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Abstract

Slot filling and intent detection are two main
tasks in spoken language understanding (SLU)
system. In this paper, we propose a novel
non-autoregressive model named SlotRefine
for joint intent detection and slot filling. Be-
sides, we design a novel two-pass iteration
mechanism to handle the uncoordinated slots
problem caused by conditional independence
of non-autoregressive model. Experiments
demonstrate that our model significantly out-
performs previous models in slot filling task,
while considerably speeding up the decoding
(up to×10.77). In-depth analyses show that 1)
pretraining schemes could further enhance our
model; 2) two-pass mechanism indeed remedy
the uncoordinated slots.

1 Introduction

Slot filling (SF) and intent detection (ID) play im-
portant roles in spoken language understanding,
especially for task-oriented dialogue system. For
example, for an utterance like “Buy an air ticket
from Beijing to Seattle”, intent detection works on
sentence-level to indicate the task is about purchas-
ing an air ticket, while the slot filling focus on
words-level to figure out the departure and destina-
tion of that ticket are “Beijing” and “Seattle”.

In early studies, ID and SF were often modeled
separately, where ID was modeled as a classifica-
tion task, while SF was regarded as a sequence
labeling task. Due to the correlation between these
two tasks, training them jointly could enhance each
other. Zhang and Wang (2016) propose a joint
model using bidirectional gated recurrent unit to
learn the representation at each time step. Mean-
while, a max-pooling layer is employed to capture
the global features of a sentence for intent classi-
fication. Liu and Lane (2016) cast the slot filling
task as a tag generation problem and introduce a

recurrent neural network based encoder-decoder
framework with attention mechanism to model it,
meanwhile using the encoded vector to predict in-
tent. Goo et al. (2018) and Haihong et al. (2019)
dig into the correlation between ID and SF deeper
and modeled the relationship between them explic-
itly. Qin et al. (2019) propagate the token-level
intent results to the SF task, achieving significant
performance improvement.

Briefly summarized, most of the previous works
heavily rely on autoregressive approaches, e.g.,
RNN based model or seq2seq architecture, to cap-
ture the grammar structure in an utterance. And
conditional random field (CRF) is a popular auxil-
iary module for SF task as it considers the correla-
tions between tags. Thus, several state-of-the-art
works combine the autoregressive model and CRF
to achieve the competitive performance, which
therefore are set as our baseline methods.

However, for SF task, we argue that identifying
token dependencies among slot chunk is enough,
and it is unnecessary to model the entire sequence
dependency in autoregressive fashion, which leads
to redundant computation and inevitable high la-
tency.

In this study, we cast these two tasks jointly as a
non-autoregressive tag generation problem to get
rid of unnecessary temporal dependencies. Partic-
ularly, a Transformer (Vaswani et al., 2017) based
architecture is adopted here to learn the represen-
tations of an utterance in both sentence and word
level simultaneously (Sec.§2.1). The slots and in-
tent labels are predicted independently and simulta-
neously, achieving better decoding efficiency. We
further introduce a two-pass refine mechanism (in
Sec.§2.2) to model boundary prediction of each
slots explicitly, which also handle the uncoordi-
nated slots problem (e.g., I-song follows B-singer)
caused by conditional independence attribute.

Experiments on two commonly-cited datasets
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Figure 1: Illustration of SlotRefine, where the left and right part indicate the first and second iteration process
respectively. In the first pass, wrong slot tagging results are predicted, as shown in the pink dotted box in the figure,
and the “B-tags” (beginning tag of a slot) are feeded as additional information with utterance for second iteration.
The slot results in the green dotted box are refined results by second pass. Note that the initial tag embedding “O”
added to each inputting position is designed for the two-pass mechanism(Sec.§2.2).

Figure 2: A example of uncoordinated slot tagging.

show that our approach is significantly and consis-
tently superior to the existing models both in SF
performance and efficiency (Sec.§3). Our contribu-
tions are as follows:

• We propose an fast non-autoregressive ap-
proach to model ID and SF tasks jointly,
named SlotRefine1, achieving the state-of-the-
art on ATIS dataset.

• We design a two-pass refine mechanism to
handle uncoordinated slots problem. Our anal-
yses confirm it is a better alternative than CRF
in this task.

• Our model infers nearly ×11 faster than exist-
ing models (×13 for long sentences), indicat-
ing that our model has great potential for the
industry and academia.

