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Abstract

Verifying fact on semi-structured evidence like
tables requires the ability to encode structural
information and perform symbolic reasoning.
Pre-trained language models trained on natu-
ral language could not be directly applied to
encode tables, because simply linearizing ta-
bles into sequences will lose the cell alignment
information. To better utilize pre-trained trans-
formers for table representation, we propose
a Structure-Aware Transformer (SAT), which
injects the table structural information into the
mask of the self-attention layer. A method to
combine symbolic and linguistic reasoning is
also explored for this task. Our method outper-
forms baseline with 4.93% on TabFact, a large
scale table verification dataset.

1 Introduction

Table fact verification aims at classifying whether
a textual hypothesis is entailed or refuted by the
given table. It could benefit downstream tasks
such as fake news detection, misinformation de-
tection, etc. Compared to fact verification over tex-
tual evidence (Dagan et al., 2006; Bowman et al.,
2015), verification on semi-structured data further
requires 1) the ability to encode and understand
structural information of tables, and 2) the abil-
ity to perform symbolic reasoning over structured
data, such as counting, comparing, and numeri-
cal calculation. Although large-scale pre-trained
language models (Devlin et al., 2019; Yang et al.,
2019) achieved dominant results on textual entail-
ment datasets (Wang et al., 2019), they could not be
directly used to encode semi-structured data as they
are pre-trained on unstructured natural language.

Wenhu et al. (2020) eliminate the discrepancy
by serializing tables into word sequences, and then
table fact verification could be processed as a natu-
ral language inference task. The most straightfor-
ward method for table serialization is linearizing

∗The first two authors contribute equally to this work.

the table contents via horizontal scan. However,
this would destroy structural information within
tables, i.e. the alignments between table cells. In
Figure 1, the value “533” and “733” is meaning-
less digits without the column name “core clock”,
and it is hard for the model to recover the align-
ments from the flattened word sequence. Therefore,
Table-BERT (Wenhu et al., 2020) includes the col-
umn name into cell representation using natural
language templates during the linearization. How-
ever, comparing or counting column contents of
different rows over the flattened word sequence
remains a hard task, and simply duplicating the
column name multiple times does not achieve sat-
isfying results.

To better utilize the transformer architecture for
table representation, we propose to inject the ta-
ble’s structural information into the mask of the
self-attention layer. Figure 2 illustrates the pattern
commonly adopted when human read or write a
table. Usually, each table row describes a record,
and cell c1,2 describes a record property with the at-
tribute name clarified in the corresponding column
name c0,2. Besides, values of the same column are
usually compared or aggregated for analysis. So,
the colored row and column are most crucial to
the representation of cell c1,2. In the long flattened
sequence obtained by horizontal/vertical scan, the
alignments between table cells would be disturbed
by other unimportant words. To tackle this prob-
lem, we have the representation of cell c1,2 only
depend on the colored cells in Figure 2 by zero-
ing the attention weights to other ones. Figure 3
illustrates the representation of cell c1,2 utilizing
transformer. Through masking, only two pseudo
sentences, i.e. the corresponding row and column,
that share some common words are considered in
the representation of each cell. That is, the flattened
word sequence is implicitly decomposed into a se-
ries of small readable sentences so as to unleashes
the power of large pre-trained language model.
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cpu market core clock 
(mhz)

execution 
units

memory 
bandwidth

celeron g1101 
pentiumg69xx desktop 533 12 17 gb/s

core i3 - 5x0 
core i5 - 655k desktop 733 12 21.3 gb/s

core i7 - 620le 
core i7 - 6x0lm mobile 266-566 12 17.1 gb/s

Comparison of intel graphics processing units

1. each cpu have 12 execution unit
2. core i3 – 5x0 have faster core clock than core i7 -620le

Entailed Statement

Refuted Statement

1. core i7 - 620le is designed for mobile market and its
memory bandwidth is 21.3 gb/s.

