rate of 3e−5 and

weight decay of 0.01 to pre-train our model. The

best pre-trained model is trained on 16 V100 GPUs

for about 3 weeks. Finetuning experiments are

implemented on the same hardware or Titan RTX

GPUs (24GB VRAM) with AdamW optimizer but

different learning rates.

A.6 Downstream Tasks

TVR (Lei et al., 2020b) is the first to introduce

text-based video-moment Retrieval task for multi-

channel videos (video+subtitle): given a natural

language query, a model is required to not only

retrieve the most relevant video clip from the video

corpus, but also localize the relevant moment in

the retrieved video clip. TVR is built upon the

TV dataset, split into 80% train, 10% val, 5% test-

public and 5% test-private. On average, 5 queries

were collected for each video clip. Among them,

74.2% of queries are related to video only, 9.1% to

text only, and 16.6% to both video and text.

TVQA (Lei et al., 2018) was introduced along with

the TV dataset. Given a video clip and the accom-

panying subtitles, the goal is to answer a multiple-

choice question about the video. Each video clip

has 7 questions, with 5 answers per question. The

start/end points of relevant moments are provided

for each question.17

VIOLIN (Liu et al., 2020) is a new Video-and-

Language Inference task. Given a video clip with

aligned subtitles as premise, a model needs to infer

whether a natural language hypothesis is entailed

or contradicted by the given video clip. It consists

of 95.3K video-hypothesis pairs from 15.9K video

clips, split into 80% train, 10% val and 10% test.

TVC (Lei et al., 2020b) is a multimodal Video

Captioning dataset extended from TVR, contain-

ing 262K descriptions paired with 108K video mo-

ments.17 Note that it differs from traditional video

captioning tasks in that models are allowed to uti-

lize subtitle texts as input.

DiDeMo (Anne Hendricks et al., 2017a) is de-

16https://github.com/NVIDIA/apex
17Train, val and test video splits are the same as TVR.
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signed for text-based video-moment retrieval on

single-channel videos (video-only). It consists of

10.6K unedited video from Flickr with 41.2K sen-

tences aligned to unique moments in the video. The

dataset is split into 80% train, 10% val and 10%

test. Note that moment start and end points are

aligned to five-second intervals and the maximum

annotated video length is 30 seconds.

MSR-VTT (Xu et al., 2016b), for text-based video

retrieval on single-channel videos (video-only), in-

cludes YouTube videos collected from 257 popu-

lar video queries from 20 categories (e.g. music,

sports, movie, etc.). It contains 200K unique video

clip-caption pairs. We follow the same setup in Yu

et al. (2018b) to evaluate our model on MSR-VTT.

Evaluation Metrics Text-based Video-moment

Retrieval can be decomposed into two sub-tasks:

(i) Video Retrieval: retrieve the most relevant video

clip described by the query; (ii) Moment Retrieval:

localize the correct moment from the most relevant

video clip. A model prediction is correct if: (i) its

predicted video matches the ground-truth (in Video

Retrieval); and (ii) its predicted span has high over-

lap with the ground-truth (in Moment Retrieval).

Average recall at K (R@K) over all queries is used

as the evaluation metric for TVR, How2R, Didemo

and MSR-VTT. For TVR, How2R and Didemo,

temporal Intersection over Union (tIoU) is used to

measure the overlap between the predicted span

and the ground-truth span.18

TVQA and How2QA include 3 sub-tasks: QA

on the grounded clip, question-driven moment lo-

calization, and QA on the full video clip. We only

consider QA on the full video clip, as it is the most

challenging setting among the three. Video clips in

VIOLIN are constrained to a single, self-contained

scene, hence no additional grounding annotation

is provided. Accuracy is used to measure model

performance on TVQA, How2QA and VIOLIN.

TVC performance is measured by standard

captioning metrics, inlcuding BLEU@4 (Pap-

ineni et al., 2002), METEOR (Denkowski and

Lavie, 2014), ROUGE-L (Lin, 2004), and CIDEr-

D (Vedantam et al., 2015).

18During evaluation, the average recalls are calculated with
tIoU>0.7. we apply non-maximal suppression (nms) with
threshold 0.5 to TVR and How2R predictions following Lei
et al. (2020b).

A.7 Vision+Language Pre-training Overview

Very recently, multimodal pre-training has gained

increasing attention, especially in the image+text

area. Pioneering works such as ViLBERT (Lu et al.,

2019) and LXMERT (Tan and Bansal, 2019) pro-

pose to encode image and text modalities by two

separate Transformers, with a third Transformer

for later multimodal fusion. Compared to this two-

stream architecture, VL-BERT (Su et al., 2020),

Unicoder-VL (Li et al., 2020a), B2T2 (Alberti

et al., 2019), VisualBERT (Li et al., 2019), and

UNITER (Chen et al., 2020b) advocate single-

stream architecture, where image and text signals

are fused together in early stage. In VLP (Zhou

et al., 2020) and XGPT (Xia et al., 2020), image

captioning is considered as additional downstream

application, so is visual dialog in Murahari et al.

