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Abstract
Clinical prediction models often use structured
variables and provide outcomes that are not
readily interpretable by clinicians. Further,
free-text medical notes may contain informa-
tion not immediately available in structured
variables. We propose a hierarchical CNN-
transformer model with explicit attention as
an interpretable, multi-task clinical language
model, which achieves an AUROC of 0.75 and
0.78 on sepsis and mortality prediction on the
English MIMIC-III dataset, respectively. We
also explore the relationships between learned
features from structured and unstructured vari-
ables using projection-weighted canonical cor-
relation analysis. Finally, we outline a proto-
col to evaluate model usability in a clinical de-
cision support context. From domain-expert
evaluations, our model generates informative
rationales that have promising real-life appli-
cations.

1 Introduction

Electronic medical records (EMRs) store both
structured data (e.g., vitals and laboratory mea-
surements) and unstructured data (e.g., nursing and
physician notes). Previous clinical prediction tasks
have focused on structured data (e.g., Desautels
et al., 2016; Gultepe et al., 2013; Ghassemi et al.,
2014) which, despite their utility, may not capture
all of the useful information in associated text. Clin-
ical decision support systems rarely take advantage
of free-text notes due to the complex nature of clin-
ical language and interpretation. Rules and special-
ized grammars can be applied to circumvent issues
around clinical language; however, these methods
rely on the presence of certain phrases and spelling,
and do not account for the highly variable note
structures across departments and hospitals (Yao
et al., 2019; Mykowiecka et al., 2009; Assale et al.,
2019). Further, opaque models without explain-
ability are often met with resistance in medical

contexts (Challen et al., 2019; Ahmad et al., 2018;
Gordon et al., 2019). To address these challenges,
we propose a novel multi-task language model that
also provides rationales for decisions in medicine.

Our multi-task model leverages ClinicalBERT
(Alsentzer et al., 2019), which is a transformer-
based model pre-trained on clinical corpora. Given
the uniqueness of medical text, we introduce a com-
bination of CNN and transformer encoders to cap-
ture phrase-level patterns and global contextual
relationships. Additionally, we explore latent atten-
tion layers to generate rationales.

Based on availability, we use the MIMIC-III
database (Johnson et al., 2016) to predict two out-
comes: sepsis and mortality in the intensive care
unit (ICU). All experiments are conducted on notes
written in English. We define the task of sepsis
prediction more rigorously than previous work due
both to using textual data only, and to emphasize
the practicality of this model in real-world appli-
cations. Moreover, we use canonical correlation
analysis (CCA; Hotelling 1992) to explore relation-
ships between latent features learned from both
structured and unstructured data. Finally, we pro-
pose an evaluation protocol to examine the usability
of our model as an interpretable decision support
tool.

2 Related work

2.1 Transformers in the clinical domain

Transformers (Vaswani et al., 2017) have gained
popularity given their strong performance and par-
allelizability. The success of the transformer-based
BERT (Devlin et al., 2019) has inspired numerous
studies to apply it in various domains. For example,
BioBERT was pretrained on PubMed abstracts and
articles and was able to better identify biomedical
entities and boundaries than base BERT (Lee et al.,
2020). Alsentzer et al. (2019) further fine-tuned
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BioBERT on the MIMIC-III clinical dataset (John-
son et al., 2016) and released the model as Clin-
icalBERT. We use these pretrained BERT-based
models as static feature extractors and build layers
upon the word embeddings to learn task-specific
representations spanning long documents.

2.2 Language model explainability
Explainable AI is an emerging field with no stan-
dardized methodology or evaluation metrics. The
definition of model explainability also varies by ap-
plication; however, a generally accepted approach
to language model explainability is through extrac-
tive rationales (Lei et al., 2016; Mullenbach et al.,
2018; Wiegreffe and Pinter, 2019).

The wide application of attention mechanisms
has led to an ongoing debate over whether atten-
tion can be used as explanation (Serrano and Smith,
2019; Jain and Wallace, 2019; Wiegreffe and Pinter,
2019). Jain and Wallace (2019) claimed that atten-
tion scores in recurrent neural networks (RNNs)
did not correlate with other feature-importance
measures, and adversarial attentions did not affect
model predictions, concluding that attention was
not explanation. Wiegreffe and Pinter (2019) chal-
lenged these assumptions by proposing diagnostic
tests that allow for meaningful interpretation of at-
tention, but also showed that adversarial attention
distributions failed to achieve the same level of
prediction performance as real model attention.