2. There are three series of cpu designed for desktop market.

Figure 1: Examples of table fact verification, the right boxes provide entailed and refuted statements respectively.

c0,0 c0,1 c0,2 c0,3
c1,0 c1,1 c1,2 c1,3
c2,0 c2,1 c2,2 c2,3

table caption

Figure 2: Illustration of table under-
standing. The colored row and column
are crucial to understanding cell c1,2.

statement table caption

Lower layer

c0,0 c0,1 c0,2 c1,1 c1,2 c1,3 c2,2 c2,3[SEP] c0,3 c1,0 c2,0 c2,1

statement table caption c0,0 c0,1 c0,2 c1,1 c1,2 c1,3 c2,2 c2,3[SEP] c0,3 c1,0 c2,0 c2,1

statement table caption c0,0 c0,1 c0,2 c1,1 c1,2 c1,3 c2,2 c2,3[SEP] c0,3 c1,0 c2,0 c2,1

Upper layer

Figure 3: Illustration of masked self-attention for representation of
cell c1,2. Attentions among cells of the same column are enabled in
upper layers to support cross-row reasoning, e.g. c1,2 ∼ c2,2.

Pre-trained transformers are good at semantic-
level understanding, i.e. capturing the identical
meaning between different expressions. However,
one limitation is that they are not doing perfectly in
symbolic reasoning (Asai and Hajishirzi, 2020). To
tackle this, we perform first-order aggregation over
each column and append the result as a special row
into the table. An improvement of 1% is achieved,
indicating that the ability of hard symbolic reason-
ing requires further studying.

Our contributions are summarized as follows:

• A Structure-Aware Transformer (SAT) is de-
vised to better represent semi-structured ta-
bles, which injects structural information into
attention mask of pre-trained transformers.

• For statements that require symbolic reason-
ing, we explore a method to combine sym-
bolic reasoning and semantic matching.

• Experimental results show that our method
outperforms the state-of-the-art method by
4.93%. Our code is available at https://

github.com/zhhongzhi/sat.

2 Methodology

As the examples shown in Figure 1, given a state-
ment S, table fact verification aims to classify
whether the statement is entailed or refuted by the
evidence table T . The table T consists of a caption
t and cells {ci,j} of m× n, where m and n are the
numbers of rows and columns. Since pre-trained

transformer could only take word sequences as in-
put, we feed it with a concatenation of the statement
S, the [SEP] token, the table caption t, and the flat-
tened table Tf . The table could be serialized by
the horizontal or vertical scan. Figure 3 shows an
example of horizontal scanning.

The representation of the word sequence follows
the general encoding procedure of the pre-trained
transformers (Devlin et al., 2019), so we only de-
scribe the self-attention layer in which an attention
mask is introduced for table representation. As
illustrated in Figure 2, understanding the table re-
quires both horizontal and vertical views. That is,
if the table is flattened by a horizontal scan, the ver-
tical alignment information will be lost, and vise
versa. For example, the column name c0,2 is crucial
to the representation of c1,2, but its signal could be
perturbed by other cells in grey, since all c0,∗ and
c2,∗ cells are far from c1,2 in the flattened sequence
and are processed equally.

Therefore, we propose to recover the alignment
information by masking signals of unimportant
cells during self-attention. The attention mask
M ∈ RL×L is defined as:

Mi,j =

{
0 wi ∼ wj

−∞ wi 6∼ wj
(1)

where L is the sequence length, and wi ∼ wj de-
notes that wj is attended to when generating rep-
resentation of wi, while wj 6∼ wi means the oppo-
site. Denote the input of l-th self-attention layer
as H l ∈ RL×d, where d is the hidden size. The

https://github.com/zhhongzhi/sat
https://github.com/zhhongzhi/sat
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attention mask is then applied to the self-attention
layer as follows:

Ql,K l,V l = H lWq,H
lWk,H

lWv

Al = softmax(
QlK lT +M√

dk
)

(2)

where W∗ ∈ Rd×dk are trainable parameters. The
output of self-attention layer is then calculated as:

H l+1 = AlV l (3)

It could be observed that if wj 6∼ wi, then Ai,j

is reset to zero and H l
j will not contribute to the

representation of wi, i.e. H l+1
i .

Figure 3 sketches the representation learning
of tokens in cell c1,2 leveraging the masked self-
attention. In the lower layers, the token representa-
tion of each cell considers information from four
aspects: a) tokens of the same row that describe
the same entry, b) its column title that clarifies the
attribute name, c) the table caption which provides
global background, and d) the statement for veri-
fication. In the upper layers, cross row attention
among cells of the same column is further enabled.
In this manner, lower layers focus on capturing
low-level lexical information and upper layers are
capable of simple cross-row reasoning. Note that
tokens of the statement S and the table caption
receive information from all cells.

