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Abstract

Machine reading comprehension (MRC) has
achieved significant progress on the open do-
main in recent years, mainly due to large-scale
pre-trained language models. However, it per-
forms much worse in specific domains such
as the medical field due to the lack of exten-
sive training data and professional structural
knowledge neglect. As an effort, we first col-
lect a large scale medical multi-choice ques-
tion dataset (more than 21k instances) for the
National Licensed Pharmacist Examination in
China. It is a challenging medical examina-
tion with a passing rate of less than 14.2%
in 2018. Then we propose a novel reading
comprehension model KMQA, which can fully
exploit the structural medical knowledge (i.e.,
medical knowledge graph) and the reference
medical plain text (i.e., text snippets retrieved
from reference books). The experimental re-
sults indicate that the KMQA outperforms ex-
isting competitive models with a large margin
and passes the exam with 61.8% accuracy rate
on the test set.

1 Introduction

With the advent of large scale datasets such as
SQuAD (Rajpurkar et al., 2016, 2018), RACE (Lai
et al., 2017), and Natural Questions (Kwiatkowski
et al., 2019; Lee et al., 2019) on the open domain,
machine reading comprehension (MRC) has be-
come a hot topic in the natural language process-
ing field. In the past few years, the MRC has ob-
tained substantial progress, and many recent mod-
els have surpassed the human performance on sev-
eral datasets. The superiority of these models is
mainly attributed to two significant aspects: 1) the
powerful representations ability of large pre-trained
language models (PLMs), which can cover or re-
member most of the language variations implicitly.

⇤ Co-corresponding authors

Question: £⇧�s�27Å�n bbb'''YYYãããùùùééé3t�
—Â�å”ú⇢HBV-DNA 2 ⇥ 105 copies/mL, ALT 122
U/L⇥flàÂóóó≈≈≈“““ªªªóóó�ñ Ñoi/Í*�
A female patient, aged 27 years old, has been diagnosed with
chronic hepatitis B for 3 years. Recent results show: HBV-
DNA 2 ⇥ 105 copies/mL, ALT 122 U/L. The initial diagnosis
is to take antiviral treatment for her. Which is the preferred
one among the following drugs?
Options:
A.?÷z˜ Ara adenosine. B.iˇaÊ Entecavir. X
C.€�Ê Famciclovir. D.)ÙÊó Ribavirin.
E.¶2x† Sodium foscarnet.
Option B retrieved text snippets:
4ä(éóYãùé≈“Ñoi …s+ö, ?∑èÊ,
rp -↵,)ÙÊó,iˇaÊI...
Drugs used clinically against hepatitis B virus include lamivu-
dine, adefovir, interferon-↵, ribavirin, entecavir, ...
Option B knowledge facts:
(iˇaÊ,⇥î«,b'Yãùé)
(entecavir, indication, chronic hepatitis B)
(iˇaÊ,åß⌃{,ó≈“o)
(entecavir, second class, antiviral drugs)

Table 1: An example from our multiple-choice QA task
in a medical exam (X: correct answer option).

For example, among the top 10 works on SQuAD
2.0, nine models are based on ALBERT (Lan et al.,
2020).1 2) the most popular MRC datasets belong
to the open domain, which are built from news, fic-
tion, and Wikipedia text, etc. The answers to most
questions can be derived from the given plain text
directly.

Compared to the open domain MRC, medical
MRC is more challenging, while owning the great
potential of benefiting clinical decision support.
There still lacks the popular benchmark medi-
cal MRC dataset. Some recent works are try-
ing to construct medical MRC dataset such as
PubMedQA (Jin et al., 2019), emrQA (Pampari
et al., 2018) and HEAD-QA (Vilares and Gómez-
Rodrı́guez, 2019), etc. However, either these data
sets are noisy (e.g., due to semi-automatically or
heuristic rules generated), or the annotated data

1At the time of submission (June 3, 2020). The
leaderboard is at https://rajpurkar.github.io/
SQuAD-explorer
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scale is too small (Yoon et al., 2019; Yue et al.,
2020). Instead, we constructs a large scale med-
ical MRC dataset by collecting 21.7k multiple-
choice problems with human-annotated answers
for the National Licensed Pharmacist Examination
in China. This entrance exam is a challenging task
for humans, which is used to assess human candi-
dates’ professional medical knowledge and skills.
According to the statistics data, the examinee’s pass
rate in 2018 is less than 14.2%. 2 The text of the
reference books is used as the plain text for the
questions. One example is illustrated in Table 1.

Though several pre-trained language models
have been introduced for domain-specific MRC,
BERT based models are not as consistently domi-
nant as they are in open field MRC tasks (Zhong
et al., 2020; Yue et al., 2020). Another challenge is
that medical questions are often more difficult; no
labeled paragraph contains the answer to a given
question. Searching for multiple relevant snippets
from possibly large-scale text such as the whole
reference books is usually required. In many cases,
the answer can not be found explicitly from the rel-
evant snippets, and the medical background knowl-
edge is needed to derive the correct answers from
the relevant snippets. Therefore, unlike open do-
main, just using the powerful pre-trained language
model and plain text cannot obtain the high perfor-
mance for medical MRC. For example, in Table 1,
the relevant snippets (the 3rd row) can only induce
that Ribavirin and Entecavir are the possible an-
swers for the given question (the 1st row). If the
triples from medical knowledge graph (entecavir,
indication, chronic hepatitis B) is used, we can
quickly obtain the correct answer as Entecavir.