We propose a clinical decision support tool that
uses explanations to enhance model usability and
reliability. Therefore, we adopt a view similar to
that of Wiegreffe and Pinter (2019), in that attention
provides plausible rationales for use in practice,
even though it may not provide a complete internal
representation of the model’s behaviour (Serrano
and Smith, 2019; Jain and Wallace, 2019).

2.3 Clinical tasks
Sepsis is an extreme systemic inflammatory re-
sponse to infection. If left untreated, sepsis can
lead to life-threatening complications such as or-
gan failure and septic shock. The ability to predict
sepsis before symptom onset allows for earlier in-
tervention, thus improving patient outcomes. Pre-
vious work on sepsis detection focused on both
post-hoc identification as well as predicting the
need for early intervention from structured data
(Desautels et al., 2016; Taylor et al., 2016; Nemati
et al., 2018; Gultepe et al., 2013). As mortality
has an explicit label in EMRs, the focus has been

on expiry likelihood for early intervention rather
than post-hoc identification (Ghassemi et al., 2014;
Grnarova et al., 2016). We focus on work that used
the MIMIC-III database (Johnson et al., 2016).

Insight (Desautels et al., 2016) provided a
method for predicting sepsis from vital signs within
a fixed-time window before suspected onset on ret-
rospective data. Gultepe et al. (2013) proposed
a similar structured-data model for mortality and
sepsis prediction; however, the features were pre-
selected and only considered five measurements.
While these methods achieved robust results com-
pared to traditional clinical measures (e.g., MEWS,
qSOFA, SIRS; Churpek et al. 2017), none took
advantage of the unstructured data found in EMRs.

Culliton et al. (2017) claimed that unstructured
data in EMRs contain information not found in the
structured variables. They used GloVe word em-
beddings to represent notes for each patient, and
only excluded discharge summaries to minimize
explicit mentions of sepsis. Simply excluding dis-
charge summaries, however, is not sufficient to
avoid label leakage – a diagnosis may appear in
the notes as the clinician becomes aware of symp-
toms. We carefully filter notes to ensure no label
leakage occurs and further refine our definition of
sepsis prediction, as described in Section 4. Ghas-
semi et al. (2014) used topic modeling for textual
representations aggregated with structured patient
data to predict mortality, but Grnarova et al. (2016)
showed that using convolutional document embed-
dings for each patient outperformed these topic
modelling strategies for mortality prediction. Simi-
larly, we deploy convolutional layers in our model
to obtain sentence-level embeddings. Horng et al.
combined structured and unstructured data for sep-
sis prediction, using topic models and continuous-
bag-of-words (CBOW) to represent text. Despite
success, GloVE word embeddings, topic models,
and CBOW do not generally capture the complex-
ity and contextual relationships between words in
a given text. Specifically, these methods rely pri-
marily on word frequency and collapse multiple
meanings of a word into a single representation.
To this end, we implement a transformer-based
model to represent our clinical notes, which we
hypothesize may capture the contextual complexity
between tokens more completely.
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3 Methods

3.1 Model architectures
The structure of our model is illustrated in Figure
1. We now explain each component in detail.

BERT word embeddings: BERT and its vari-
ants have exhibited strong performance in various
tasks and we are interested in its application specif-
ically in medical contexts. As shown in Figure 2,
medical documents can easily contain thousands of
tokens. With the sequence length limit of 512 to-
kens, using BERT as a fine-tuning language model
on long documents is practically challenging or im-
possible. Instead, we approach this problem in a
depth-first manner and use BERT as a static feature
extractor on a sentence-by-sentence basis. Such a
feature-based approach with BERT has proved to
be nearly as effective as the fine-tuning approach
in other tasks (Devlin et al., 2019).

We split each document into n sentences of m
tokens and use a separate data loader with a sequen-
tial sampler to group them into sub-batches. The
input is truncated or padded at both the sentence-
and token-level. We then feed the sentences into
a BERT model and take the mean of the last four
encoder layers as token embeddings. For tokeniza-
tion, we omit two irrelevant tokens [CLS], which
is used as a pooling mechanism in fine-tuning mod-
els, and [SEP], which is used in next sentence
prediction and sentence-pair classification tasks.
BERT-related modeling and processing code comes
from HuggingFace’s Transformers library (Wolf
et al., 2019).

