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Abstract

The hidden Markov model (HMM) is a funda-
mental tool for sequence modeling that cleanly
separates the hidden state from the emission
structure. However, this separation makes it
difficult to fit HMMs to large datasets in mod-
ern NLP, and they have fallen out of use due
to very poor performance compared to fully
observed models. This work revisits the chal-
lenge of scaling HMMs to language modeling
datasets, taking ideas from recent approaches
to neural modeling. We propose methods for
scaling HMMs to massive state spaces while
maintaining efficient exact inference, a com-
pact parameterization, and effective regulariza-
tion. Experiments show that this approach
leads to models that are more accurate than
previous HMM and n-gram-based methods,
making progress towards the performance of
state-of-the-art neural models.

1 Introduction

Hidden Markov models (HMMs) are a fundamen-
tal latent-variable model for sequential data, with
a rich history in NLP. They have been used exten-
sively in tasks such as tagging (Merialdo, 1994),
alignment (Vogel et al., 1996), and even, in a
few cases, language modeling (Kuhn et al., 1994;
Huang, 2011). Compared to other sequence mod-
els, HMMs are appealing since they fully separate
the process of generating hidden states from ob-
servations, while allowing for exact posterior infer-
ence.

State-of-the-art systems in NLP have moved
away from utilizing latent hidden states and toward
deterministic deep neural models. We take several
lessons from the success of neural models for NLP
tasks: (a) model size is critical for accuracy, e.g.

Code available at github.com/harvardnlp/hmm-lm

large LSTMs (Zaremba et al., 2014) show marked
improvements in performance; (b) the right param-
eterization is critically important for representation
learning, e.g. a feedforward model (Bengio et al.,
2003) can have the same distributional assumptions
as an n-gram model while performing significantly
better; (c) dropout is key to achieving strong perfor-
mance (Zaremba et al., 2014; Merity et al., 2017).

We revisit HMMs for language modeling as an
alternative to modern neural models, while consid-
ering key empirical lessons from these approaches.
Towards that goal, we introduce three techniques:
a modeling constraint that allows us to use a large
number of hidden states while maintaining efficient
exact inference, a neural parameterization that im-
proves generalization while remaining faithful to
the probabilistic structure of the HMM, and a vari-
ant of dropout that both improves accuracy and
halves the computational overhead during training.

Experiments employ HMMs on two language
modeling datasets. Our approach allows us to
train an HMM with tens of thousands of states
while maintaining efficiency and significantly out-
performing past HMMs as well as n-gram models.

2 Related Work

In order to improve the performance of HMMs
on language modeling, several recent papers have
combined HMMs with neural networks. Buys et al.
(2018) develop an approach to relax HMMs, but
their models either perform poorly or alter the prob-
abilistic structure to resemble an RNN. Krakovna
and Doshi-Velez (2016) utilize model combination
with an RNN to connect both approaches in a small
state-space model. Our method instead focuses on
scaling pure HMMs to a large number of states.

Prior work has also considered neural parameter-
izations of HMMs. Tran et al. (2016) demonstrate

https://github.com/harvardnlp/hmm-lm
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improvements in POS induction with a neural pa-
rameterization of an HMM. They consider small
state spaces, as the goal is tag induction rather than
language modeling.1

Most similar to this work are the large HMM
models of Dedieu et al. (2019). They introduce a
sparsity constraint in order to train a 30K state non-
neural HMM for character-level language model-
ing; however, their constraint precludes application
to large vocabularies. We overcome this limitation
and train models with neural parameterizations on
word-level language modeling.

Finally, another approach for scaling state spaces
is to grow from small to big via a split-merge pro-
cess (Petrov et al., 2006; Huang, 2011). In particu-
lar, Huang (2011) learn an HMM for language mod-
eling via this process. As fixed-size state spaces
are amenable to batching on modern hardware, we
leave split-merge procedures for future work.