Here, we propose a novel medical MRC model
KMQA, which exploits the reference medical text
and external medical knowledge. Firstly, KMQA
models the representations of interaction between
question, option, and retrieved snippets from ref-
erence books with the co-attention mechanism.
Secondly, the novel proposed knowledge acquisi-
tion algorithm is performed on the medical knowl-
edge graph to obtain the triples strongly related
to questions and options. Finally, the fused rep-
resentations of knowledge and question are in-
jected into the prediction layer to determine the
answer. Besides, KMQA acquires factual knowl-
edge via learning from an intermediate relation

2http://www.cqlp.org/info/link.aspx?
id=3599&page=1

classification task and enhances entity representa-
tion by constructing a sub-graph using question-
to-options paths. Experiments show that our uni-
fied framework yields substantial improvements
in this task. Further ablation study and case stud-
ies demonstrate the effectiveness of the injected
knowledge. We also provide an online homepage
at http://112.74.48.115:8157.

2 Related Work

Medical Question Answering The medical do-
main poses a challenge to existing approaches since
the questions may be more challenging to answer.
BioASQ (Tsatsaronis et al., 2012, 2015) is one of
the most significant community efforts made for ad-
vancing biomedical question answering (QA) sys-
tems. SeaReader (Zhang et al., 2018) is proposed
to answer questions in clinical medicine using doc-
uments extracted from publications in the medical
domain. Yue et al. (2020) conduct a thorough anal-
ysis of the emrQA dataset (Pampari et al., 2018)
and explore the ability of QA systems to utilize clin-
ical domain knowledge and to generalize to unseen
questions. Jin et al. (2019) introduce PubMedQA
where questions are derived based on article titles
and can be answered with its respective abstracts.
Recently, pre-trained models have been introduced
to medical domain (Lee et al., 2020; Beltagy et al.,
2019; Huang et al., 2019a). They are trained on
unannotated biomedical texts such as PubMed ab-
stracts and have been proven useful in biomedical
question answering. In this paper, we focus on
multiple choice problems in medical exams that
are more difficult and diverse, which allows us to
directly explore the capabilities of QA models to
encode domain knowledge.
Knowledge Enhanced Methods KagNet (Lin
et al., 2019) represents external knowledge as a
graph, and then uses graph convolution and LSTM
for inference. Ma et al. (2019) adopt the BERT-
based option comparison network (OCN) for an-
swer prediction, and propose an attention mecha-
nism to perform knowledge integration using rele-
vant triples. Lv et al. (2020) propose a GNN-based
inference model on conceptual network relation-
ships and heterogeneous graphs of Wikipedia sen-
tences. BERT-MK (He et al., 2019) integrates fact
triples in the KG, while REALM (Guu et al., 2020)
augments language model pre-training algorithms
with a learned textual knowledge retriever. Unlike
previous works, we incorporate external knowledge
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implicitly and explicitly. Built upon pre-trained
models, our work combines the strengths of both
text and medical knowledge representations.

3 Method

The medical MRC task in this paper is a multiple-
choice problem with five answer candidates. It
can be formalized as follows: given the question
Q and answer candidates {Oi}, the goal is to se-
lect the most plausible correct answer Ô from
the candidates. KMQA utilizes textual evidence
spans and incorporates Knowledge graphs facts
for Medical multi-choice Question Answering. As
shown in Figure 1, it consists of several modules:
(a) the multi-level co-attention reader that com-
putes context-aware representations for the ques-
tion, options and retrieved snippets, and enables
rich interactions among their representations. (b)
the knowledge acquisition which extracts knowl-
edge facts from KG given the question and op-
tions. (c) the injection layer that further incorpo-
rates knowledge facts into the reader, and (d) a pre-
diction layer that outputs the final answer. And also,
we utilize the relational structures of question-to-
options paths to further augment the performance
of KMQA.

3.1 Multi-level Co-attention Reader

Given an instance, text retrieval system is firstly
used to select evidence spans for each question-
answer pair. We take the concatenation of question
and candidate answer as input, and keep top-N
relevant passages. These passages are combined
as new evidence spans. Here, we use BM25-based
search indexer (Robertson and Zaragoza, 2009) and
medical books as text source.

Multi-level co-attention reader is used to rep-
resent the evidence spans E, the question Q

and the option O. We formulate the input evi-
dence spans as E 2 Rm, the question as Q 2
Rn and a candidate answer as O 2 Rl, where
m, n and l is the max length of the evidence
spans, question and candidate answer respectively.
Similar to (Devlin et al., 2019), given the in-
put E, Q and O, we apply the WordPiece tok-
enizer and concatenate all tokens as a new se-
quence ([CLS],E,[SEP],Q,#,O,[SEP]), where
“[CLS]” is a special token used for classification
and “[SEP]” is a delimiter. Each token is initial-
ized with a vector by summing the corresponding
token, segment and position embedding, and then

encoded into a hidden state by the BERT based
pre-trained language model.

Generally, the PLMs are pre-trained on the large
scale open domain plain text, which lacks the
knowledge of the medical domain. There are
some recent works show that to further pre-train
PLMs on the intermediate tasks can significantly
improve the performance of target task (Wang
et al., 2019; Clark et al., 2019; Pruksachatkun et al.,
2020). Following this observation, we incorporate
knowledge from the Chinese Medical Knowledge
Graph (CMeKG) (Byambasuren et al., 2019)3 by
intermediate-task training. The CMeKG is a Chi-
nese knowledge graph in medical domain devel-
oped by human-in-the-loop approaches based on
large-scale medical text data using natural language
processing and text mining technology. Currently,
it contains 11,076 diseases, 18,471 drugs, 14,794
symptoms, 3,546 structured knowledge descrip-
tions of diagnostic and therapeutic technologies,
and 1,566,494 examples of medical concept links,
along with attributes describing medical knowl-
edge. The triple in CMeKG consists of four parts:
head entity, tail entity and relation along with an
attribute description. To acquire factual knowl-
edge, we adopt the relation classification task to
further pre-train PLMs on this dataset. This task
requires a model to classify the relational labels
of a given entity pair based on context. Specifi-
cally, we select a subset from CMeKG with 163
distinctive relations and include only the triples
in which the relation related to drugs and disease
types in the exam. Then, we discard all the rela-
tions with fewer than 5,000 entity pairs and retain
40 relations and 1,179,780 facts. After that, we
concatenate two entities and insert “[SEP]” be-
tween the two as input, and then apply a linear
layer to “[CLS]” vector of the last hidden feature
of PLM to perform relation classification. Next,
we discard the classification layer and initialize the
corresponding part of the PLM with other param-
eters, denoted as B. Finally, we employ B to get
encoding representation Hcls 2 Rh, HE 2 Rm⇥h,
HQ 2 Rn⇥h, HO 2 Rl⇥h, HQE 2 R(n+m)⇥h