Given an input T = [t11, t12 ... tij ... tnm],
where tij denotes the jth token of the ith sentence,
the BERT feature extractor outputs

X = [x11 ... xnm] = BERT (T ),

where xij is a demb-dimensional vector (i.e., the
hidden dimension of the BERT configuration) cor-
responding to tij .

Convolutional layer: Previous studies using
CNNs to process medical notes have achieved
good results on tasks such as mortality predic-
tion and ICD-9-CM diagnosis code classification
(Grnarova et al., 2016; Mullenbach et al., 2018; Si
and Roberts, 2019). Specifically, a qualitative eval-
uation of text snippets from an attentional CNN
indicated the model’s ability to learn features that
are deemed informative and diagnosis-relevant by a
physician (Mullenbach et al., 2018). This suggests

that the CNN is suitable for extracting information
regarding patient status at the phrase-level. We use
a simple 1D convolutional layer along the sequence
of each sentence followed by ReLU activation and
1D max-pooling to obtain sentence representations.

Taking X as the input, the CNN outputs an n×
dfeature matrix.

S = MaxPool(ReLU(Conv(X)))

where dfeature is the number of output channels
of the convolution layer.

Transformer patient encoder: Medical notes
frequently contain repeated segments of medical
histories as well as plans for future treatment. Al-
though related work in patient-clinician dialogue
has explicitly used time-series information (Khat-
tak et al., 2019), the strict temporal order of patient
conditions in clinical notes can be disrupted by
repeating information. Yet, the highly complex
mechanisms of medical outcomes entail that the co-
existence of some conditions may change the indi-
cation of others. We apply a two-layer transformer
encoder on top of sentence features to capture a
unified representation among descriptions. This
step of encoding results in a matrix

ST = Transformer(S)

that shares the same dimension as S.
Although multi-head attention is powerful (Clark

et al., 2019), it is not yet clear how to derive ratio-
nales for model prediction from such an approach.
For model explainability, we instead apply an ex-
plicit attention mechanism that is directly imple-
mentable and interpretable.

Latent attention: The outputs of the transformer
encoders are sentence-level features. To obtain
patient representations, we use a latent attention
mechanism adapted from similar work in if-then
program synthesis (Liu et al., 2016). The goal of
latent attention is to dedicate a component of the
model to explicitly learning the importance of each
unit of explanation such as the sentence or word.

The latent attention scores are calculated from
sentence features using a position-wise feed-
forward network (Vaswani et al., 2017). Given
ST , an n-dimensional vector ainput is computed as

ainput = FeedForward(ST )

and the attention weight is

a = Softmax(ainput + amask),
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Figure 1: Model architecture and data flow. Each patient document undergoes various levels of feature extrac-
tion to arrive at token-, sentence-, and patient-level representations. The explicit attention layer provides a latent
representation for a patient. The final, attended-to patient representation is used in the classification task.

Figure 2: Distribution of documents based on token
lengths for the mortality dataset. 2842 out of 5147 doc-
uments exceed the token limits of BERT, indicated by
the vertical dashed line.

where amask is an n-dimensional vector for which
values unmasked positions are 0 and values at
padding positions are −10, 000.

The final nfeature-dimensional patient vector p
is computed as the weighted sum of sentence fea-
tures, which we can define as the dot product,

p =

n∑
i=1

STiai = ST · a

and feeds a linear layer and a softmax classifier.

3.2 Canonical Correlation Analysis

Classic canonical correlation analysis (CCA) pro-
vides a set of linear transformations that maxi-
mally correlate data points from multiple views
(Hotelling, 1992). We use projection-weighted
CCA (PWCCA) (Morcos et al., 2018) to investigate
the correlation between learned textual features and
various structured data that are split into their re-
spective clinical tests, shown in Table 1. Given
two vectors, x ∈ R d× n and y ∈ R d×m, where
n and m denote feature dimensions and d denotes
number of data points, the objective is

(w1
*, w2

*) = arg max
w1,w2

w1
′KXYw2√

w1′KXXw1w2′KYYw2
,

Clinical test Related structured variable
Complete Blood
Count (CBC)

Hemoglobin Hematocrit; Mean Corpuscular Hemoglobin;
Platelets; Red Blood Cell Count; White Blood Cell Count

Prothrombin Time
(PT)

Partial Thromboplastin Time; Prothrombin Time Inr;
Prothrombin Time Pt

Urea, Creatinine, and
Electrolytes (UCE)

