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Abstract

In this paper, we integrate span-related infor-
mation into pre-trained encoder for entity rela-
tion extraction task. Instead of using general-
purpose sentence encoder (e.g., existing uni-
versal pre-trained models), we introduce a
span encoder and a span pair encoder to the
pre-training network, which makes it easier
to import intra-span and inter-span informa-
tion into the pre-trained model. To learn
the encoders, we devise three customized pre-
training objectives from different perspectives,
which target on tokens, spans, and span pairs.
In particular, a span encoder is trained to re-
cover a random shuffling of tokens in a span,
and a span pair encoder is trained to predict
positive pairs that are from the same sentences
and negative pairs that are from different sen-
tences using contrastive loss. Experimental
results show that the proposed pre-training
method outperforms distantly supervised pre-
training, and achieves promising performance
on two entity relation extraction benchmark
datasets (ACE05, SciERC).

1 Introduction

Extraction of entities and relations from free texts
is an important task in NLP. Its goal is to recog-
nize text spans with specific types (entities) and
semantic relations among those entities (relations).
Current state-of-the-art systems usually employ
the supervised joint learning algorithm (Miwa and
Bansal, 2016; Sun et al., 2018, 2019a), which can
alleviate error propagation caused by the pipeline
method. In this paper, we focus on joint entity
relation extraction.

Recently, pre-trained models (Devlin et al., 2018;
Dong et al., 2019) have substantially advanced a va-
riety of NLP tasks, including entity relation extrac-
tion (Li et al., 2019; Wadden et al., 2019). (Wadden
et al., 2019) adopt BERT as a sentence encoder
and build a multi-task framework for information

BERT SpanBERT ERNIE Ours

Token Level X X X X
Span Level X X X
Span Pair Level X
Sentence Level X X

Table 1: Comparison between pre-training objectives.
X means that additional annotations (entities) are used.

extraction. However, universal pre-trained mod-
els are usually trained without explicitly handling
text spans and relation among text span pairs. For
example, the objectives of BERT are masked lan-
guage model and next sentence prediction, which
are defined at the token level and sentence level,
respectively. It rarely considers incorporating span-
related knowledge, which can provide rich infor-
mation for better extracting entities and relations
(Table 1).

The traditional way to introduce more entity re-
lation related information is through distant super-
vision, which aligns triples in knowledge bases
and free texts. However, the distantly supervised
dataset contains lots of noise samples, which may
have a negative impact on other datasets as prior
works (Sun and Wu, 2019). Besides, the distantly
supervised dataset’s annotated labels are usually
inconsistent with that of the target dataset. As
expected, in the preliminary experiment, we ob-
serve that the performance of the model directly
pre-trained with annotated data provided by dis-
tantly supervised dataset (such as NYT) is not im-
proved or even gets worse when it is fine-tuned
on other entity relation dataset (such as ACE05).
In addition, there are several existing works for
incorporating entity information into pre-training
objectives (Zhang et al., 2019; Sun et al., 2019b).
However, these methods rely on entity annotations,
which brings additional cost.

In this work, we focus on the unsupervised pre-
training objectives. We present a novel pre-training
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network architecture customized for entity rela-
tion extraction. In addition to the default sentence
encoder in existing pre-trained models (e.g., the
Transformer encoder of BERT), we also pre-train a
span encoder and a span pair encoder. To learn the
two encoders, we propose three pre-training objec-
tives corresponding to three levels: token boundary
objective (token level), span permutation objective
(span level), and contrastive span pair objective
(span pair level). Token boundary objective can
help to enhance the representation of the first sub-
token of each token. Span encoder is trained by
recovering the correct order of span tokens from
its random shufflings. Span pair encoder is trained
by the contrastive loss. Specifically, the predic-
tions are made discriminatively with a sampled-
softmax that contrasts positive pairs against neg-
ative pairs. Positive pairs are from the same sen-
tences, while negative pairs are from different sen-
tences. These three objectives share parameters
and will be trained jointly.

A closely related work to span level pre-training
objective is SpanBERT (Joshi et al., 2020), which
adopts the span boundary objective to incorporate
the span information. Different from (Joshi et al.,
2020), we introduce not only a new objective at
the span level but also a new objective at the span
pair level (Table 1). Inspired by the recently pro-
posed InfoWord (Kong et al., 2019), we use the
contrastive loss to learn a better span pair repre-
sentation. To utilize a large set of negative pairs
without requiring large training batches, we extend
the MoCo (He et al., 2019) framework to the pro-
posed span pair objective. In summary, our main
contributions are in the following 1:

• We introduce a span encoder and a span pair
encoder to incorporate intra-span and inter-span in-
formation in the pre-training network architecture,
which is ignored in universal pre-trained models.

• We devise three novel objectives, token bound-
ary objective, span permutation objective, and con-
trastive span pair objective, to learn the better en-
coders.

• The experimental results demonstrate that the
proposed method not only exceeds the strong BERT
baseline in entity relation extraction task but also
achieves significant improvements (3% absolute)

1Source code and pre-trained models are available at https:
//github.com/Receiling/PSPE.

on the ACE05 dataset, and is comparable with the
state-of-the-art on the SciERC dataset.