respectively, where h is the hidden size.
To strengthen the information fusion from the

question to the evidence spans as well as from
the evidence spans to the question, we adopt a
multi-level co-attention mechanism, which has
been shown effective in previous models (Xiong

3http://cmekg.pcl.ac.cn
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Figure 1: Overall architecture of the proposed KMQA, with multi-level co-attention reader (left) and the knowledge
integration part (right) illustrated.

et al., 2017; Seo et al., 2017; Huang et al., 2019b).
Taking the candidate answer representation O as
input, we compute three types of attention weights
to capture its correlation to the question, the evi-
dence, and both the evidence and question, and get
question-attentive, evidence-attentive, and question
and evidence-attentive representations:

H̃O = HOWt + bt, (1)

A
Q

O
= Softmax(H̃OH

>
Q)HQ 2 Rl⇥h

, (2)

A
E

O = Softmax(H̃OH
>
E)HE 2 Rl⇥h

, (3)

A
QE

O
= Softmax(H̃OH

>
QE)HQE 2 Rl⇥h

, (4)

where Wt and bt are learnable parameters. Next
we fuse these representations as follows:

TO = LSTM([AQ

O
;AE

O;A
QE

O
]) 2 Rl⇥h

, (5)

where [; ] denotes concatenation operation. Finally,
we apply column-wise max and mean pooling on
TO and concatenate it with Hcls. It obtains the
new option representation T̃O 2 R3h.

3.2 Knowledge Acquisition
In this section, we describe the method to ex-
tract knowledge facts from knowledge graph in
details. Once the knowledge is determined, we
can choose the appropriate integration mechanism
for further knowledge injection, such as attention
mechanism (Sun et al., 2018; Yang et al., 2019; Ma
et al., 2019), pre-training tasks (He et al., 2019)
and multi-task training (Xia et al., 2019).

Given a question Q and a candidate answer O,
we first identify the entity and its type in the text
by entity linking. The identified entity exactly
matches the concept in KG. We also perform soft

Algorithm 1 Knowledge Acquisition Algorithm
Require: Question q and entities EQ = {e}, option facts

SO = {(h, r, t)}, embedding function F , template func-
tion g

1: Translate triple sj = (hj , rj , tj) 2 SO to general text pj
using g

2: if EQ is empty set then
3: Calculate knowledge-based option scores for each pj

using the word mover’s distance wmd(F(q),F(pj))
4: return top-K option facts ranking by score in the

ascending order
5: end if
6: Initialize similarity vector o 2 R|SO| with infinities.
7: Calculate the entity-to-triple score ci,j of entity ei with

transformed text pj : wmd(F(ei),F(pj))
8: Set the j-th element of similarity vector oj =

mini2|EQ|{ci,j}
9: return top-K option facts ranking by o in the ascending

order

matching of part-of-speech rules and filter out stop
words, and obtain key entities for Q according to
category description, such as “western medicine”,
“symptoms”, “Chinese herbal medicine” as EQ. Af-
ter that, we retrieve all triples SO whose head or
tail contains the entities of O as knowledge facts
for this option. For these knowledge facts, we
first convert head-relation-tail tokens into regular
words by template function g in order to gener-
ate a pseudo-sentence. For example, “(chronic

hepatitis B, Site of disease, Liver)” is converted
to “The site of disease of chronic hepatitis B is

liver”. Then we can get re-rank option facts for
each question-answer pair with the method shown
in Algorithm 1, which uses the word mover’s dis-
tance (Kusner et al., 2015) as similarity function
empirically. The reason we apply it is to be able to
find higher-quality knowledge facts that are more
relevant to current option and input them into the
model. The embedding function F here is the mean
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pooling of sentence word vectors. The word embed-
ding uses 200-dimension pre-trained embedding
for Chinese words and phrases (Song et al., 2018).
Although not perfect, the triple text found by Algo-
rithm 1 does provide some useful information that
can help the model find the correct answer.