Bicarbonate; Blood Urea Nitrogen; Chloride; Creatinine;
Potassium; Sodium

Arterial Blood Gases
(ABG)

Anion Gap; CO2 (etco2, pco2, etc.); Partial Pressure of
Carbon Dioxide; pH

Blood Pressure (BP) Central Venous Pressure; Diastolic Blood Pressure; Mean
Blood Pressure; Pulmonary Artery Pressure Systolic;
Systolic Blood Pressure

Individual Tests (IND) Glucose; Calcium; Calcium Ionized; Magnesium;
Phosphate; Phosphorous; Glascow Coma Scale Total

Pulmonary Flowmetry
(PF)

Fraction Inspired Oxygen Set; Peak Inspiratory Pressure;
Positive End-Expiratory Pressure Set; Respiratory Rate;
Tidal Volume Observed

Primary Vitals (PV) Heart Rate; Oxygen Saturation; Temperature

Table 1: Mapping of clinical tests to their correspond-
ing structured variables.

where KXY denotes the cross covariance and KXX
and KYY denote the covariances.

Following the method of singular value CCA
(Raghu et al., 2017), we use singular value decom-
position to obtain the weights w1, w2. From this,
we get a total of min{n,m} canonical correlation
coefficients. The high dimensionality of the fea-
ture representations may result in noisy coefficients
that hinder the similarity measurements. We use
projection weighting to compute a weighted mean
of the canonical variates, which accounts for the
importance of CCA vectors relative to the original
input (Morcos et al., 2018). The PWCCA similarity
between vectors x and y is computed with

dpwcca(x, y) = 1−
i=1∑
c

αiρ
(i)

where αi denotes the normalized importance
weights, and ρ(i) the ith CCA coefficient. We use
an open-source implementation of PWCCA1 in
our experiments. Understanding the correlated in-
formation in patient features between textual and
structured data may provide insight on what latent
information is learnt from the text.

1https://github.com/google/svcca/

https://github.com/google/svcca/
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4 Data

MIMIC-III: MIMIC-III is a clinical database
comprising de-identified EMRs of 58,976 hospital
admissions to the critical care units of the Beth
Israel Deaconess Medical Center (Johnson et al.,
2016). All variables are recorded between 2001
and 2012. Note that, although ClinicalBERT is
pretrained on MIMIC-III, this does not preclude
its use from downstream tasks on the same dataset;
Alsentzer et al. emphasize that any impact is negli-
gible given the size of the entire MIMIC-III corpus
compared to sub-sampled task corpora. In this
study, we choose sepsis and mortality tasks be-
cause these are the standard tasks of this dataset.
However, our model is not specifically tailored to
these tasks, and may be generalized to wide range
of potential applications.

Data preprocessing: To avoid data leakage
among hospital admissions of the same patient, we
only include patients with one hospital admission.
We select adult patients from the single-admission
group and obtain a base population of 31,245 hos-
pital admissions. We randomly sample negative
cases to balance the dataset in both tasks.

For text, we concatenate text from different note
entries into one document for each patient and re-
move punctuation (except periods and commas),
masked identifiers, digits, and single characters.
When merging patients’ notes, we remove sen-
tences that have already appeared in previous notes
to avoid repetition. The notes are appended in
chronological order according to their timestamps
and truncated to a maximum of 50,000 tokens.

For mortality prediction, we do not differentiate
note types. For sepsis, we find differences in the
frequencies of note types between positive and neg-
ative populations, which may result in a trivially
learned solution. After consulting with clinicians,
we exclude note types that are irrelevant to sepsis
and select nursing and physician notes only.

Whereas structured variables have explicit times-
tamps that can be easily related to symptom onset,
the timestamp of a note may not. For example, a
note containing descriptions of possible infection
may be entered after antibiotic administration. An-
choring notes with lab measurement timestamps
significantly limits the number of positive cases
in our dataset, especially when compared to other
studies containing similar sepsis cohorts (Section
2.3). Nonetheless, we view the imposed time-

window constraints as necessary to create an honest
representation of prediction. Discharge summaries
and any notes written after patient outcomes oc-
curred are excluded to avoid direct access to the
solution. Unfortunately, these steps are not always
taken in the literature.

For the structured data used in Section 3.2, we
use MIMIC-Extract2 to ensure a standard patient
population. After obtaining time-binned cohort
data, we extract measurements within the same
time frames as the selected notes.