2 Background of Contrastive Learning

InfoNCE Contrastive learning is a framework
that builds representations by learning to encode
what makes two things similar or dissimilar 2. Re-
cently, (He et al., 2019) regrad contrastive learning
as a dictionary look-up task. An effective con-
trastive loss function, called InfoNCE (Oord et al.,
2018), is as follows. Formally, for any data point
X , to learn a query encoder fq and a key encoder fk
(the two encoders can be different, partially shared,
or identical, we adopt two identical encoders), In-
foNCE is to minimize the following loss function 3

− E
X,X+

[
fq(X) · fk(X+)− logZ

]
Z = exp(fq(X) · fk(X+)) +

∑
X−

exp(fq(X) · fk(X−))

where X is a query sample and {X+, X−} are key
samples. X+ is a similar key to query X and X−

is presumably dissimilar to X . Thus, X,X+, X−

are referred to as anchor, positive, negative respec-
tively in the parlance of contrastive learning.

Momentum Contrast (MoCo) Contrastive
learning tends to work better with more negative
examples, since presumably negative examples can
decide the quality of the underlying representations
learned. In the usual formulation of contrastive
learning, the gradients flow back through both the
query encoder and the key encoder, which means
that the number of negative samples is restricted to
the mini-batch size. Thus, the MoCo framework
(He et al., 2019) is devised to process a large
set of negative samples without requiring large
training batches. Specifically, Instead of updating
the key encoder with gradients back-propagation,
MoCo periodically updates the key encoder using
a momentum update:

θk = mθk + (1−m)θq

Here, θk denotes the parameters of the key en-
coder (also called momentum encoder), and θq
denotes the parameters of the query encoder (Fig-
ure 1). m ∈ [0, 1) is a momentum coefficient (e.g.,

2For more theoretical understanding, please refer to (Arora
et al., 2019).

3Minimizing the InfoNCE loss maximizes a lower bound
on the mutual information between fq(X) and fk(X+) (Kong
et al., 2019).

https://github.com/Receiling/PSPE
https://github.com/Receiling/PSPE
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Figure 1: Framework of MoCo with an MLP projec-
tion.

m = 0.999, our default). MoCo only updates pa-
rameters θq with back-propagation, and decouples
the size of key samples from the mini-batch size.
Thus, MoCo can maintain a large queue of key
samples, which contains one positive key sample
and lots of negative key samples to one query. In
addition, introducing an MLP (multi-layer percep-
tron) head projection between the representation
and the contrastive loss substantially improves the
quality of the learned representations (Chen et al.,
2020a,b).

3 Approach

Given an input sentence x = x1, . . . , x|x| and a set
of spans S (randomly sampling) in x, the target of
our pre-training model is to obtain a contextualized
vector representation for each span s ∈ S, and a
contextualized vector representation for each span
pair (s1, s2). As shown in Figure 2, the pre-training
task optimizes a shared Transformer (Vaswani et al.,
2017) network, a span level CNN and attention pa-
rameters with respect to a token boundary objec-
tive, a span permutation objective, and a contrastive
span pair objective. Different from universal pre-
trained language models (Devlin et al., 2018; Peters
et al., 2018), the proposed network incorporates
rich intra-span and inter-span information 4. Once
our network is pre-trained, we can fine-tune it for
entity relation extraction task.

3.1 Pre-training Network Architecture

This section presents the overall pre-training net-
work architecture for sentence encoder, span en-
coder, and span pair encoder. The next section

4We extract entities and relations for each sentence, so we
omit the next sentence prediction in BERT, which is a sentence
level objective.

will describe the objectives for training the three
components.

Sentence Encoder To obtain the contextual rep-
resentations hi for each token in the sentence x, we
use multi-layer Transformer (Vaswani et al., 2017)
as basic encoder like previous pre-training models,
such as UNILM, BERT, and XLM. The output of
the multi-layer Transformer is computed via:

{h1, . . . ,h|x|} = Transformer({x1, . . . ,x|x|})

The word representation xi of xi follows that of
BERT (Devlin et al., 2018), which sums the corre-
sponding token, segment and position embeddings.

Span Encoder Given a span s ∈ S in the sen-
tence x, to compute the corresponding contextual
span representation hs, we employ a CNN (a sin-
gle convolution layer with a max-pooling layer)
followed by an MLP on vectors {hi|xi ∈ s}, as
shown in the right part of Figure 2.

Span Pair Encoder Given a span pair p =
(s1, s2) in the sentence x, the sentence x is split
into five spans, namely, left context (L), s1, middle
context (M), s2 and right context (R). To obtain the
corresponding contextual span pair representation
hs1,s2 , we first employ the span encoder to extract
five feature vectors regarding the five spans. Let
hL,hs1 ,hM ,hs2 ,hR be the corresponding repre-
sentations computed by span encoder. To allow
the model to focus on more informative spans, we
then represent the span pair p as a weighted sum
of its contextualized span representations with a
position-aware attention mechanism as

hp =
∑

j∈{L,s1,M,s2,R}

ajhj ,

where the attention score aj is computed as

aj= Softmax(ej),

ej= vT tanh(Whhj +Wclshcls+

Ws1p
s1
j +Ws2p

s2
j ),

where W∗ and v are parameters and hcls is the
output of the first token ([CLS]). Following (Zhang
et al., 2017), ps1

j and ps2
j are the relative position

embedding with repsect to s1 and s2.