3.3 Knowledge Injection and Answer
Prediction

We first concatenate the returned option fact text as
F , and then use the B to generate an embedding of
this pseudo-sentence:

HF = B(F ). (6)

Let HF 2 Rs⇥h be the concatenation of the final
hidden states, where s is max length, and we then
adopt the attention mechanism to model the inter-
action between HF and the PLMs encoding output
of question HQ:

MFQ = (Wfq �HF )H
>
Q, (7)

A
F

Q = Softmax(MFQ)HQ, (8)

A
Q

F
= Softmax(MFQ)Softmax(M>

FQ)HF , (9)

HFQ = [HF ;A
F

Q;HF �AF

Q;HF �AQ

F
], (10)

TF = Tanh(HFQWproj), (11)

where element-wise multiplication is denoted by
�. Specifically, HF is linear transformed using
Wfq 2 Rs⇥h. Then, the similarty matrix MFQ 2
Rs⇥n is computed using standard attention. Then
we use MFQ to compute question-to-knowledge
attention A

F

Q
2 Rs⇥h and knowledge-to-question

attention A
Q

F
2 Rs⇥h. Finally, the question-aware

knowledge textual representation TF 2 Rs⇥h is
computed, where Wproj 2 R4h⇥h. Finally, max
pooling and mean pooling are applied on the TF to
generate final knowledge representation T̃F 2 R2h.
In the output layer, we combine textual represen-
tation T̃O with the knowledge representation T̃F .
For each candidate answer Oi, we compute the loss
as follows:

TC = [T̃O; T̃F ], (12)

Score(Oi|E,Q, F ) =
exp(W>

outT
i

C)P5
j=1 exp(W

>
outT

j

C
))
, (13)

where Wout 2 R1⇥5h. We add a simple feed-
forward classifier as the output layer which takes

the contextualized representation TC as input and
outputs the answer score Score(Oi|E,Q, F ). Fi-
nally, the candidate with the highest score is chosen
as the answer. The final loss function is obtained
as follows:

L = � 1
C

X

i

log(Score(Ôi|E,Q, F )) + �||✓||2, (14)

where C is the number of training examples, and Ôi

is the ground truth for the i-th example, ✓ denotes
all trainable parameters.

3.4 Augmenting with Path Information
For concepts in question and options (remove en-
tities that are not diseases, drugs, and symptoms),
we combine them in pairs and retrieve all paths
between them within 3 hops to form a sub-graph
about the option. For example, (chronic hepatitis B

! related diseases ! cirrhosis ! medical treat-

ment ! entecavir) is a path for (chronic hepatitis

B, entecavir).
Then, we apply L layer graph convolutional net-

works (Kipf and Welling, 2017) to update the rep-
resentation of the nodes, which is similar to (Lin
et al., 2019; Yang et al., 2019). Here, we set L
equals 2. The vector h(0)

i
2 Rh for concept ci in

the sub-graph g is initialized by the average em-
bedding vector of tokens similar to §3.2. Then, we
update them at (l + 1)-th layer using the following
equation:

h(l+1)
i

= �(Wgcnh
(l)
i

+
X

j2Ni

1
|Ni|

Wgcnh
(l)
j
), (15)

where Ni is the neighboring nodes, � is ReLU acti-
vation function, Wgcn is the weight vector. After
that, we update i-th tokens representation ti 2 TO

with the corresponding entity vector via a sigmoid
gate to the new token representation t0

i
:

gi = Sigmoid
⇣
Ws

h
ti;h

L

i

i⌘
, (16)

t0i = gi � ti + (1� gi) � hL

i . (17)

4 Dataset

We use the National Licensed Pharmacist Exami-
nation in China 4 as the source of questions. The
exam is a comprehensive evaluation of the profes-
sional skills of candidates. Medical practitioners
have to pass the examination to obtain the qualifica-
tion for licensed pharmacist in China. Passing the

4http://english.nmpa.gov.cn/2019-07/
19/c_389177.htm
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exam requires getting a minimum of 60% of the
total score. The pharmacy comprehensive knowl-
edge and skills part of the exam consists of 600
multiple-choice problems over four categories. To
test the generalizability of MRC models, we use
the examples of this part in the previous five years
(2015-2019) as the test set, and exclude questions
of multiple-answer type. In addition to that, we
also collected over 24,000 problems from the In-
ternet and exercise books. After removing dupli-
cates and incomplete questions (e.g. no answer),
we randomly divide it into training, development
sets according to a certain ratio, and remove the
problems similar to the test set according to the
condition that the edit distance is less than 0.1. The
detailed statistics of the final problem set, named
as NLPEC, are shown in Table 2.

Train Dev Test

# Questions 18, 703 2, 500 550
Avg. words of questions 16.72 17.15 42.82
Avg. words of candidate options 3.48 3.38 3.62
Avg. words of retrieval evidences 84.17 81.75 86.09
Avg. sentences of each evidence 3.82 3.79 4.02

Candidate options per problem 5

Table 2: Statistics of our NLPEC dataset.

We use the official exam guide book of the Na-
tional Licensed Pharmacist Examination as text
source (NMPA, 2018). It has 20 chapters, includ-
ing pharmaceutical practice and medication, self-
medication for common diseases, and medication
for organ system diseases. The book covers most
of the necessary contents of the examination. In
order to ensure the quality of retrieval, we first con-
vert it into structured electronic versions through
OCR tools, and then manually proofread and di-
vide all the texts into paragraphs. Meanwhile, we
also extract passages from other literature and add
it to the text source, including the pharmacological
effects and clinical evaluation of various drugs, ex-
planations of drug monitoring and descriptions of
essential medicines.

5 Experiment

5.1 Experiment Settings
We use the Google-released BERT-base model as
the PLM (Devlin et al., 2019). We also compare the
performance of KMQA, which uses the pre-trained
RoBERTa large model (Liu et al., 2019). The pre-
trained weights that we adopt are the version of
whole word masking in Chinese text (Cui et al.,
2019). Our model is also orthogonal to the choice

of the pre-trained language model. We use AdamW
optimizer (Loshchilov and Hutter, 2019) with a
batch size of 32 for model training. The initial
learning rate, the maximum sequence length, the
learning rate warmup proportion, the gradient accu-
mulation steps, the training epoch, the hidden size
h, �, the number of evidence spans N , and the hy-
perparameter K are set to 3⇥10�5, 512, 0.1, 8, 10,
768, 1⇥ 10�6, 1, and 3 respectively. The learning
parameters are selected based on the best perfor-
mance on the development set. Our model takes
approximately 22 hours to train with 4 NVIDIA
Tesla V100. In order to reduce memory usage, in
our implementation, we concatenate the knowledge
text and the retrieved evidence spans, and then ob-
tain separate encoding representations. For other
models, the dimension of word embeddings is 200,
the hidden size is 256, and the optimizer is Adam
optimizer (Kingma and Ba, 2015). We also pre-
trained word embeddings on a large-scale Chinese
medical text.