2 Proposed Approaches

In this section, we first describe how we model slot
filling and intent detection task jointly by an non-
autoregressive model. And then we describe the
details of the two-pass refine mechanism. The brief

1Our code is available: https://github.com/
moore3930/SlotRefine

scheme of our model is shown in Figure 1, details
can be found in the corresponding caption. Note
that we follow the common practice (Ramshaw
and Marcus, 1995; Zhang and Wang, 2016; Hai-
hong et al., 2019) to use “Inside–outside–beginning
(IOB)” tagging format.

2.1 Non-Autoregressively Joint Model

We extend the original multi-head Transformer en-
coder in Vaswani et al. (2017) to construct the
model architecture of SlotRefine. Please refer to
Vaswani et al. (2017) for the details of Transformer.
The main difference against the original Trans-
former is that we model the sequential information
with relative position representations (Shaw et al.,
2018), instead of using absolute position encoding.

For a given utterance, a special token CLS is
inserted to the first inputting position akin to the
operation in BERT (Devlin et al., 2019). Difference
from that in BERT is the corresponding output
vector is used for next sentence classification, we
use it to predict the label of intent in SlotRefine. We
denote the input sequence as x = (xcls, x1, ..., xl),
where l is the utterance length. Each word xi will
be embedded into a h-dimention vector to perform
the multi-head self-attention computation. Then,
the output of each model stack can be formulated
as H = (hcls, h1, ..., hl).

To jointly model the representations of ID and
SF tasks, we directly concat 2 the representations of

2We follow (Goo et al., 2018) to fuse two representations
with gating mechanism, but preliminary experiments show that
simply concatenation performs best for our model structure.

https://github.com/moore3930/SlotRefine
https://github.com/moore3930/SlotRefine
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Model
ATIS Dataset Snips Dataset

Slot Intent Sent Slot Intent Sent
Joint Seq (Hakkani-Tür et al., 2016) 94.30 92.60 80.70 87.30 96.90 73.20
Atten.-Based (Liu and Lane, 2016) 94.20 91.10 78.90 87.80 96.70 74.10
Sloted-Gated (Goo et al., 2018) 95.42 95.41 83.73 89.27 96.86 76.43
SF-ID (w/o CRF) (Haihong et al., 2019) 95.50 96.58 86.00 90.46 97.00 78.37
SF-ID (w/ CRF) (Haihong et al., 2019) 95.80 97.09 86.90 92.23 97.29 80.43
Stack-Propagation (Qin et al., 2019) 95.90 96.90 86.50 94.20 98.00 86.90
Our Joint Model (in Sec.§2.1) 95.33 96.84 85.78 93.13 97.21 82.83
Our Joint Model +CRF 95.71 96.54 85.71 93.22 96.79 82.51
SlotRefine 96.22↑ 97.11↑ 86.96↑ 93.72 97.44 84.38

Table 1: Performance comparison on ATIS and Snips datasets. “↑”indicates significant difference (p < 0.05) with
previous works. Model name written in bold refer to ours.

hcls and hi before feed-forward computation, and
then feed them into the softmax classifier. Specifi-
cally, the intent detection and slot filling results are
predicted as follows, respectively:

yi = softmax
(
W i · hcls + bi

)
ysi = softmax (W s · [hcls, hi] + bs)

(1)

where yi and ysi denote intent label of the utter-
ance and slot label for each token i, respectively.
[hcls, hi] is the concated vector. W and b are corre-
sponding trainable parameters.

The objective of our joint model can be formu-
lated as:

p
(
yi, ys|x

)
= p

(
yi|x

)
·

l∏
t

p
(
yst |x, yi

)
(2)

The learning objective is to maximize the condi-
tional probability p

(
yi, ys|x

)
, which is optimized

via minimizing its cross-entropy loss. Unlike au-
toregressive methods, the likelihood of each slot in
our approach can be optimized in parallel.

2.2 Two-pass Refine Mechanism
Due to the conditional independence between
slot labels, it is difficult for our proposed non-
autoregressive model to capture the sequential de-
pendency information among each slot chunk, thus
leading to some uncoordinated slot labels. We
name this problem as uncoordinated slots prob-
lem. Take the false tagging in Figure 2 for exam-
ple, slot label “I-song” uncoordinately follows “B-
singer”, which does not satisfy the Inside-Outside-
Beginning tagging format.

To address this problem, we introduce a two-pass
refine mechanism. As depicted in the Figure 1, in
addition to each token embedding in the utterance,
we also element-wisely add the slot tag embedding

into the model. In the first pass, the initial slot tags
are all setting to “O”, while in the second pass, the
“B-tags” predicted in the first pass is used as the
corresponding slot tag input. These two iterations
share the model and optimization goal, thus brings
no extra parameters.