3.2 Pre-training Objectives
Learning powerful representations of span and span
pair is crucial for the entity relation extraction task,
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Figure 2: Overview of our pre-training. The Transformer parameters are shared across three objectives (i.e., token
level, span level and span pair level).

which is not explicitly considered in the universal
pre-trained models such as BERT. Here, we aim to
design several tailored pre-training objectives that
can guide the model to learn more powerful repre-
sentations of spans and span pairs. The three tasks
share parameters and are trained jointly (weighted
sum of the objective functions).

Token Boundary Objective (TBO) In practice,
masked language modeling (MLM) is usually ap-
plied at the sub-token level. Given the input sub-
token sequence, a certain portion of sub-tokens are
replaced by a special symbol [M]. The model is
trained to recover the original sub-tokens from the
corrupted version. In the downstream tasks, we
simply take the first sub-token representation as the
token representation. To enhance the first sub-token
representation and maintain the token level infor-
mation, we propose a variant MLM. Specifically,
for each token, we mask the sub-tokens except the
first sub-token, and then predict the masked sub-
tokens with the first sub-token representation and
corresponding position embedding. In experiments,
for each sentence, we randomly select 15% of the
sub-tokens to perform this objective.

Span Permutation Objective (SPO) Inspired
by the recent SpanBERT (Joshi et al., 2020), we
propose a different strategy to incorporate the intra-
span information into our pre-training model. Span-
BERT still focuses on enhancing single token rep-
resentation, while we emphasize the contextual
representation of the whole span. Instead of pre-
dicting each token of a masked span in SpanBERT,
we shuffle the tokens in the span and then expect
the model can recognize the disruption. Correctly,
let s = (xstart, xmiddle, xend) be a span in the sen-

tence x, where start, end indicates its start and
end position, and middle indicates its middle po-
sitions (may contain multiple tokens). Let P be
the set of all possible permutation of the three
parts. Obviously, the number of all possible per-
mutations is 3! (|P| = 6 ). For each permutation
p ∈ P , we first assign it a unique permutation
class Np(1 ≤ Np ≤ |P|), and then extract feature
vectors regarding span s with the span encoder to
predict the permutation class. The objective is to
optimize the cross-entropy loss computed using
the predicted permutation class and the gold per-
mutation class. In the implementation, we sample
np permutations (we always include the correct
permutation).

Contrastive Span Pair Objective (CSPO) Pre-
vious pre-trained models only consider a single
token or single span in the pre-training objective,
and ignore the role of span pairs. For entity re-
lation extraction task, it often involves predicting
whether a relation exists on an entity pair. Thus,
if we have a better-pre-trained span pair encoder,
we may get a better entity relation extraction per-
formance in the fine-tuning step. To this end, we
propose a novel span pair level objective based on
the contrastive learning framework. Inspired by
InfoWord (Kong et al., 2019), it views spans and
their matching contexts (i.e., contexts in the same
sentences) as positive pairs, otherwise as negatives
pairs. We extend this idea to the span pair level.

Formally, given a span pair p = (s1, s2) in
the sentence x, we consider the sentence with
masked p (denoted by xcontextp ) and the sentence
with masked context of p (denoted by xtargetp ) to
be a positive pair (Figure 3). If both come from
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Figure 3: Examples of xtargetp and xcontextp .

two different sentences, it is a negative pair. In
other words, (xcontextp , xtargetp ) is a positive pair,
and (xcontextp , x̂targetp′ ), (x̂contextp′ , xtargetp ) are nega-
tive pair, where p′ is a span pair in another sentence
x̂. Next, we describe how to adapt the MoCo frame-
work to achieve our span pair level objective.

To obtain the representations of xcontextp and
xtargetp , we can apply the span pair encoder on the
masked sentence. In expectation, the span pair
encoder will learn a better representation from con-
trastive loss. We adopt the span pair encoder fol-
lowed by an MLP as the two identical encoders fq
and fk of the MoCo.

fq(X) = fk(X) = MLP(SpanPairEncoder(X))

We think of two situations for (X,X+, X−) as
follows:

• We first consider xcontextp as the anchor data
point X , i.e., X = xcontextp , then X+ = xtargetp

and X− = x̂targetp′ ;

• We can also consider xtargetp as the anchor data
point X , i.e., X = xtargetp , then X+ = xcontextp and
X− = x̂contextp′ .

where x and x̂ are two different sentences. Given
the input (X,X+, X−), the training objective is to
minimize

−
∑

(X,X+,X−)∈X

{
E

X,X+

[
fq(X) · fk(X+)− logZ

]}
Z = exp(fq(X) · fk(X+)) +

∑
X−

exp(fq(X) · fk(X−))

X = {(xcontext
p , xtarget

p , x̂target
p′ ),

(xtarget
p , xcontext

p , x̂context
p′ )}

Appendix D provides the PyTorch-like pseudo-
code of MoCo for our proposed span pair task. For
the current mini-batch, we encode the X and X+,
which form the positive sample pairs. The negative
samples are from the queue (we maintain the two
queues).