Model Accuracy (%)
DEV TEST

IR baseline 36.4 34.1
Random guess 21.3 22.8
Co-Matching (Wang et al., 2018) 56.1 45.8
BiDAF (Seo et al., 2017) 52.7 43.6
SeaReader (Zhang et al., 2018) 58.2 48.4
Multi-Matching (Tang et al., 2019) 58.4 48.7
BERT-base (Devlin et al., 2019) 64.2 52.2
ERNIE (Sun et al., 2019) 64.7 53.4
RoBERTa-wwm-ext-large (Cui et al., 2019) 70.8 57.9

KMQA (BERT-base) 67.9 57.1
KMQA (RoBERTa-wwm-ext-large) 71.1 61.8

Table 3: Performance comparison on the test set. Ad-
ditional details about baselines can be found in the Ap-
pendix.

5.2 Main Results

The comparison between our method and previ-
ous works on the multi-choice question answering
task over our dataset is shown in Table 3. IR base-
line refers to the selection of answers using the
ranking of the score of the retrieval system, and
random guess refers to the selection of answers
according to a random distribution. The third to
fifth lines show the results of the previous state-
of-the-art models. These models all employ the
co-matching model and perform better than those
two baselines. They use attention mechanisms
to capture the correlation between retrieved evi-
dence, questions, and candidate answers, and tend
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to choose the answer that is closest to the seman-
tics of the evidence. Pre-trained language mod-
els with fine-tuning achieve more than 18% im-
provement over baselines. By fusion of knowledge
source and text over BERT-base, the performance
is further improved, which demonstrates our as-
sumption that incorporating knowledge from the
structure source can further enhance the option con-
textual understanding of BERT-base. Furthermore,
our single model of KMQA-RoBERTa large, which
employs RoBERTa large model pre-trained with
whole word mask achieves better performance on
both development set and test set and also outper-
forms RoBERTa large. This result also slightly
surpasses the human passing score. These results
demonstrate the effectiveness of our method.

Types Number Accuracy

Statement Best Choice 200 64.0
Best Compatible Choice 257 58.4
Case Summary Best Choice 90 66.7

Conceptual Knowledge 279 61.3
Situational Analysis 42 64.3
Logical Reasoning 226 62.0

Positive Questions 433 61.9
Negative Questions 114 61.4

Table 4: Performance of our model on different ques-
tion category.

In the exam, the questions are divided into three
types, namely, type A (statement best choice), type
B (best compatible choice), and type C (case sum-
mary best choice). The evaluation results are listed
in Table 4. We observe that the best compatible
choice type accounts for the highest proportion of
the questions, and the model performance is lower
than the other two. According to the different meth-
ods required for answering questions, we further
divide them into three types: conceptual knowl-
edge, situational analysis, and logical reasoning.
For the problem of conceptual knowledge, they ac-
count for a lot and are usually related to specific
concept knowledge. It means that we also need
to improve our retrieval module. According to the
needs of the problem to be deduced in a positive or
negative direction, we divide the problem into two
categories: positive questions and negative ques-
tions. We find that their performance is similar, but
the positive part accounts for a more significant
proportion.

5.3 Ablation Study

To study the effect of each KMQA component, we
also conduct ablation experiments. The results are
shown in Table 5. From the experimental results, if
there is no external information but only questions
and options, the model is only 2.5% higher than
the retrieval baseline. After adding the information
retrieved by the text retrieval model and knowledge
graph, the model is improved by 26.3% and 6.4%
respectively, which shows the effectiveness of exter-
nal information. Further, we find that pre-training
on relation classification can also improve the per-
formance of our downstream QA tasks. When the
path information from the question to the option
is further added, the model has 0.8% improved
accuracy. If we only use retrieved snippets from
reference books with the co-attention mechanism,
the model has more performance drops. We also
change the hyper-parameter K, and results show
that the setting K = 3 performs best. Due to the
max length of BERT model, a larger K will not
bring more improvements.

Model Accuracy (DEV)

Ours (BERT-base) 67.9
w/o relation classification 66.4
w/o extracted facts 65.2
w/o path information 67.1
w/o text source 45.3
w/o knowledge source 64.6
only option 38.9

K = 1 (RoBERTa) 70.2
K = 2 (RoBERTa) 70.6
K = 3 (RoBERTa) 71.1

Table 5: Ablation study in development set.

5.4 Case Study

As shown in Table 6, we choose an example to vi-
sualize joint reasoning using KG and retrieval text.
In Example 1 of Table 6, we find that limited by
the process of retrieval, some of the descriptions
of the indications of the option are not completely
relevant to the question stem, and the paragraphs
contain descriptions of the chemical composition
of this drug, which is noisy for answering the ques-
tion. In contrast, our model is able to answer this
question using both KG and textual evidence, al-
leviating the noise problem to some extent. Since
many of the questions in our dataset are about dis-
eases and drugs that require descriptions of their
underlying meanings, using the medical KG may
be the most convenient for our research.
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Type Examples
Positive
Example