3 Background: HMMs

We are interested in learning a distribution over ob-
served tokens x = 〈x1, . . . , xT 〉, with each token
xt an element of the finite vocabulary X . Hid-
den Markov models (HMMs) specify a joint distri-
bution over observed tokens x and discrete latent
states z = 〈z1, . . . , zT 〉, with each zt from the fi-
nite set Z . For notational convenience, we define
the starting state z0 = ε. This yields the joint dis-
tribution,

p(x, z; θ) =
T∏
t=1

p(xt | zt)p(zt | zt−1). (1)

We refer to the transition and emission matrices as
the distributional parameters of the HMM. Specif-
ically, let A ∈ [0, 1]|Z|×|Z| be the transition prob-
abilities and O ∈ [0, 1]|Z|×|X | the emission proba-
bilities,

p(zt | zt−1) = Azt−1zt p(xt | zt) = Oztxt . (2)

We distinguish between two types of model
parameterizations: scalar and neural, where the
model parameters are given by θ. A scalar param-
eterization sets the model parameters equal to the
distributional parameters, so that θ = {A,O}, re-
sulting in O(|Z|2 + |Z||X |) model parameters. A

1 Other work has used neural parameterization for struc-
tured models, such as dependency models (Han et al., 2017),
hidden semi-Markov models (Wiseman et al., 2018), and con-
text free grammars (Kim et al., 2019).

neural parameterization instead generates the dis-
tributional parameters from a neural network (with
parameters θ), decoupling the size of θ from A,O.
This decoupling gives us the ability to choose be-
tween compact or overparameterized θ (relative to
A,O). As we scale to large state spaces, we take
advantage of compact neural parameterizations.

In order to fit an HMM to data x, we must
marginalize over the latent states to obtain the like-
lihood p(x) =

∑
z p(x, z). This sum can be com-

puted in time O(T |Z|2) via the forward algorithm,
which becomes prohibitive if the number of latent
states |Z| is large. We can then optimize the likeli-
hood with gradient ascent (or alternative variants
of expectation maximization).
HMMs and RNNs Although the forward algo-
rithm resembles that of the forward pass in a re-
current neural network (RNN) (Buys et al., 2018),
there are key representational differences. RNNs
do not decouple the latent dynamics from the ob-
served. This often leads to improved accuracy,
but precludes posterior inference which is useful
for interpretability. A further benefit of HMMs
over RNNs is that their associative structure allows
for parallel inference via the prefix-sum algorithm
(Ladner and Fischer, 1980).2 Finally, HMMs bot-
tleneck information from every timestep through
a discrete hidden state. NLP has a long history
of utilizing discrete representations, and discrete
representations may yield interesting results. For
example, recent work has found that discrete latent
variables work well in low-resource regimes (Jin
et al., 2020).

4 Scaling HMMs

We propose three extensions to scale HMMs for bet-
ter language modeling performance: blocked emis-
sions, which allow for very large models; neural
parameterization, which makes it easy for states to
share model parameters; and state dropout, which
encourages broader state usage.

Blocked Emissions Our main goal is to apply a
HMM with a large number of hidden states to learn
the underlying dynamics of language data. How-
ever, the O(T |Z|2) complexity of marginal infer-
ence practically limits the number of HMM states.
We can get around this limit by making an assump-

2 Quasi-RNNs (Bradbury et al., 2016) also have a (parallel)
logarithmic dependency on T by applying the same prefix-sum
trick, but do not model uncertainty over latent dynamics.
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Figure 1: The emission matrix as a set of blocks
O1, . . . ,O4 with fixed number of states k. The
columns of each block may vary, as there is no con-
straint on the number of words a state can emit. Each
non-zero cell is constructed from an MLP applied to
word Ex and state Ez embeddings.

tion on the HMM emission matrix O. As noted
by Dedieu et al. (2019), restricting the number of
states that can produce each word can improve in-
ference complexity. We utilize a slightly stronger
assumption on the model: a) states are partitioned
into M equal sized groups each of which emit the
same subset of words, and b) each word is only
admitted by one group of k = |Z|/M states which
we indicate as Zx ⊂ Z .