3.3 Pre-training Setup

Within one training batch, we optimize the
weighted sum of three objectives. We use GELU
as the activation function. The sentence encoder
is initialized by BERTBASE. We generate spans
similar to (Joshi et al., 2020). For distantly su-
pervised pre-training, we train our model for ten
epochs with linear warm up rate over the first 20%
steps and linear decay. For our unsupervised pre-
training on the distantly supervised corpus (NYT),
we train our model for ten epochs with linear warm
up rate over the first 10% steps and linear decay. In
order to achieve more training data, we sample sen-
tences from English Wikipedia 5 and BooksCorpus,
which has been processed similarly as (Devlin et al.,
2018), and construct a dataset (4.8M sentences to-
tal) with 70M words. So the total iterations of
pre-training are smaller than BERTBASE. The vo-
cabulary size is 28996. The maximum length of
the input sequence is 128. We train our model for
40,000 steps with linear warm up rate over the first
18,000 steps and linear decay. Adam (Kingma and
Ba, 2014) with β1 = 0.9, β2 = 0.999 is used for
optimization. The learning rates of NYT and Wiki-
Book are 5e-5 and 1e-4, respectively. The dropout
rate is 0.1. The weight decay is 0.01. The batch
size is 256 with gradient accumulation. It takes
about 22 hours for 10, 000 steps using 1 Nvidia
Tesla T4 16GB GPU.

3.4 Fine-tuning for Entity Relation
Extraction

We define the entity relation extraction task as (Sun
et al., 2019a) 6. First, we perform entity span detec-
tion, which is tackled using the sequence labeling
framework. We use the sentence encoder’s out-
put as the representation of words and feed it to a
randomly initialized softmax classifier. We adopt
cross-entropy loss for training the entity span de-
tector. Then, for each detected entity span, we
predict its entity type using a softmax classifier.
The classifier takes its input from the pre-trained
span encoder. Similarly, we predict its relation type
for each detected entity span pair using a softmax
classifier, which takes its input from the span pair
encoder. We also adopt cross-entropy loss in these
two tasks. Overall, three objectives are optimized
simultaneously in the fine-tuning step.

5Wikipedia version: enwiki-20190301.
6The neural architecture for fine-tuning is provided in Ap-

pendix A.
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Scheduled sampling was used for the entity
model similar to (Miwa and Bansal, 2016). We
adopt the discriminative fine-tuning strategy as
(Howard and Ruder, 2018). We employ the early
stop strategy and select models based on perfor-
mances on the development set.

4 Experiments

We conduct experiments on two benchmark entity
relation extraction datasets: ACE05 and SciERC.
For the distantly supervised dataset, we choose the
NYT dataset.

ACE05 The ACE05 dataset 7 annotates entity
and relation types for a collection of documents. It
is a standard corpus for entity relation extraction
task. There are 7 entity types and 6 relation types
in the corpus. We use the same data split of the
ACE05 dataset (351 training, 80 validating, and 80
testing) as (Miwa and Bansal, 2016).

SciERC The SciERC dataset 8 provides entity,
coreference and relation annotations for 500 sci-
entific abstracts, which are taken from AI confer-
ence/workshop proceedings. We only use the an-
notations of entities and relations. The corpus con-
tains 6 scientific entity types and 7 relation types.
We use the same data split of SciERC dataset (350
training, 50 validating, and 100 testing) as (Luan
et al., 2019).

NYT The NYT dataset9 is a large-scale corpus
which annotates 3 types of entities and 12 types of
relations for New York Times news articles. The
training set is automatically generated by distant
supervision. (Jia et al., 2019) provides validation
and testing data that are manually labeled. We do
not use the testing data for pre-training. We choose
the latest version NYT released by (Jia et al., 2019).

Evaluation. We evaluate F1 score as previous
works (Miwa and Bansal, 2016; Sun et al., 2019a).
Specifically, an output entity is correct if its type
and boundary are correct, and an output relation is
correct if its type and its two-argument entities are
correct (i.e., exactly match). Some previous works
(Luan et al., 2019; Wadden et al., 2019; Sanh et al.,
2019) do not consider entity type for relation eval-
uation. We also report this result for comparison.

7https://github.com/tticoin/LSTM-ER
8http://nlp.cs.washington.edu/sciIE/
9https://github.com/PaddlePaddle/models/tree/develop/

PaddleNLP/Research/ACL2019-ARNOR/

Model Entity Relation Ent + Rel

Sun, 2019a 84.2 – 59.1
Li, 2019� 84.8 – 60.2
Sanh, 2019?, ◦ 87.5 62.7 –
Luan, 2019?, ◦ 88.4 63.2 –
Wadden, 2019 �, ◦ 88.6 63.4 –
SPE� 87.2 66.7 63.2

Table 2: Results on the ACE05 test data. � means
that the model use BERT. ◦ trains the model in multi-
task learning way. ? uses ELMo as token embeddings.
“SPE” is the proposed model pre-trained on Wikipedia
and BooksCorpus.

Model Entity Relation Ent + Rel

BERT� 87.3 65.4 61.7
SpanBERT 87.9 65.3 62.2
SPE� 87.2 66.7 63.2
SPE(NYT)� 87.4 65.9 63.0
SPE-DS � 87.1 64.1 60.1

Table 3: Results on the ACE05 test data. “BERT”
is our method without pre-training, which is initial-
ized by BERTBASE and fine-tuned on ACE05 dataset.
“SpanBERT” is similar to “BERT” and is initialized by
SpanBERTBASE. “SPE(NYT)” is the proposed model
pre-trained on NYT dataset. “SPE-DS” is the proposed
model pre-trained on NYT dataset with distantly super-
vised objectives.