Question: £⇧�7�38Å�‡yË◊“Ù√…�'º€�î (Ñoi/? The patient, male, 38 years old, suffers from stomach
spasmodic pain caused by abdominal cold. Which of the following drugs should be chosen?
Options: X (A). q®Í± Anisodamine. ⇥ (B). ⇤�¨ Ibuprofen. ⇥ (C). ¶“˙ña‡ Ergotamine caffeinee. ⇥ (D). al�s
Carbamazepine. ⇥ (E). ⌫a Morphine.
Evidence spans: ˘y€ÉÕ⇧�Õ�U⇣'y˚⇧y€g»ˆÔ�q®Í±G��!5mg��Â3!�€ˆ�(... q®Â±�®
Í±(”Ñ⌦Ñ:+/�”Ñ-áË⌃:6-(S)-ü˙®Íá�¶q®Íá ��X¡á¯‘�(6M⇢Ü�*≤-÷⌘Ñü˙�Ÿ
�óq®Í±⌃PÑÅ'û:�æÂ✏«@-⌘Oú�-¢\(à1... Anisodamine tablets can be taken for severe abdominal pain or
recurrent vomiting diarrhea when abdominal pain is severe, 5 mg once, 3 times a day or when pain occurs... The structural difference between
anisodamine and scopolamine is that the alcohol part in the structure is 6-(S)-hydroxy scopolamine (also known as anisodamine), which has
a �-oriented hydroxyl group at the 6-position compared with tropinol, which makes the polarity of the anisodamine molecule enhanced, it is
difficult to penetrate the blood-brain barrier, and the central role is weak...
Knowledge facts: 1. (q®Í±,⇥î«,º€) The indication for anisodamine is pain.
2. (q®Í±,⇥î«,√†fi€) The indication for anisodamine is spasm.
3. (q®Í±,⇥î«,…�) The indication for anisodamine is gastrointestinal colic.
A sample path: √…�!¯sæ≈!√≈!4ä«∂ SÅ!%'UØ'√é!ªóπH!q®Í±
gastric spasm ! related diseases ! gastropathy ! clinical symptoms and signs ! acute simple gastritis ! treatment plan ! anisodamine

Negative
Example 1
(Noisy
Evidence)

Question: Œã~f�ÿz\⇢Ñ£⇧�ú�(Ñoi/� Which drugs should not be taken by patients engaged in driving and high
altitude work?
Golden answer: /Ô£O Chlorpheniramine
Predicted distractor: *ªƒ± Pseudoephedrine
Evidence spans: ƒ˙H2◊S;≠B˜<ˇ���™ˇ��’´ˇ�˝�w{…�ö⌘õúç⇥‡d�˘~f¯:�ÿz\⇢⇧�
æ∆ÍhÕ\⇧N(��–:(�(�⌘o6hçŒãÂ\⇥ Histamine H2 receptor blockers ranitidine, cimetidine and famotidine can
cause hallucination and disorientation. Therefore, drivers, high-altitude operators, precision instrument operators should be cautious to use, or
prompt to rest for 6 hours before working.
Knowledge facts: (/Ô£O,Ë✏ãy,~vX�:∞Õ\∫X(Â\€Lˆ�ú�()⇥ The precaution of chlorpheniramine is that it
should not be used by drivers and mechanical operators during work.
Evidence spans of wrong answer: ...(Z*ªé¨Ga/(ªÔéG�éQ*ªG-ÿ+ H1◊SÓóB⇣⌃�Ô˝�w4U�
‹a�E�o�Ù�ú~f�ÿz\⇢�Õµ:h... ..., paracetamol pseudoephedrine tablets II/amphetamine tablets, and melphalan
pseudoephedrine tablets also contain H1 receptor antagonist components, which may cause dizziness and sleepiness. So, it is inappropriate to
drive or operate machines at high altitude during medication administration...

Negative
Example 2
(Weak
Reasoning)

Question: ↵⌫-o��foT�î(��X(Õ�(oÑ/� The following Chinese medicine and chemical medicine are used together.
Which option does not exist for repeated medicine?
Golden answer: ÚK¶�G↵Ù� CG Troxerutin Tablets + Vitamin C Tablets
Predicted distractor: Õ MãG↵"/{ÍG Zhenju Antihypertensive Tablets + Hydrochlorothiazide Tablets
Evidence spans: �2 E⌃‚Ó€fl≈µ (oÚ��MÕ�(o�—Ù� D-“... (2) Fully inquire about food intake and
medication history to avoid vitamin D poisoning caused by repeated medication...
Knowledge facts of wrong answer: (Õ MãG,Ë✏ãy,˘"/{Í�ÔPö�˙˙{oi«O⇧Ã() The precautions of Zhenju
Antihypertensive Tablets are to avoid the use of hydrochlorothiazide, clonidine and sulfonamides in allergic patients...

Table 6: Case study and error examples of the proposed KMQA.

In addition, we randomly select 50 errors made
by our approach from the test set, and categorize
them into 4 groups:

Information Missing: In 44% of the errors, the
retrieved evidence and extracted knowledge cannot
provide useful information to distinguish different
answer candidates, which is the major error type
in our model. Taking the case “What does the

abbreviation - p.c. - stand for in prescription?”
as an example, to correctly predict the answer, we
need to know that “p.c.” is the abbreviation that
means “after meals” (from the Latin “post cibum”).

Noisy Evidence: In 32% of the errors, the
model is misled by noisy knowledge of other wrong
answers. The reason may be that the context is too
long and overlaps with the problem description.
For example, in Example 2 of Table 6, both the
right answer and wrong prediction could be poten-
tially selected by retrieval evidence. However, we
can intuitively get the answer through mutual verifi-
cation of essential information in KG and retrieved
texts.

Weak Reasoning Ability: 14% of the errors
are due to the weak reasoning ability of the model,
such as the understanding of symbolic units in op-

tions. For example, in Example 3 of Table 6, the
model needs to first understand the joint meaning
of options using common sense, and then eliminate
the wrong answer with counterfactual reasoning
through knowledge and text.