We implement this group structure through a set
of blocked emissions, each corresponding to one
of the M state groups,

O =

O1 0 0
0 . . . 0
0 0 OM


where Om ∈ Rk×|Xm|. Figure 1 shows these emis-
sion blocks. Each block matrix Om gives the prob-
abilities for emitting tokens Xm for states in group
m, i.e. states (m− 1)k through mk.

With this constraint, exact marginalization can
be computed via

p(x) =
∑

z1∈Zx1

p(z1 | z0)p(x1 | z1)×

· · ·
∑

zT∈ZxT

p(zT | zT−1)p(xT | zT )
(3)

Since there are only k states with nonzero probabil-
ity of occurring at every timestep, we only need to
consider transitioning from the |Zxt | = k previous
states to the next |Zxt+1 | = k states, resulting in
O(k2) operations per timestep. This gives a serial
complexity of O(Tk2).3

3 This can be sped up on a parallel machine to
O(log(T )k2) via a binary reduction.

Algorithm 1 HMM Training (a single batch)
Given: block structure and model parameters
Sample block-wise dropout mask b
Compute A,O ignoring bz = 0
for all examples x in batch do

Compute log p(x;A,O)
Compute grad wrt parameters of log p(x)

Update model parameters Ez,Ex and MLP

Neural Parameterization A larger state space al-
lows for longer HMM memory, but it also may
require more parameters. Even with blocked emis-
sions, the scalar model parameterization of an
HMM grows as O(|Z|2) due to the transition ma-
trix. A neural parameterization allows us to share
parameters between words and states to capture
common structure.

Our parameterization uses an embedding for
each state in Z (Ez ∈ R|Z|×h) and each token
in X (Ex ∈ R|X |×h). From these we can create
representations for leaving and entering a state, as
well as emitting a word:

Hout,Hin,Hemit = MLP(Ez)

with all in R|Z|×h. The HMM distributional param-
eters are then computed as,4

O ∝ exp(HemitE
>
x ) A ∝ exp(HinH

>
out)

(4)
The MLP architecture follows Kim et al. (2019),
with details in the appendix. This factorized pa-
rameterization, shown in Figure 1, reduces the total
parameters to O(h2 + h|Z|+ h|X |).

Note that parameter computation is independent
of inference and can be cached completely as the
emission and transition matrices, A and O, at test-
time. For the training algorithm, shown in Algo-
rithm 1, we compute A and O once per batch while
RNNs and similar models recompute emissions ev-
ery token.

Dropout as State Reduction Finally, to encour-
age full use of the large state space, we introduce
dropout that prevents the model from favoring spe-
cific states. We propose a form of HMM state
dropout that removes states from use entirely at
each batch, which also has the added benefit of
speeding up inference.

4 As an optimization, one could only compute the nonzero
emission matrix blocks saving space and time. In practice we
compute the full matrix as in the equation.
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Figure 2: The computation of p(x) is greatly reduced
by blocked emissions and state dropout. In the above
trellis, each row corresponds to a latent state and each
column after the first to a timestep. Each edge be-
tween nodes corresponds to a nonzero transition proba-
bility. Blocked emissions result in a small subset of all
states emitting a given word, as shown by the rectan-
gles. State dropout (leftmost column) allows us to fur-
ther reduce the number of states we consider, halving
the number of (white) states that have nonzero proba-
bility in each rectangle. In experiments, the number of
possible transitions may be as large as 230 while the
max number of non-zero transitions is 216.

State dropout acts on each emission block
O1, . . . ,OM independently. For each block, we
sample a binary dropout mask by sampling λk
dropped row indices uniformly without replace-
ment, where λ is the dropout rate. We concatenate
these into a global vector b ∈ {0, 1}|Z|, which,
along with the previous constraints, ensures,

p(zt | zt−1) ∝ bztAzt−1zt

p(xt | zt) ∝ bzt1(z ∈ Zxt)Oztxt

(5)

An example of the HMM lattice after state dropout
is show in Figure 2.