Intuitively, in doing so, the model generates a
draft in the first pass and tries to find the beginning
of each slot chunk. In the second pass, by propa-
gating the utterance again with the predicted “B-
tags”, the model is forced to learn how many iden-
tical “I-tags” follow them. Through this process,
the slot labels predicted becomes more consistent,
and the boundaries are more accurately identified.
From a more general perspective, we can view this
two-pass process as a trade-off between autoregres-
sion and non-autoregression, where the complete
markov chain process can be simplified as follow:

p
(
yi, ys|x

)
= p

(
yi|x

)
· p
(
ỹs|yi, x

)
· p
(
ys|ỹs, yi, x

) (3)

where ỹs is the tagging results from the first pass.
Two-pass refine mechanism is similar to

the multi-round iterative mechanism in non-
autoregressive machine translation (Lee et al.,
2018; Gu et al., 2018; Ding et al., 2020; Kasai
et al., 2020), such as Mask-predict (Ghazvininejad
et al., 2019). However, we argue that our method is
more suitable in this task. The label dependency of
the tagging task (e.g., slot filling) is simple, where
we only need to ensure the tagging labels of a slot
are consistent from the beginning to the end. There-
fore, two iterations to force the model to focus on
the slot boundaries is enough in our task, intuitively.
Mask-Predict can alleviate the problem caused by
conditional independence too. However, it’s de-
signed for a more complex goal, and it usually
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introduce more iterations (e.g., 10 iters) to achieve
competitive performance, which largely reduces
the inference speed.

3 Experiment

Datasets We choose two widely-used datasets:
ATIS (Airline Travel Information Systems,Tur et al.
(2010)) and Snips (collected by Snips personal
voice assistant,Coucke et al. (2018)). Compared
with ATIS, the Snips dataset is more complex due
to its large vocabulary size, cross-domain intents
and more out-of-vocabulary words.

Metrics Three evaluation metrics are used in our
experiments. F1-score and accuracy are applied for
slot filling and intent detection task, respectively.
Besides, we use sentence accuracy to indicate pro-
portion of utterance in the corpus whose slots and
intent are both correctly-predicted.

Setup All embeddings are initialized with xavier
method (Glorot and Bengio, 2010). The batch size
is set to 32 and learning rate is 0.001. we set num-
ber of Transformer layers, attention heads and hid-
den sizes to {2,8,64} and {4,16,96} for ATIS and
Snips datasets. In addition, we report the results
of previous studies (Hakkani-Tür et al., 2016; Liu
and Lane, 2016; Goo et al., 2018; Haihong et al.,
2019; Qin et al., 2019) and conduct speed evalua-
tion based on their open-source codes.

Main Results Table 1 summarizes the model per-
formance on ATIS and snips corpus. It can be seen
that SlotRefine consistently outperforms other base-
lines in all three metrics. Compared with our ba-
sic non-autoregressive joint model in Section§ 2.1,
SlotRefine achieve +1.18 and +1.55 sentence-level
accuracy improvements for ATIS and Snips, respec-
tively. It is worthy noting that our SlotRefine sig-
nificantly improves the slot filling task (F1-score↑).
we attribute the improvement to that our two-pass
mechanism successfully makes the model learn
better slot boundaries.

Speedup As each slot tagging result can be cal-
culated in parallel with our approach, inference
latency can be significantly reduced. As shown in
Table 2, on ATIS test set, our non-autoregressive
model could achieve ×8.80 speedup compared
with the existing state-of-the-art model (Haihong
et al., 2019). And after introducing two-pass mech-
anism (SlotRefine), our model still achieves com-
petitive inference speedup (×4.31). Our decoding

Model Latency Speedup
Sloted-Gated 11.31ms 1.41×
SF-ID (with CRF) 13.03ms 1.22×
Stack-Propagation 15.94ms 1.00×
Our Joint Model 1.48ms 10.77×
Our Joint Model +CRF 8.32ms 1.92×
SlotRefine 3.02ms 4.31×

Table 2: “Latency” is the average time to decode an ut-
terance without minibatching. “Speedup” is compared
against existing SOTA model (Haihong et al., 2019).
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Figure 3: The number of uncoordinated slots of our
joint model (One Pass), joint model with CRF (One
Pass+CRF) and SlotRefine (Two Pass) during training.

is conducted with a single Tesla P40 GPU. It is
worth noting that for long sentences (Length≥12),
the speedup achieves ×13 (not reported in table).