Sepsis: Systemic inflammatory response syn-
drome (SIRS), characterized by abnormal body
temperature, heart rate, respiratory rate, and white
blood cell count, often precedes sepsis. In this
task, we aim to predict whether a patient in SIRS
would become septic. In contrast to previous work
where the negative sepsis populations did not nec-
essarily have SIRS (Section 2.3), our task is more
restrictive, as the model must learn features that
are distinctive of sepsis onset rather than general
indications of SIRS. We use ICD-9-CM codes
to label cases, where patients with codes for ex-
plicit sepsis, or a combination of infection and
either organ failure or SIRS, are considered posi-
tive. Although ICD-9-CM codes can be unreliable
(O’Malley et al., 2005), we use multiple criteria
to deal with false negatives and SIRS as a filter
to avoid false positives (Angus and Wax, 2001).
We notice that very few notes are recorded before
the first onset of SIRS, possibly due to a time de-
lay in writing or logging notes. To compensate
for the lack of data, notes before and within 24
hours of the first onset of SIRS are included. To
avoid possible label leakage, we remove sentences
containing mentions of “sepsis” or “septic”. The
final cohort contains 1262 positive cases and 1500
negative cases.

In-ICU mortality: MIMIC-III has an expiry
timestamp for patients who died in the hospital,
which identifies the positive cohort for in-ICU mor-
tality prediction. To ensure that all samples repre-
sent patient conditions in the ICU, we only include
notes written within ICU stays. The dataset has
2562 positive cases and 2587 negative cases.

2https://github.com/MLforHealth/MIMIC_
Extract

https://github.com/MLforHealth/MIMIC_Extract
https://github.com/MLforHealth/MIMIC_Extract
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5 Experiments

Our experiments explore 1) differences in predic-
tion due to pretraining, 2) multiview projection,
and 3) evaluable explainable AI.

5.1 Clinical vs Non-Clinical BERT.

To compare the effect of pretraining BERT with
domain-specific clinical data on the overall qual-
ity and performance of the model, we substitute
BioBERT (Lee et al., 2020) and base BERT (De-
vlin et al., 2019) as the token embedding compo-
nent. We run both sepsis and mortality tasks on
the different *BERT models and compare the final
performance. The results are shown in Table 2.

In comparing performance between tasks, the
models achieve better performance in mortality
than sepsis. Considering that patients in the nega-
tive cases in sepsis task all had SIRS, which is one
of the diagnostic criteria of sepsis, the high false
positive rate among all three models is expected.

ClinicalBERT models converge faster and out-
perform the other two models in both sepsis and
mortality tasks. BioBERT and BERT models are
comparable in performance; however, BioBERT
models exhibit a tendency to output positive re-
sults, resulting in high recall and high false positive
rates. The fact that BioBERT does not perform bet-
ter than base BERT suggests that clinical-specific
pretraining is crucial and cannot be replaced by
pretraining on general biomedical corpora.

5.2 Structured vs Textual Data

To investigate the relationships between patient fea-
tures extracted from structured and text data, we
separately train RNN models to learn representa-
tions from different groups (see Table 1) of lab-
oratory measurements, and we conduct PWCCA
(Figure 3) to compute their similarities to patient
features from the language model.

Structured data model: To obtain a single vec-
tor from time-series structured data, we construct a
2-layer single-directional GRU network followed
by a linear layer to project the mean GRU output
to a feature vector that has the same dimension as
the language model feature vectors. Only the pa-
tients that appear in the language model cohort are
selected. Each model is trained for 50 epochs, and
the best-performing one is used to extract features.

CCA details: To avoid spurious correlations typ-
ically found in small datasets, the number of data

Figure 3: Visualization of PWCCA. The patient repre-
sentations are taken from the models before the clas-
sifier. First, a) a latent space is learned with SVCCA;
then, b) The original representation is projected onto
the learned latent space, and the PWCCA is computed.

points (nsample) should be at least five times3 the
feature dimension (dfeature). Therefore, we in-
clude all shared patients between structured and
unstructured datasets, and over-sample the data
for the sepsis task. We set up random baselines
for each test where we randomly generate nsample

dfeature-dimensional vectors using the same sam-
pling strategy as the real features. To ensure that
our features are meaningful, we only analyze fea-
tures extracted by models that reach an AUROC of
at least 0.75. It is important to note that we con-
structed the structured dataset to obtain the patient
representation, not to compare model performance.
The structured inputs contain measurements after
the onset of patient outcomes, so the metrics should
not be compared to those of the language model.
Additionally, the structured data models fail to
learn to predict sepsis from SIRS cohort, so we
include negative samples without SIRS whose data
are extracted from random time frames. Model
performance and PWCCA similarity (described by
Morcos et al. (2018)) are listed in Table 3.