In addition to accuracy improvements, state
dropout gives a large practical speed up for both
parameter computation and inference. For λ = 0.5
we get a 4× speed improvement for both, due to
the reduction in possible transitions. This struc-
tured dropout is also easy to exploit on GPU, as it
maintains block structure.

5 Experimental Setup

Emission Blocks The model requires partitioning
token types into blocks Xm. While there are many

partitioning methods, a natural choice is Brown
clusters (Brown et al., 1992; Liang, 2005) which
are also based on HMMs. Brown clusters are ob-
tained by assigning every token type in X a state
in an HMM, then merging states until a desired
number of partitions M is reached. We construct
the Brown clusters on the training portions of the
datasets and assume the vocabulary remains identi-
cal at test time (with OOV words mapped to unk).
We include more background on Brown Clusters in
the appendix.
State Dropout We use a dropout rate of λ = 0.5
at training time. For each block of size |Xm|, we
sample λ|Xm| states to use in that block each batch.
We draw states from each block from a multivariate
hypergeometric distribution using the Gumbel Top-
k trick for sampling without replacement (Vieira,
2014). At test time we do not use state dropout.
Datasets We evaluate on the PENN TREEBANK

(Marcus et al., 1993) (929k train tokens, 10k vo-
cab) and WIKITEXT2 (Merity et al., 2016) (2M
train tokens, 33k vocab) datasets. For PENN TREE-
BANK we use the preprocessing from Mikolov et al.
(2011), which lowercases all words and substitutes
OOV words with unks. We insert EOS tokens af-
ter each sentence. For WIKITEXT2 casing is pre-
served, and all OOV words are unked. We insert
EOS tokens after each paragraph. In both datasets
OOV words were included in the perplexity (as
unks), and EOS was included in the perplexity as
well (Merity et al., 2017).
Baselines Baselines include both state-of-the-art
language models and other alternative LM styles.
These include AWD-LSTM (Merity et al., 2017); a
900-state scalar HMM and HMM+RNN extension,
which discards the HMM assumptions (Buys et al.,
2018); a traditional Kneser-Ney 5-gram model
(Mikolov and Zweig, 2012; Heafield et al., 2013),
a 256 dimension feedforward neural model, and a
2-layer 256 dimension LSTM.

We compare these with our approach: the very
large neural HMM (VL-HMM). Unless otherwise
noted, our model has |Z| = 215 total states but
only considers k = 256 states at every timestep
at test time with M = 128 groups.5 The state
and word embeddings as well as the MLP have a
hidden dimension of 256. We train with a state
dropout rate of λ = 0.5. See the appendix for all
hyperparameters.

5 The 256 dim FF, LSTM, and VL-HMM in particular
have comparable computational complexity: O(2562T ).
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Model Param Val Test

PENN TREEBANK

KN 5-gram 2M - 141.2
AWD-LSTM 24M 60.0 57.3
256 FF 5-gram 2.9M 159.9 152.0
2x256 dim LSTM 3.6M 93.6 88.8
HMM+RNN 10M 142.3 -
HMM |Z| = 900 10M 284.6 -
VL-HMM |Z| = 215 11.4M 125.0 116.0

WIKITEXT

KN 5-gram 5.7M 248.7 234.3
AWD-LSTM 33M 68.6 65.8
256 FF 5-gram 8.8M 210.9 195.0
2x256 LSTM 9.6M 124.5 117.5
VL-HMM |Z| = 215 17.3M 166.6 158.2

Table 1: Perplexities on PTB / WIKITEXT-2. The
HMM+RNN and HMM of Buys et al. (2018) reported
validation perplexity only for PTB.