4.1 Results on ACE05

First, we compare our methods with previous works
in Table 2. In general, our proposed pre-training
method “SPE ” 10 achieves significant improve-
ments over all the existing models in two ways
of relation evaluation. Particularly, it achieves an
improvement of 4.1 units (exactly match) over the
LSTM-based GCN joint model (Sun et al., 2019a)
and outperforms 3.0 percent (exactly match) com-
paring with the BERT-based QA model (Li et al.,
2019). Comparing with multi-task learning based
on ELMo and BERT (Sanh et al., 2019; Luan et al.,
2019; Wadden et al., 2019), it also achieves a sig-
nificant improvement. It is worth noting that our
entity detection result underperforms (Luan et al.,
2019; Wadden et al., 2019). The major reason is
that we do not introduce additional supervision sig-
nals in the fine-tuning step, such as coreference
resolution and event extraction. However, even
without additional multi-task training data, we still
achieve the best relation performance, demonstrat-
ing the effectiveness of the proposed pre-training
method for the entity relation extraction task.

10Span and span Pair Encoder (SPE).

https://github.com/tticoin/LSTM-ER
http://nlp.cs.washington.edu/sciIE/
https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/Research/ACL2019-ARNOR/
https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/Research/ACL2019-ARNOR/
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Model Entity Relation Ent + Rel

BERT� 87.3 65.4 61.7
SPE� 87.2 66.7 63.2

- TBO 87.4 63.7 61.2
- SPO 87.3 64.4 61.1
- CSPO 87.3 64.5 61.4

- CNN 87.1 64.6 61.2

Table 4: Results on the ACE05 test data in different
settings. “BERT” is our method without pre-training,
which is initialized by BERTBASE and fine-tuned on
ACE05 dataset. - * is the SPE without * objective,
where ∗ ∈ {TBO, SPO, CSPO} ; - CNN is the SPE
with the pre-trained Transformer, and the rest compo-
nents of the encoder are randomly initialized.

Next, we compare our method with different pre-
training in Table 3. “BERT” and “SpanBERT” have
similar relation performances, and “SpanBERT”
gets a better entity performance. Our “SPE” out-
performs both in terms of relation performance,
showing the contribution of the span and span pair
representations learned by the proposed objectives.
Comparing with distantly supervised per-training,
for a fair comparison, we also use the NYT dataset
as our pre-training corpus (line 4). In fact, we ob-
serve that pre-training results on Wiki and NYT are
similar although the NYT data size is smaller (line
3 and line 4). Surprisingly, the distantly supervised
pre-training (initialized by BERTBASE) performs
poorly even worse than the “BERT” baseline (line
1 and line 5). Our explanation of this phenomenon
is that distant supervision introduces larger noisy
samples, which results in a negative transfer. Com-
paring with distantly supervised pre-training, our
method does not access any supervised signals that
may be noisy, and achieves larger improvement in
relation performance over the “BERT” baseline.

Thirdly, we analyze the contributions and effects
on different settings (Table 4). We have several
observations.

• Comparing with “BERT”, “SPE” achieves com-
parable entity performance and outperforms it with
1.3 points in relation performance. This observa-
tion indicates the proposed pre-training objectives
can help better learning span-related information,
which is crucial for the entity relation extraction
task. In addition, entity performance is insensitive
to all models (all lines). They fluctuate at 0.4 points.

• When one of the pre-training objectives (line 3-
5) is removed, we find the relation performance

Model Entity Relation Ent + Rel

10%

BERT 73.3 35.2 29.5
SPE 74.0 40.7 34.1

SPE(NYT) 74.0 35.5 29.7
SPE-DS 70.0 27.4 22.3

20%

BERT 75.2 42.8 37.1
SPE 75.6 45.6 41.9

SPE(NYT) 76.2 42.8 37.2
SPE-DS 71.0 33.5 28.5

50%

BERT 86.1 62.4 58.7
SPE 85.4 62.5 58.9

SPE(NYT) 85.6 61.9 58.1
SPE-DS 85.4 60.9 56.8

Table 5: Results on the ACE05 test data by varying on
the size of training data in fine-tuning step.

Model Entity Relation Ent + Rel

SPE� 87.2 66.7 63.2

w/o MLP Head 87.0 65.1 61.9
Momentum encoder 87.2 65.4 61.7

Table 6: Results on the ACE05 test data in different
settings of MoCo framework.

declines with varying degrees. In particular, the
relation performance of “- SPO” drops largely (2.3
points and 2.1 points for both relation evaluations
respectively). It demonstrates that the span encoder
is quite effective for relation extraction.

• Comparing with “SPE”, the relation performance
of the “- CNN” decreases sharply (line 6). It shows
that, with automatically annotated entities in free
texts, the pre-training objectives are able to grasp
some useful context information for identifying en-
tities and relations.

Fourthly, we study the influences of fine-tuning
data size. In Table 5, we can see that increasing
the size of training data, in general, improve the
performances of the entity relation extraction task.
When the training data in the fine-tuning step is
very small (10%, 20%), our pre-trained model is
obviously better than the “BERT” baseline. We at-
tribute these results to the powerful representations
learned by our pre-training objectives. In addition,
distantly supervised pre-training also have poor
performances.