Feature correlation: The similarity scores are
subject to confounding factors such as noise and
sample size. Due to limited data availability, we
can only comment on the general patterns. The
structured data model and language model con-
verge to correlated solutions, compared to random
baselines. We do not observe any clear relationship
between structured model performance and simi-
larity. The features learned from all lab measure-
ments, which supposedly encode a more compre-
hensive patient representation than any subgroup
alone, are close to the features learned from medi-
cal notes, especially in the mortality task. For the
sepsis task, the test groups that are highly related

3Experiments demonstrating the choice of sample sizes in
CCA can be found at https://github.com/google/svcca
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Model Sepsis Mortality
AUROC F1 Precision Recall AUROC F1 Precision Recall

BERT 0.72 69.3 64.3 75.0 0.75 74.2 77.7 70.9
BioBERT 0.72 71.2 59.8 88.1 0.76 76.8 72.6 81.6
ClinicalBERT 0.75 73.0 64.4 84.3 0.78 78.9 78.2 79.7

Table 2: Test performance scores using different BERT models.

Features Sepsis Mortality
AUROC Similarity AUROC Similarity

All 0.75 0.68 0.92 0.762
CBC 0.77 0.80 0.5 -
PT 0.76 0.60 0.5 -
UCE 0.68 - 0.57 -
ABG 0.77 0.60 0.62 -
BP 0.76 0.65 0.5 -
IND 0.77 0.93 0.88 0.686
PF 0.78 0.61 0.62 -
PV 0.5 - 0.5 -
Random - 0.45 - 0.361

Table 3: Structured model test performance and
PWCCA similarity to text features. The All category
encompasses all test groups and their features. Table 1
shows the full list of features and their corresponding
test categories.

to systematic inflammation or organ dysfunction
(CBC, BP, IND) show especially strong correlation
with the textual features. The results suggest that
our language models learn to encode the most rel-
evant patient conditions for each outcome. Future
work includes further examining representation cor-
relations, and other multi-view models combining
structured and unstructured data as inputs.

5.3 Evaluating Explanations

Evaluating model explainability remains a broad
area of research. Our primary objective is a usable
model that can be deployed as a real-life decision
support tool. Therefore, we focus on human eval-
uation as our assessment of rationale quality. We
outline a novel evaluation protocol that measures
the quality of the extracted rationales by leveraging
clinical domain expertise. To avoid arbitrary judge-
ments, we work with the physician to tailor the
definition of utility for each task; this is expanded
upon in the Appendix along with a stand-alone
quantitative evaluation on non-clinical data of la-
tent attention as an explanation mechanism.

To obtain succinct meaningful explanations, we
calculate an attention threshold score

athreshold = max

(
1

ns
, asentencei

)
,

Figure 4: Example attention distribution over sentences
in one patient document.

where a denotes attention scores, ns is the number
of sentences, and i = min(20, dns

10 e). This en-
sures that selected sentences have higher attention
scores than uniform attention and at most 10% of
the original texts are included. To avoid burdening
the evaluator, at most 20 sentences are selected for
documents with more than 200 sentences. Figure 4
shows an example distribution of attention scores
and demonstrates our explanation generation crite-
ria. To prevent overly complicated results, we only
evaluate the correctly predicted cases.

All independent evaluation uses a command-line
user interface.