Numerical Analysis: 10% of the errors are
from mathematical calculation and analysis ques-
tions. The model cannot handle the question like
“To prepare 1000ml 70% ethanol with 95% ethanol

and distilled water, what is the volume of 95%

ethanol needed?” properly since it cannot be di-
rectly entailed by the given paragraph. Instead, it
requires mathematical calculation and reasoning
ability of the model.

6 Conclusion

In this work, we explore how to solve multi-choice
reading comprehension tasks in the medical field
based on the examination problems of licensed
pharmacists, and propose a novel model KMQA.
It explicitly combines knowledge and pre-trained
models into a unified framework. Moreover, KMQA
implicitly takes advantage of factual information
via learning from an intermediate task and also
transfers structural knowledge to enhance entity
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representation. On the test set from the real world,
the KMQA is the single model that outperforms the
human pass line. In the future, we will explore how
to apply our model to more domains, and enhance
the interpretability of the reasoning path when the
model answers questions.

Acknowledgements

We thank the anonymous reviewers for their in-
sightful comments and suggestions. This work
is supported by Natural Science Foundation of
China (61872113, U1813215, 61876052), Strate-
gic Emerging Industry Development Special Funds
of Shenzhen (JCYJ20180306172232154), and the
fund of the joint project with Beijing Baidu Netcom
Science Technology Co., Ltd.

References
Iz Beltagy, Arman Cohan, and Kyle Lo. 2019. Scibert:

Pretrained contextualized embeddings for scientific
text. arXiv preprint arXiv:1903.10676.

Odma Byambasuren, Yunfei Yang, Zhifang Sui, Damai
Dai, Baobao Chang, Sujian Li, and Hongying Zan.
2019. Preliminary study on the construction of chi-
nese medical knowledge graph. Journal of Chinese

Information Processing.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM for
natural language inference. In ACL.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In NAACL-

HLT.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin,
Ziqing Yang, Shijin Wang, and Guoping Hu. 2019.
Pre-training with whole word masking for chinese
bert. arXiv preprint arXiv:1906.08101.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT.

Yu Fang, Shimin Yang, Siting Zhou, Minghuan Jiang,
and Jun Liu. 2013. Community pharmacy practice
in china: past, present and future. International

Journal of Clinical Pharmacy.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. In ICML.

Bin He, Di Zhou, Jinghui Xiao, Qun Liu, Nicholas Jing
Yuan, Tong Xu, et al. 2019. Integrating graph

contextualized knowledge into pre-trained language
models. arXiv preprint arXiv:1912.00147.

Kexin Huang, Jaan Altosaar, and Rajesh Ranganath.
2019a. Clinicalbert: Modeling clinical notes and
predicting hospital readmission. arXiv preprint

arXiv:1904.05342.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and
Yejin Choi. 2019b. Cosmos QA: machine reading
comprehension with contextual commonsense rea-
soning. In EMNLP-IJCNLP.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William
Cohen, and Xinghua Lu. 2019. Pubmedqa: A
dataset for biomedical research question answering.
In EMNLP-IJCNLP.

Rie Johnson and Tong Zhang. 2017. Deep pyramid
convolutional neural networks for text categoriza-
tion. In ACL.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In ICLR.

Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kil-
ian Q. Weinberger. 2015. From word embeddings to
document distances. In ICML.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Al-
berti, Danielle Epstein, Illia Polosukhin, Jacob De-
vlin, Kenton Lee, Kristina Toutanova, Llion Jones,
Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai,
Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019.
Natural questions: a benchmark for question answer-
ing research. Trans. Assoc. Comput. Linguistics.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard H. Hovy. 2017. RACE: large-scale read-
ing comprehension dataset from examinations. In
EMNLP.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In ICLR.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2020. Biobert: a pre-trained
biomedical language representation model for
biomedical text mining. Bioinformatics.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In ACL.



1436

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xi-
ang Ren. 2019. Kagnet: Knowledge-aware graph
networks for commonsense reasoning. In EMNLP-

IJCNLP.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR.

Shangwen Lv, Daya Guo, Jingjing Xu, Duyu Tang,
Nan Duan, Ming Gong, Linjun Shou, Daxin Jiang,
Guihong Cao, and Songlin Hu. 2020. Graph-based
reasoning over heterogeneous external knowledge
for commonsense question answering. In AAAI.

Kaixin Ma, Jonathan Francis, Quanyang Lu, Eric Ny-
berg, and Alessandro Oltramari. 2019. Towards
generalizable neuro-symbolic systems for common-
sense question answering. In EMNLP.

Certification Center For Licensed Pharmacist of Na-
tional Medical Products Administration in China
NMPA. 2018. National Licensed Pharmacist Exam

Book 2019 Western Medicine Textbook Licensed

Pharmacist Exam Guide Pharmacy Comprehensive

Knowledge and Skills (Seventh Edition). China Med-
ical Science and Technology Press.

Anusri Pampari, Preethi Raghavan, Jennifer J. Liang,
and Jian Peng. 2018. emrqa: A large corpus for
question answering on electronic medical records.
In EMNLP.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe
Pang, Clara Vania, Katharina Kann, and Samuel R
Bowman. 2020. Intermediate-task transfer learning
with pretrained models for natural language under-
standing: When and why does it work? In ACL.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. In ACL.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP.

Stephen E. Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Found. Trends Inf. Retr.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In ICLR.