Finally, we test the influences of the component
of the MoCo (Table 6) 11. If we remove the last
MLP head projection, the relation performance
drops largely, which shows that MLP head pro-

11More disscussions and detailed error analyses are in the
Appendix B and Appendix C.
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Model Entity Relation Ent + Rel

Luan, 2019?, ◦ 65.2 41.6 –
Wadden, 2019 �, ◦ 67.5 48.4 –

BERT� 67.1 43.6 33.0
SPE� 66.9 45.6 33.6
SPE(NYT)� 67.7 44.1 33.9
SPE-DS� 65.5 45.1 30.8

Table 7: Results on the SciERC test data.

jection substantially improves the quality of the
learned span and spar pair representations. There
is a similar conclusion on computer vision (Chen
et al., 2020a,b). For MoCo framework, we can
get two encoders, an encoder updated by back-
propagation and a momentum encoder updated by
momentum update. In our experiments, we find the
former performs better than the latter.

4.2 Results on SciERC

The baseline methods are (Luan et al., 2019), which
learns multiple tasks with ELMo embeddings, and
(Wadden et al., 2019) which also adopts multi-task
learning with BERT. From the upper part of Table 7,
both “BERT” and “SPE” significantly outperform
(Luan et al., 2019) in entity performance and rela-
tion performance. We attribute the phenomenon to
the strong ability of BERT. “SPE” performs better
than “BERT”, which shows the proposed objec-
tives are useful for entity relation extraction, and
can integrate span information into the pre-trained
model. Our pre-trained models can match previ-
ous state-of-the-art method (Wadden et al., 2019),
without additional multi-task learning data. In ad-
dition, distantly supervised pre-training also have
poor performances.

5 Related Work

Research on entity relation extraction has been ex-
tensively investigated. Early pipeline methods suf-
fer the error propagation problem (Chan and Roth,
2011; Lin et al., 2016). Joint model can make bet-
ter use of the complementarity between the entity
model and the relation model to alleviate error prop-
agation. A simple method is joint learning through
sharing parameters, which means the entity model
and the relation model can share some input vectors
or sentence encoder. The typical works include tree
LSTM-based model over dependency tree (Miwa
and Bansal, 2016) and attention-based model with-
out dependency tree (Katiyar and Cardie, 2017).
However, this kind of method does not perform

joint decoding, and it can not fully exploit the inter-
action between output entities and relations. To mit-
igate the above question, many joint decoding al-
gorithms (Fu et al., 2019; Ren et al., 2017; Li et al.,
2019) are applied into this task, such as ILP-based
joint decoding algorithms (Yang and Cardie, 2013),
joint sequence labelling tag set (Zheng et al., 2017),
structured perceptron (Li and Ji, 2014), joint MRT
(Sun et al., 2018), joint relational triplets extracting
(Chen et al., 2019; Zeng et al., 2018), and transition
system (Wang et al., 2018). Besides, (Sun et al.,
2019a) perform the joint type inference with GCN
on an entity-relation bipartite graph. Especially,
our joint model for entity relation extraction is de-
rived from (Sun et al., 2019a) without GCN. In this
work, we mainly investigate whether pre-training
can help entity relation extraction task. For simplic-
ity, our joint model does not perform joint decod-
ing (only sharing parameters). In addition, transfer
learning (Sun and Wu, 2019), multi-task learning
(Sanh et al., 2019; Wadden et al., 2019; Luan et al.,
2019), and reinforcement learning (Takanobu et al.,
2019) were also studied.

Pre-trained models have achieved impressive per-
formance on a wide range of downstream tasks
in NLP. Different training objectives have been
used for different pre-trained models. For example,
ELMo (Peters et al., 2018), BERT (Devlin et al.,
2018) and UNILM (Dong et al., 2019) learn differ-
ent token level objectives and sentence level objec-
tives. Despite their great success, they ignore the
incorporation of span-related information, which is
vital for the entity relation extraction task. (Zhang
et al., 2019) demonstrate that informative entities
in KGs can enhance language representation with
external knowledge. (Sun et al., 2019b) propose
entity-level masking and phrase-level masking to
enhance language representation. Comparing with
(Zhang et al., 2019; Sun et al., 2019b; Joshi et al.,
2020), the proposed objectives can not only inte-
grate span information, but also span pair infor-
mation. Recently, unsupervised contrastive pre-
training methods, MoCo (He et al., 2019), Sim-
CLR (Chen et al., 2020a), InfoWord (Kong et al.,
2019) and CURL (Srinivas et al., 2020), have led
to great empirical success in computer vision, rein-
forcement learning and NLP. Constrastive learning
learns representations by contrasting positive and
negative samples. Inspired by (Kong et al., 2019),
we learn better span pair representations with con-
trastive methods, utilizing a large set of negatives
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without requiring large training batches and extend-
ing the MoCo framework with the proposed span
pair objective.