(2020). More recently, ViLBERT is enhanced by

multi-task learning (Lu et al., 2020), Oscar (Li

et al., 2020b) enhances pre-training with image

tags, and Pixel-BERT (Huang et al., 2020) pro-

poses to align image pixels (instead of bottom-up

features (Anderson et al., 2018)) with text. Through

these pre-training efforts, tremendous progress has

been made for vision-and-language representation

learning.

A.8 Video+Language Tasks Overview

Text-based Video-moment retrieval is one of the

most popular video+language tasks currently stud-

ied. Anne Hendricks et al. (2017b) and Gao et al.

(2017) introduce the task of Single Video Mo-

ment Retrieval (SVMR), which aims at retrieving

a moment from a single video via a natural lan-

guage query. Escorcia et al. (2019) extends SVMR

to Video Corpus Moment Retrieval (VCMR), ex-

tending searching pool from single video to large

video corpus. TVR (Lei et al., 2020b) defines

a new task, Video-Subtitle Corpus Moment Re-

trieval, which provides temporally aligned subtitle

sentences along with the videos as inputs. For this

new task, XML (Lei et al., 2020b) is proposed to

compute similarity scores between the query and

each modality separately (visual frames, subtitles)

and then sum them together for final prediction.

Another popular task is Video Question Answer-

ing (QA), which aims to predict answers to natu-

ral language questions given a video as context.

Most previous work focuses on QA pairs from

one modality only. For example, MovieFIB (Ma-

haraj et al., 2017) focuses on visual concepts,
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(a) User interface for query annotation. Each worker is
provided with a video clip and required to select a single-
scene clip from the video, then write a query in the text
box.

(b) User interface for question/answer annotation. Each
worker is provided with a segmented clip and required to
write a question with four answers in the text boxes.

Figure 6: Data collection interface: (a) How2R; and (b)
How2QA.

MovieQA (Tapaswi et al., 2016) is based on text

summaries, and TGIF-QA(Jang et al., 2017) de-

pends on predefined templates for question gen-

eration on short GIFs. TVQA (Lei et al., 2018)

designed a more realistic multimodal setting: col-

lecting human-written QA pairs along with their

associated video segments by providing the an-

Figure 7: Distribution of video segment length.

notators with both video clips and accompanying

subtitles. Later on, Lei et al. (2020a) augmented

TVQA with frame-level bounding box annotations

for spatial-temporal video QA, and introduced the

STAGE framework to jointly localize moments,

ground objects, and answer questions.

Inspired by natural language inference (Bow-

man et al., 2015; Williams et al., 2018) and vi-

sual entailment (Xie et al., 2019), Liu et al. (2020)

recently proposed Video-and-Language Inference

task along with VIOLIN dataset, which requires

a model to draw inference on whether a written

statement entails or contradicts a given video clip.

This new task is challenging to solve, as a thorough

interpretation of both visual and textual clues from

videos is required to achieve in-depth understand-

ing and inference for a complex video scenario.

There are also recent studies on video caption-

ing (Venugopalan et al., 2015; Pan et al., 2016;

Gan et al., 2017; Zhou et al., 2018b, 2019), popu-

lar benchmarks including Youtube2Text (Guadar-

rama et al., 2013), MSR-VTT (Xu et al., 2016a),

YouCook2 (Zhou et al., 2018a), ActivityNet Cap-

tions (Krishna et al., 2017) and VATEX (Wang

et al., 2019). Unlike previous work mostly focusing

on captions describing the visual content, a unique

TVC (Lei et al., 2020b) dataset was released with

captions that also describe dialogues/subtitles.

A.9 How2R and How2QA Benchmarks

Data Collection Interface Figure 6a and 6b

present the interfaces used for collecting How2R

and How2QA. For How2R, the annotator is asked

to first select a video segment from the presented

video clip using the sliding bar, and then enter a

description about the selected video segment in the
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Figure 8: How2R query length distribution.

Figure 9: How2QA question length distribution.

Figure 10: How2QA answer length distribution.

text box (shown at the bottom of Figure 6a). For

How2QA, we reuse the selected video segments

collected for How2R. The annotators are asked to

write a question, a correct answer and 3 wrong

answers in the five text boxes shown in Figure 6b.

Video Segment Length Distribution The length

Figure 11: Distribution of questions categorized by

their leading words in How2QA.

distribution of selected video segments is presented

in Figure 7. The length of video segments varies

from 5 to more than 30 seconds. The majority of

them have length less than 15 seconds.

How2R Query Length Distribution Figure 8

shows the length (in number of words) distribu-

tion of collected queries in How2R. The length of

queries is diverse, ranging from 8 to 20.

How2QA Question and Answer Distribution

Figure 9 and Figure 10 show the length (in number

of words) distribution of collected questions and an-

swers in How2QA. Questions are relatively longer,

with more than 10 words on average. Answers are

relatively shorter, most of which have less than 7

words.

In addition, we analyze the types of collected

question by plotting the distribution of their leading

words in Figure 11. In total, we collected questions

in 7 different types. Majority of them starts with

“what”, “why” and “when”.