Another preferred ability of SAT is to perform
symbolic reasoning such as counting, comparing,
and numerical calculation. Pre-trained models like
BERT are good at semantic-level understanding,
but not symbolic reasoning (Geva et al., 2020; Asai
and Hajishirzi, 2020). We explore to enhance the
performance of counting verification by convert-
ing the counting problem into a semantic matching
problem. Specifically, for every column, the fre-
quency of duplicate cell contents is counted as a
summary cell, leading to a summary row which
is then appended to the table. For example, the
summary cell of the second column in Figure 1 is
“count desktop:2”, so the second refuted statement
could be verified via semantic matching.

3 Experiments

3.1 Dataset
Experiments are carried out using TabFact1 (Wenhu
et al., 2020), a large scale table fact verification

1https://github.com/wenhuchen/
Table-Fact-Checking

Split #Statement #Table Simple/Complex
Train 92,238 13,182 –
Val 12,792 1,696 –
Test 12,779 1,695 4,230/8,609

Table 1: Basic statistics of TabFact.

dataset. The basic statistics of TabFact are listed in
Table 1. The dataset contains both simple and com-
plex statements. Simple statements only involve a
single row/record, while the complex ones require
higher-order semantics (argmax, count, etc.), and
the statements are rephrased so more ability on
linguistic reasoning is required.

3.2 Experimental Settings

Model weights are initialized using BERT-base
model trained on English corpus. The first 6 layers
are regarded as lower layers, and the other 6 layers
are taken as upper layers. We finetune the model
with a batch size of 10 and a learning rate of 2e-5.
It usually takes 15-18 epochs until convergence.

The flatten sequence is usually longer than the
sequence limit of BERT, which requires more mem-
ory and training time. Hence, we only retain the
top 5 table rows according to the number of words
shared with the statement. During experiments, the
maximum sequence length is set to 256.

3.3 Results and Ablation Study

The experimental results on TabFact are listed in Ta-
ble 2. Our method achieves an accuracy of 73.23%
on the test set and outperforms Table-BERT by
4.93%. The improvement on complex statements
is even larger, which achieves 5.75%.

Effect of Attention Mask Without the attention
mask, test accuracy is 67.67% and 64.27% for hor-
izontal and vertical scans respectively, namely a
decrease of 5.15% and 8.96% compared to the
complete SAT. An interesting finding is that the
horizontal scan outperforms the vertical scan when
removing the mask, which is consistent with our
intuition that each row describes an entry and thus
horizontal alignment information is more impor-
tant. With the cell alignment information recovered
by the attention mask, the gap is rather small when
using SAT, demonstrating its robustness towards
different scan directions.

The last two rows of Table 2 present two variants
of the masks, where we adopt an identical mask
matrix for all transformer layers instead of using
different ones for low/high layers. Results indicate

https://github.com/wenhuchen/Table-Fact-Checking
https://github.com/wenhuchen/Table-Fact-Checking
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Model Val Test Test(simple) Test(complex)
LPA(Wenhu et al., 2020)† 65.1 65.3 78.7 58.5
Table-BERT(Wenhu et al., 2020)† 66.1 65.1 79.1 58.2
Table-BERT tuned* 68.38 68.30 82.35 61.48
BERT with cell position encoding 59.31 59.44 63.24 57.58
SAT with Horizontal scan 72.96 72.82 85.44 66.62
- w/o visible matrix 68.41 67.67 75.93 63.61
- w/o summary row 72.00 72.09 85.53 65.49
- w/o visible matrix w/o summary row 66.84 66.01 74.37 61.90

SAT with Vertical scan 73.31 73.23 85.46 67.23
- w/o visible matrix 64.21 64.27 68.77 62.06
- w/o summary row 71.71 71.59 84.70 65.15
- w/o summary row and w/o visible matrix 63.03 62.34 66.71 60.19
- all layers w/o cross row attention 72.83 72.26 84.61 66.11
- all layers w cross row attention 72.02 71.82 83.45 66.10

Table 2: The accuracy (%) of different models. The results annotated with † are cited from literature, and Table-
BERT tuned* denotes results obtained by changing the leaning rate from 5e-5 to 1e-5.

that designing different mask matrix for low/high
layers, with the intention to model low-level lexical
information and high-level cross-row reasoning,
has indeed achieved better performance.