5.3.1 Labeling task
Labeling is designed to evaluate the informative-
ness of our generated explanations. Sentences are
presented sequentially to an expert physician who
chooses at each step to either predict patient out-
come or check the next sentence. Sepsis has de-
fined diagnosis criteria that must be followed in
clinical practice, and information about such crite-
ria are not necessarily available even in complete
documents. However, mortality risk assessment,
despite its difficulty, is common in critical care.
Therefore, we only conduct the labeling task on the
mortality dataset. We compare human predictions
to those of our model and note the number of se-
lected sentences necessary for each prediction. A
test case fails if the evaluator does not make a de-
cision after reviewing all selected sentences. This
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Pos Neg Total
Ncases 119 136 255
Conclusion 98.4% 98.5% 98.5%
Correctness 69.2% 96.3% 82.7%
Sentences Read (c) 4.0 3.5 -
Sentences Read (i) 4.2 8.2 -

Table 4: Labeling task results. We list the number of
cases, percentage of concluded cases out of all cases,
percentage of correct cases out of total concluded cases,
and the average number of sentences read for both cor-
rect (c) and incorrect (i) cases.

method evaluates whether the attended sentences
are sufficient to provide enough information for
a clinical decision, and empirically evaluates the
number of sentences needed for rationales.

The results are presented in Table 4. On aver-
age, the evaluator reaches a correct conclusion in
mortality prediction 82.7% of the time by read-
ing approximately 4 sentences per case (or a se-
lected 0.5% of the note, on average). Such evi-
dence strongly suggests that our model is capable
of extracting the most relevant information from
long documents. We also observe a general pattern
that fewer sentences are needed for a correctly pre-
dicted case, which indicates that the ordering of
sentences based on attention is generally reliable.

Interestingly, the evaluator almost correctly pre-
dicts all negative cases but not positive cases in the
mortality task. Multiple reasons may account for
the high false negative rate. First, mortality predic-
tion is an intrinsically challenging task for humans.
A bias towards survival may naturally occur when
a sentence can be interpreted differently based on
various contexts. Second, explanations for nega-
tive cases are more likely to be independent from
the contextual information that are not included
in the rationales. Our evaluator comments that a
seemingly poor patient condition may translate to
completely opposite outcomes depending on the
coexistence of other conditions. In real-life appli-
cations, providing full documents with highlighted
explanations may be an easy solution that helps to
direct users’ attention to the most important parts
without losing reference to additional contexts.

5.3.2 Rating task

In a second evaluation, we sample cases not used in
the labeling task. We present model predictions and
the entirety of the rationales sentence-by-sentence
to an expert physician. The physician is instructed

Sepsis Mortality
Pos Neg Total Pos Neg Total

Nsentences 1016 464 1480 958 486 1444
Ncases 64 54 118 76 52 128
%helpful, All 41.8 95.0 - 61.7 82.7 72.2
%helpful, Top 4 - - - 75.9 86.4 80.0
%helpful, Cases 96.4 74.1 86.0 - - -

Table 5: Rating task results.

to decide whether each sentence in the rationale
contains information that helps explain the model
decision. To avoid arbitrary judgements, we work
with the physician to develop clear definitions of
explanation utility, as shown in the appendix. This
method assesses the average informativeness of
selected sentences as well as the usability of our
model for the purpose of clinical decision support.

Given the characteristics of mortality and sepsis
(see the appendix for a detailed discussion), the
evaluation is meaningful at the sentence- and case-
levels for the two tasks. Table 5 summarizes the
results. Between the positive and negatives cases,
an average of 72.2% of sentences in the mortality
task and 86% of cases in the sepsis task are rated
as helpful for understanding model decisions. A
closer look at the results shows that 80% of the first
four sentences are rated as helpful, which indicates
that the specific algorithm that generates rationales
should be refined in future work to further exclude
sentences with lower attention scores (see Figure
4). Nonetheless, the application of our model as an
explainable decision support tool is very promising.

6 Conclusion

Language can provide valuable support to improve
clinical decision-making. We conduct a diverse set
of experiments to explore several aspects of the
applicability of deep NLP in the clinical domain.
We also address challenges in extracting medical
documents that are representative of a predictive
task.

We augment the power of domain-specific BERT
and build a hierarchical CNN-Transformer that can
potentially be applied to any long-document pro-
cessing task. The model achieves AUROC scores
of 0.75 and 0.78 on sepsis and mortality tasks, re-
spectively. We also address model explainability by
experimenting with a simple (yet effective) linear
attention mechanism, and emphasize the interac-
tion between models and users in the design of a
novel protocol to evaluate explanations. Not only
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are we able to sufficiently predict cases with per-
formance comparable to models that use structured
EMR data, but we are also able to provide useful ra-
tionales to support the predictions, as validated by
medical domain expertise. This has important im-
plications for real-world application of explainable
clinical decision support from text.
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A Appendix A. On explainability
evaluation.