6 Conclusion

We propose a pre-training network architecture
with three objectives, which can incorporate intra-
span and inter-span information into pre-trained
models. In comparison to universal pre-trained
model, we introduce a span encoder and a span pair
encoder. By designning three pre-training objec-
tives, we can learn better pre-trained encoders cus-
tomized for entity relation extraction task. Experi-
ments on two benchmark datasets demonstrate the
effectiveness of the proposed pre-training method.
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Appendices

A Neural Architecture for Fine-tuning

Figure 4 displays our neural architecture adopted
in the fine-tuning step. The fine-tuning step can be
divided into three subtasks as follow:

1. Entity Span Detection Training an entity
span detector with the sequence labeling
framework.

2. Entity Recognition Predicting the entity type
for each detected entity span.

3. Relation Classification Predicting the rela-
tion type for each detected entity span pair.

The three subtasks correspond to three objectives,
which are optimized simultaneously in fine-tuning.

B More Evaluations

We list performances on each entity type and real-
tion type in Table 8 and Table 9 respectively. Ta-
ble 8 shows that “BERT” and “SPE” have similar
entity performance on different entity types. While
Table 9 demonstrates that “SPE” significantly im-
proves both precision and recall on different rela-
tion types except for “GEN-AFF”.

Figure 5(a) illustrates the relation performaces
(exactly match) of “BERT” and “SPE” with respect
to the number of entities for each sentence. In gen-
eral, our “SPE” almost outperforms “BERT” when
the number of entities is less than 9. Moreover, the
performance of “BERT” and “SPE” both rise with
as the number of entities increases, which suggests
that more entities will help to identify relations.
This result proves that the proposed “SPE” model
is able to encode more powerful representations of
span and span pair when lacking entity information.
In other words, our “SPE” is robust to more sparse
situations that are common in reality.

Figure 5(b) illustrates the relation performaces
(exactly match) of “BERT” and “SPE” with respect
to the sentence length of each sentence. We find
that “SPE” achieves superior performances com-
pared to “BERT” on different sentence length ex-
cept that sentence length is between 31 and 50.
This result demonstrates that our “SPE” model
can handle too long or too short sentences, while
the performance sharply decreases when sentence
length is between 31 and 50. We think the superior
performances of “SPE” verify the effectiveness of
the proposed method. Meanwhile, it is valuable

Entity Type Model P R F

WEA
(109)

BERT 77.7 79.8 78.7
SPE 81.7 78.0 79.8

FAC
(286)

BERT 77.2 78.3 77.8
SPE 77.7 76.6 77.1

VEH
(116)

BERT 85.3 80.2 82.7
SPE 81.7 81.0 81.4

LOC
(136)

BERT 70.8 75.0 72.9
SPE 71.0 77.2 73.9

PER
(2928)

BERT 90.2 93.6 91.8
SPE 90.4 93.0 91.7

GPE
(1013)

BERT 88.5 88.6 88.5
SPE 85.3 90.2 87.7

ORG
(817)

BERT 78.0 74.9 76.4
SPE 79.6 75.2 77.3

Table 8: The entity performance of “BERT” and “SPE”
on different entity types. The numbers in the first col-
umn are counts of entities in the ACE05 test set.

Relation Type Model P R F

ART
(146)

BERT 69.0 41.1 51.5
SPE 64.4 44.5 52.6

PART-WHOLE
(175)

BERT 56.8 57.1 57.0
SPE 60.3 60.0 60.2

PER-SOC
(73)

BERT 68.5 68.5 68.5
SPE 72.0 74.0 73.0

PHYS
(278)

BERT 53.4 47.8 50.5
SPE 60.7 53.2 56.7

GEN-AFF
(99)

BERT 62.8 49.5 55.4
SPE 56.8 46.5 51.1

ORG-AFF
(354)

BERT 72.0 71.2 71.6
SPE 76.7 72.3 74.4

Table 9: The relation performance (exactly match) of
“BERT” and “SPE” on different relation types. The
numbers in the first column are counts of relations in
the ACE05 test set.

to solve the problem of performance decline on
medium sentence length in future work.

Finally, we report the performance of “SciBERT”
on the SciERC dataset in Table 10. In the experi-
ment, we directly replace BERT with SciBERT and
train the model on the SciERC dataset to get the
result. We find that the performance of “SciERC”
is superior to “BERT” and “SPE”, which suggests
that the data resources from specific domains are
quite important for some tasks. But we believe
that we can achieve a higher score on the SciERC
dataset when we use the same pre-training dataset
as “SciBERT”.
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Figure 4: Overview of our neural architecture for fine-tuning. Fine-tuning loss consists of three parts: entity span
detection loss, entity recognition loss, and relation classification loss.
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Figure 5: The relaiton F1 score (exactly match) with respect to the number of entities and the sentence length for
each sentence on ACE05 test data.

Model Entity Relation Ent + Rel

BERT� 67.1 43.6 33.0
SciBERT� 68.0 47.6 34.6
SPE� 66.9 45.6 33.6

Table 10: Results on the SciERC test data.

C Error Analyses

In this section, we compare the performances
of “BERT” and “SPE” on concrete examples.
These examples are excerpted from the results of
“BERT” and “SPE” on ACE05 test data. In the
following examples, we will use notations like
“[entity span]ENT-TYPE[REL-TYPE REL-ID]”. It means that an
entity mention (“entity span”) has an entity type
ENT-TYPE, and (optionally) participates in one
or more relations, which can be identified with
REL-TYPE and REL-ID.