Yan Song, Shuming Shi, Jing Li, and Haisong Zhang.
2018. Directional skip-gram: Explicitly distinguish-
ing left and right context for word embeddings. In
NAACL-HLT.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William W. Co-
hen. 2018. Open domain question answering us-
ing early fusion of knowledge bases and text. In
EMNLP.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019. Ernie: Enhanced rep-
resentation through knowledge integration. arXiv

preprint arXiv:1904.09223.

Min Tang, Jiaran Cai, and Hankz Hankui Zhuo. 2019.
Multi-matching network for multiple choice reading
comprehension. In AAAI.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R. Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, Yannis Almirantis, John Pavlopoulos, Nico-
las Baskiotis, Patrick Gallinari, Thierry Artières,
Axel-Cyrille Ngonga Ngomo, Norman Heino, Éric
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A Compared Methods

BiDAF (Seo et al., 2017) is a representative net-
work for machine comprehension. It is a multi-
stage hierarchical process that represents context
at different levels of granularity and uses a bi-
directional attention flow mechanism to achieve
a query-aware context representation without early
summarization.

Co-matching (Wang et al., 2018) uses the atten-
tion mechanism to match options with the context
that composed of paragraphs and the question, and
output the attention value to score the options. It is
used to solve the single paragraph reading compre-
hension task of a single answer question.

Multi-Matching (Tang et al., 2019) applies the
Evidence-Answer Matching and Question-Passage-
Answer Matching module to gather matching in-
formation and integrate them to get the scores of
options.

SeaReader (Zhang et al., 2018) is proposed to
answer questions in clinical medicine using knowl-
edge extracted from publications in the medical
domain. The model extracts information with
question-centric attention, document-centric atten-
tion, and cross-document attention, and then uses a
gated layer for denoising.

BERT (Devlin et al., 2019) achieves remarkable
state-of-the-art performance across a wide range
of related tasks, such as textual entailment, natural
language inference, question answering. It first

TRAIN DEV TEST

# Knowledge facts 1, 129, 780 50, 000 50, 000

Model Accuracy (TEST)

RoBERTa-wwm-ext-large (Cui et al., 2019) 89.4
RoBERTa-wwm-ext-large (w/o fine-tuning) 50.8
BERT-base (Devlin et al., 2019) 88.8
BERT-base (w/o fine-tuning) 50.6
DPCNN (Johnson and Zhang, 2017) 82.6
TextCNN (Kim, 2014) 67.8
ESIM (Chen et al., 2017) 77.8

Table 7: Data statistics of relation classification task
and accuracy results.

trains a language model on an unsupervised large-
scale corpus, and then the pre-trained model is
fine-tuned to adapt to downstream tasks.

RoBERTa (Liu et al., 2019) is based on BERT’s
language masking strategy and modifies key hyper-
parameters in BERT, including changing the target
of BERT’s next sentence prediction, and training
with a larger bacth size and learning rate. It has
achieved improved results than BERT on different
data sets.

ERNIE (Sun et al., 2019) is designed to learn
language representation enhanced by knowledge
masking strategies, which includes entity-level
masking and phrase-level masking. It achieves
state-of-the-art results on five Chinese natural lan-
guage processing tasks.

B Relation Classification

We also show the dataset that used to pre-train
on the relation classification task and the perfor-
mance of the pre-trained models in this task. We
compare several common text classification and
matching models, including TextCNN (Kim, 2014),
ESIM (Chen et al., 2017), DPCNN (Johnson and
Zhang, 2017). For text classification, the input
of the model is the concatenation of two entity
words. For ESIM, the input layer is softmax multi-
classification. Through learning with the relation
classification task, pre-trained models achieve im-
proved performance on the divided test set.

C Introduction to Exam

The detailed statistics of exams in recent years are
listed in Table 8. The professional qualifications
for licensed pharmacists are subject to a national
unified outline, unified proposition, and unified or-
ganized examination system (Fang et al., 2013).
The qualification exam for licensed pharmacists
is held on every October. The examination takes
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Years # Applicants (k) # Participants (k) Exam ratio (%) # Passing (k) Pass ratio (%)
2018 687.5 566.6 82.41 79.9 14.10
2017 675.2 523.2 77.50 153.0 29.19
2016 884.7 728.6 82.38 151.0 20.74
2015 1121.4 937.7 83.62 235.0 25.16
2014 840.2 702.4 83.61 137.1 19.52
2013 402.3 329.8 81.99 51.8 15.72
2012 188.1 146.8 78.09 26.0 17.68
2011 145.9 109.7 75.16 14.4 13.13
2010 132.7 100.6 75.76 11.2 11.12

Table 8: Statistics of this exam in recent years.

two years as a cycle, and those who take the exam-
ination of all subjects must pass the examination
of all subjects within two consecutive examination
years. The professional qualification examination
for licensed pharmacists is divided into two pro-
fessional categories: pharmacy and traditional Chi-
nese pharmacy. The pharmacy exam subjects are
(1) pharmacy professional knowledge (first part)
(2) pharmacy professional knowledge (second part)
(3) pharmacy management and regulations, and
(4) pharmacy comprehensive knowledge and skills.
The subjects for the examination of traditional Chi-
nese medicine are (1) professional knowledge of
traditional Chinese medicine (first part) (2) profes-
sional knowledge of traditional Chinese medicine
(second part) (3) pharmaceutical management and
regulations, and (4) comprehensive knowledge and
skills of traditional Chinese medicine.

D Source of Questions

The source website and books of collected ques-
tions are (1) www.51yaoshi.com (2) Sprint Paper
for the State Licensed Pharmacist Examination-
China Medical Science and Technology Press (3)
State Licensed Pharmacist Examination Golden
Exam Paper - Liaoning University Press (4) Prac-
ticing Pharmacist Quiz App (5) The Pharmacist
10,000 Questions App (6) Practicing Pharmacist
Medical Library App