Quantitatively validating latent attention as ex-
planation: As previously noted, evaluating lan-
guage model explanations is not yet standardized.
Despite the effort to make human evaluation fair
and reliable, such qualitative measurements are still
prone to bias and subjectivity. To validate that la-
tent attention can be used as an explanation, we
conduct a stand-alone experiment on the BeerAd-
vocate dataset used by McAuley et al. (2012) and
adapted by Lei et al. (2016). This is a dataset that
has ground-truth annotations of sentences relevant
to prediction results. Although the dataset is not
crafted for the purpose of rationale evaluation, we
use it as a proxy to examine the quality of our at-
tention scores.

Blue background: attended tokens in annotation
Red background: attended tokens not in annotation
Underscore: annotation

Figure 5: Test case example of BeerAdvocate dataset.

The full BeerAdvocate dataset contains 1.5 mil-
lion beer reviews describing four aspects (i.e., ap-
pearance, smell, palate, and taste), each corre-
sponding to a rating on a scale of 0 to 5. Lei et al.
(2016) published a subset of 90k reviews selected
to minimize correlation between appearance and
other aspects. In our experiment, we use these 90k
reviews for training, and 994 annotated reviews
for testing. The training set only has rating la-
bels, whereas the testing set has both rating labels
and human annotations of sentence-level relevancy.
Since all aspects have the exact same setups, it suf-
fices to use the appearance rating prediction as a
proof-of-concept.

We build a model with only two components,
described in Section 3.1, namely BERT (pretrained
base-case model) and latent attention. We feed
static token embeddings from BERT to a latent
attention layer, which output sequence represen-
tations to be used for regression through a linear
layer with a sigmoid activation. We train the model
for 20 epochs and select the best performing one
for testing.

In contrast to our clinical model, this model
only attends to individual tokens and only gener-
ates word-level explanations. For words separated

by the WordPiece tokenizer, we merge the tokens
and average the attention weights. For each sen-
tence, we sort the words based on their attention
weights and take the top n words as the prediction
rationale, where n equals the total length of the
human-annotated sentences. We only use attention
mechanisms without additional constraints, such
as selection continuity, which makes the testing
task even more challenging, as the annotations are
ranges of words.

The model is evaluated according to mean
squared error (MSE) and rationale precision

Prationale =

∑N
i=1 |Si ∪Ai|∑N

i=1 |Si|
,

whereN is the number of test cases, y is the ground
truth rating of appearance, ŷ is the predicted rating,
Ai is the set of word indices in the annotated cov-
ers, S is the set of word indices selected as model
explanations, and |S| = |A|.

Our model reaches a rationale precision of
76.39%, which indicates that our most attended
words are mostly consistent with the annotations.
Figure 5 shows an example of appearance test re-
sults. The experiment demonstrates the usability of
latent attention as an explanation mechanism.

Definition of explanation utility in the rating
task: For mortality, each sentence is evaluated
individually based on how the described situation
would contribute to a patient’s survival rate. Sen-
tences describing highly life-threatening compli-
cations (such as multiple organ failures) support
a positive prediction, whereas sentences indicat-
ing improving conditions (such as stable lab mea-
surements) support a negative prediction. In both
cases, these sentences are considered helpful. Sen-
tences that are irrelevant (i.e., that support neither
a positive nor negative prediction) are considered
unhelpful in both populations.

Many of the conditions that present themselves
with sepsis onset (such as hypotension) can have
numerous etiologies. Diagnostic criteria specify
that bacteremia (i.e., bacteria in the bloodstream)
must be present in order to predict the development
of sepsis. Yet the administration of antibiotics is
also not considered as a direct indication of bac-
teremia without other indications of potential sep-
sis. Therefore, sentences describing sepsis-related
symptoms are not rated as helpful in understanding
a positive sepsis prediction until the indication of
infection (for example, compromised skin integrity)
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Figure 6: Example explanations. Highlighted sentences are rationales picked by our model. Elaboration on the
meanings of sentences is written in footnotes. These examples have been edited for increased privacy.

also appears, and vice versa. For negative cases,
sentences that are either irrelevant to sepsis or ex-
plain other origins of sepsis-related symptoms are
rated as helpful. Given this definition, the existence
of any helpful sentences means the explanation is
valid for a positive case. Similarly, the existence
of any unhelpful sentences invalidates a negative
case.

Examples of sepsis and mortality explanations
are shown in Figure 6. We truncate and edit these
texts to avoid data disclosure.