First, “SPE” can detect more entities partic-
ipating in relations. For S1, “SPE” identifies
[aol time warner] as the entity ORG, while “BERT”

identifies [time warner] as the entity ORG. Then
“SPE” further identifies a ORG-AFF relation be-
tween [his] and [aol time warner] but “BERT” does
not. This may be one of the reasons why “BERT”
and “SPE” have similar entity performance while
the relation performance of “SPE” is significantly
superior to “BERT”.

Next, we give two examples in more complex
sentences. For S2, [army] participates two rela-
tions (PART-WHOLE-1 and PART-WHOLE-2),
“BERT” identifies an wrong relation ORG-AFF-1
while the results of “SPE” are correct. For S3,
the distance between [ship] and [terrorists] is quite
long, “SPE” correctly find the relation ART-2
while “BERT” does not. Hence, we think that our
“SPE” can handle more complex situations such as
relation overlapping and distant entities.

D Pseudocode (PyTorch-like)

Figure 6 shows the PyTorch-like pseudocode of our
span pair contrastive learning.
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S1 . . . our founder here at cnn , ted tuener , has sold more than half 0 [his]PERORG-AFF-1 stake in
[aol time warner]ORGORG-AFF-1 .

BERT . . . our founder here at cnn , ted tuener , has sold more than half 0 [his]PER stake in aol
[time warner]ORG .

SPE . . . our founder here at cnn , ted tuener , has sold more than half 0 [his]PERORG-AFF-1 stake in
[aol time warner]ORGORG-AFF-1 .

S2 . . . troops from the [u.s]GPEPART-WHOLE-1 . [army]ORGPART-WHOLE-1|PART-WHOLE-2 ’s
[101st airborne division]ORGPART-WHOLE-2 went to the site on friday . . .

BERT . . . troops from the [u.s]GPEPART-WHOLE-1 . [army]ORGPART-WHOLE-1|ORG-AFF-1 ’s
[101st airborne division]ORGORG-AFF-1 went to the site on friday . . .

SPE . . . troops from the [u.s]GPEPART-WHOLE-1 . [army]ORGPART-WHOLE-1|PART-WHOLE-2 ’s
[101st airborne division]ORGPART-WHOLE-2 went to the site on friday . . .

S3 this was the [italian]GPEART-1 [ship]VEHART-1|ART-2 that was taken – that was captured by
[palestinian]PERGEN-AFF-1 [terrorists]GPEGEN-AFF-1|ART-2 back in 1985 .

BERT this was the [italian]GPEART-1 [ship]VEHART-1 that was taken – that was captured by
[palestinian]PERGEN-AFF-1 [terrorists]GPEGEN-AFF-1 back in 1985 .

SPE this was the [italian]GPEART-1 [ship]VEHART-1|ART-2 that was taken – that was captured by
[palestinian]PERGEN-AFF-1 [terrorists]GPEGEN-AFF-1|ART-2 back in 1985 .

Table 11: Examples from the ACE05 dataset with label annotations from “BERT” and “SPE” for comparison.
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# f_m: momentum span pair encoder
# f_e: span pair encoder
# span_pair_queue: dictionary as a quue of span pair representation (CxK)
# context_queue: dictionary as a quue of context representation (CxK)
# m: momentum
# t: temperature

f_m.params = f_e.params # initialize
for x in loader: # load a minibatch x with N samples

x_span_pair = mask(x) # mask context part
x_context = mask(x) # mask span pair

span_pair_q = f_e.forward(x_span_pair) # span pair queries: NxC
context_q = f_e.forward(x_context) # context queries: NxC
span_pair_k = f_m.forward(x_span_pair) # span pair keys: NxC
context_k = f_m.forward(x_span_pair) # context keys: NxC
span_pair_k = span_pair_k.detach() # no gradient to span pair keys
context_k = context_k.detach() # no gradient to context keys

# span pair positive logits: Nx1
l_span_pair_pos = bmm(span_pair_q.view(N, 1, C), context_k.view(N, C, 1))
# context positive logits: Nx1
l_context_pos = bmm(context_q.view(N, 1, C), span_pair_k.view(N, C, 1))

# span pair negative logits: NxK
l_span_pair_neg = mm(span_pair_q.view(N, C), context_queue.view(C, K))
# context negative logits: NxK
l_context_neg = mm(context_q.view(N, C), span_pair_queue.view(C, K))

# span pair logits: Nx(1+K)
span_pair_logits = cat([l_span_pair_pos, l_span_pair_neg], dim=1)
# context logits: Nx(1+K)
context_logits = cat([l_context_pos, l_context_neg], dim=1)

# contrastive loss
labels = zeros(N) # positives are the 0-th
span_pair_loss = CrossEntropyLoss(span_pair_logits / t, labels)
context_loss = CrossEntropyLoss(context_logits / t, labels)
loss = span_pair_loss + context_loss

# gradient back-propagation: span pair encoder f_e
loss.backward()
update(f_e.params)

# momentum update: key network
f_m.params = m * f_m.params + (1 - m) * f_e.params

# update dictionary
# enqueue the current minibatch
enqueue(span_pair_queue, span_pair_k)
enqueue(context_queue, context_k)

# dequeue the earliest minibatch
dequeue(span_pair_queue)
dequeue(context_queue)

Figure 6: Pseudocode of Contrastive Span Pair Objective (CSPO) in a PyTorch-like style.