Essentially, by masking signals of unimpor-
tant cells, SAT implicitly segments the unnatu-
ral long sequence into a series of meaningful sub-
sequences. Such sub-sequences are more friendly
to pre-trained language models, so the power of
large pre-trained transformer can be unleashed.

The Summary Row Appending a summary row
to the table brings a stable improvement of 1%,
which mainly contributes to the complex test set.
This indicates that although pre-trained transformer
is dominant on semantic understanding, its abil-
ity on symbolic reasoning is limited. With the
counting problem in scope, experimental results
show that it is promising to combine both symbolic
reasoning and semantic understanding abilities by
feeding symbolic reasoning results into SAT.

SAT vs Table Position Embeddings Experi-
ments are further carried out to identify whether
the table position encoding method introduced in
TaPaS(Herzig et al., 2020) is better than the pro-
posed SAT on table encoding. Row and column
positional embeddings are added to the original po-
sitional embeddings of BERT to identify the table
alignment information. The experimental results
are listed in the fourth row of Table 2. An accu-
racy of 59.8% is observed while the accuracy of
the BERT baseline is 68.30%. The results show
that BERT is perturbed by the additional table posi-
tional embeddings and the model did not converge

well. Though the table position information is ap-
pended to the inputs, the following transformer
layers are not ready to accept and propagate the
signal without pre-training. It is demonstrated that
simply providing positional information without
pre-training is not sufficient for Transformer to en-
code tables.

3.4 Case study
We analyzed samples that are fixed by SAT com-
pared to baselines. It is observed that a large por-
tion (43/80) of them are statements involve multiple
facts/table cells that do not requires logic reasoning.
Besides, several problems (9/80) that requires sim-
ple count and comparison are fixed. The model
both fixed (the other 38) and failed on some sam-
ples that require complex symbolic logical reason-
ing, such as argument sort, conditional aggregation
and then comparison. The behavior is most likely
random guess for both SAT and baselines. The
results show that SAT mainly contributes to the
general table representation and enhance the lin-
guistic reasoning, and the summary row appended
helps to solve some count problems.

4 Related Work

To encourage the study on table fact verification,
Wenhu et al. (2020) construct a large scale table
fact checking dataset and study two promising ap-
proaches, Table-BERT and Latent Program Algo-
rithm (LPA) respectively. Table-BERT transforms
the problem into a natural language inference task
to leverage the power of the pre-trained language
models. LPA formulates the task as a program
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synthesis problem and it is good at symbolic rea-
soning. Our work aligns with the direction of
Table-BERT. Inspired by existing work Weijie et al.
(2020); Nguyen et al. (2020); Dong et al. (2019);
Yang et al. (2019) that manipulates self-attention
masks, we devise a structure-aware transformer to
attain better table representation.

There are several recent works that table fact ver-
ification could benefit from. Geva et al. (2020) and
Asai and Hajishirzi (2020) study to improve the
pre-trained model in numerical reasoning and logi-
cal comparisons. The enhanced pre-trained model
could be directly used in our approach. Herzig et al.
(2020) extend BERT’s architecture to encode tables
for the table question answering task (Iyyer et al.,
2017), where additional embeddings identifying
the row and column number are added. The pro-
posed architecture is potentially applicable to table
fact checking but requires expensive pre-training.

5 Conclusion

We propose SAT to enhance the pre-trained trans-
former’s ability on table representation by inject-
ing structural information into the mask of self-
attention layers. Significant improvements on Tab-
Fact demonstrate its effectiveness. We further en-
hance SAT by appending a summary row to the
table, the results show that it is promising to solve
the fact verification that requires both symbolic
reasoning and semantic understanding by feeding
symbolic reasoning results into SAT. Overall, an
improvement of 4.93% is achieved compared to
the state-of-the-art method. The proposed method
can further contribute to other semi-structured data
(table, graph, etc.) related tasks, e.g. WikiTable-
Questions (Pasupat and Liang, 2015) and Common-
senseQA (Talmor et al., 2019). There still exists
plenty of potentials that require future studies in
this direction.
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