Two-Pass Mechanism v.s. CRF In SF task,
CRF is usually used to learn the dependence of slot
labels. Two most important dependence rules CRF
learned can be summarized as tag O can only be fol-
lowed by O or B and tag B-* can only be followed
by same-type label I-* or O, which can be per-
fectly addressed with our proposed two-pass mech-
anism. Experiments about +CRF can be found in
Table 1&2 (“Our Joint Model +CRF”), we can see
that two-pass mechanism equipped SlotRefine out-
performs +CRF by averagely +0.89, meanwhile
preserving ×2.8 speedup, demonstrating that two-
pass mechanism can be a better substitute for CRF
in this task for better performance and efficiency.

Remedy Uncoordinated Slots in Training We
visualize the number decrease of uncoordinated
slots of the training process on ATIS dataset. As
depicted in Figure 3, uncoordinated errors of both
“One-Pass” and “Two-Pass” models decrease with
training goes. Notably, the uncoordinated slots
number of Two-Pass model drops significantly
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Model
ATIS Dataset Snips Dataset

Slot Intent Sent Slot Intent Sent
Joint Model 95.33 96.84 85.78 93.31 97.21 82.83
Joint Model with CRF 95.71 96.54 85.71 93.22 96.79 82.51
SlotRefine 96.22 97.11 86.96 93.72 97.44 84.38
SlotRefine with GloVe 96.24 97.35 87.57 96.33 98.36 91.06
SlotRefine with BERT 96.16 97.74 88.64 97.05 99.04 92.96

previous work with pretraining
BERT-Joint (Chen et al., 2019) 96.10 97.50 88.20 97.00 98.60 92.80
Stack-Propagation with BERT (Qin et al., 2019) 96.10 97.50 88.60 97.00 99.00 92.90

Table 3: Performance comparison between SlotRefine with GloVe initialzation and Bert based model on ATIS and
Snips datasets.

faster than the One-Pass model, achieving better
convergence than +CRF after 50 epochs. This in-
dicates that our proposed two-pass mechanism in-
deed remedy the uncoordinated slots problem, mak-
ing the slot filling more accurate.

SlotRefine with Pretraining Recently, there are
also some works based on large scale pretraining
model BERT (Chen et al., 2019), where billions of
external corpus are used and tremendous of model
parameters are introduced. The number of pa-
rameters of BERT is many orders of magnitude
more than ours, thus it is unfair to compare perfor-
mance of SlotRefine with them directly. To high-
light the effectiveness of SlotRefine, we conduct
experiments with two pretraining schemes, GloVe3

and BERT4, to compare with them. We find that
both GloVe and BERT could further enhance the
SlotRefine, and it worth noting that “SlotRefine
w/ BERT” outperforms existing pretraining based
models. The detailed comparison can be found in
Table 3.

For the pre-training scheme of BERT, we follow
the setting in Chen et al. (2019) and equip two-
pass mechanism in the fine-tune stage, where CLS
token is used for intent detection. And for the pre-
training scheme of GloVe, we fix and compress the
pretrained word vectors into the same dimension
of the input hidden size in SlotRefine by a dense
network. It is worth noting that through such sim-
ple pre-training method, SlotRefine can achieve a
results very close to the method implemented by
BERT. We guess that the benefits of the pre-training
methods on this task mainly come from alleviat-
ing the Out-of-Vocabulary (OOV) problem. One

3https://github.com/stanfordnlp/GloVe
4https://github.com/huggingface/transformers

piece of evidence is, for Snips whose test set has
a large number of OOV words, benefits through
pre-training are very obvious. However, for the
ATIS whose test set has few OOV words, only a
small sentence accuracy gain, 0.61 and 1.68 for
GloVe and Bert respectivly, is obtained after using
the pre-training method.

4 Conclusion

In this paper, we first reveal an uncoordinated slots
problem for a classical language understanding
task, i.e., slot filling. To address this problem, we
present a novel non-autoregressive joint model for
slot filling and intent detection with two-pass refine
mechanism (non-autoregressive refiner), which sig-
nificantly improves the performance while substan-
tially speeding up the decoding. Further analyses
show that our proposed non-autoregressive refiner
has great potential to replace CRF in at least slot
filling task.

In the future, we plan to extend our non-
autoregressive refiner to other Natural Language
Understanding (NLU) tasks, e.g., named entity
recognition (Tjong Kim Sang and De Meulder,
2003), semantic role labeling (He et al., 2018), and
Natural Language Generation (NLG) tasks, e.g.,
machine translation (Vaswani et al., 2017), summa-
rization (Liu and Lapata, 2019).
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