6 Results

Table 1 gives the main results. On PTB, the VL-
HMM is able to achieve 125.0 perplexity on the
valid set, outperforming a FF baseline (159.9) and
vastly outperforming the 900-state HMM from
Buys et al. (2018) (284.6).6 The VL-HMM also
outperforms the HMM+RNN extension of Buys
et al. (2018) (142.3). These results indicate that
HMMs are a much stronger model on this bench-
mark than previously claimed. However, the VL-
HMM is still outperformed by LSTMs which have
been extensively studied for this task. This trend
persists in WIKITEXT-2, with the VL-HMM out-
performing the FF model but underperforming an
LSTM.

Figure 3 examines the effect of state size: We
find that performance continuously improves sig-
nificantly as we grow to 216 states, justifying the
large state space. The marginal improvement does
lower as the number of states increases, implying
that the current approach may have limitations in
scaling to even larger state spaces.

Table 2 considers other ablations: Although neu-
ral and scalar parameterizations reach similar train-
ing perplexity, the neural model generalizes better
on validation with almost 100x fewer model pa-
rameters. We find that state dropout results in both

6 Buys et al. (2018) only report validation perplexity for the
HMM and HMM+RNN models, so we compare accordingly.

210 211 212 213 214 215 216

150

200

|Z|
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L

Figure 3: Perplexity on PTB by state size |Z| (λ = 0.5
and M = 128).

Model Param Train Val Time

VL-HMM (214) 7.2M 115 134 40
- neural param 423M 119 169 14
- state dropout 7.2M 88 157 100

Table 2: Ablations on PTB (λ = 0.5 and M = 128)
with a smaller model |Z| = 214. Time is ms per
eval batch (Run on RTX 2080). Ablations were per-
formed independently, removing a single component
per row. Removing the neural parameterization results
in a scalar parameterization.

an improvement in perplexity and a large improve-
ment in computational speed. See the appendix
for emission sparsity constraint ablations, as well
as experiments on further reducing the number of
parameters.

7 Conclusion

This work demonstrates methods for effectively
scaling HMMs to large state spaces on parallel
hardware, and shows that this approach results in
accuracy gains compared to other HMM models.
In order to scale, we introduce three techniques: a
blocked emission constraint, a neural parameteri-
zation, and state dropout, which lead to an HMM
that outperforms n-gram models and prior HMMs.
Once scaled up to take advantage of modern hard-
ware, very large HMMs demonstrate meaningful
improvements over smaller HMMs. HMMs are
a useful class of probabilistic models with differ-
ent inductive biases, performance characteristics,
and conditional independence structure than RNNs.
Future work includes using these approaches to
induce model structure, develop accurate models
with better interpretability, and to apply these ap-
proaches in lower data regimes.
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A Appendices

A.1 Brown Clustering

Brown clustering is an agglomerative clustering
approach (Brown et al., 1992; Liang, 2005) that as-
signs every token type a single cluster. The Brown
clustering model aims to find an HMM that maxi-
mizes the likelihood of an observed corpora under
the constraint that every token type can only be
emit by a single latent class. The cluster for the
word is given by the latent class that emits that
token type.

Clusters are initialized by assigning every token
type a unique latent state in an HMM. States are
then merged iteratively until a desired number M
is reached. Liang (2005) propose an algorithm that
chooses a pair of states to merge at every iteration
based on state bigram statistics within a window.

A.2 Hyperparameters

For PENN TREEBANK and WIKITEXT-2, we
trained the following baselines: a two layer FF
256-dim 5-gram model and a two layer 256-dim
LSTM. The FF model is given by the following:

p(wt | w<t) =WxReLU(WhEw(wt−4:t−1))
(6)

where Ew gives the word embeddings, Wh ∈
Rh×4h, and Wx ∈ R|X |×h is weight-tied to the
word embeddings. The LSTM model is given by:

p(wt | w<t) =WxLSTM(Ew(w<t)) (7)

with a 2-layer LSTM that has weight-tied Wx and
Ew.

For the (5-gram) FF model we use a batch size
of 128 and a bptt length of 64, as we found the
model needed a larger batch size to achieve decent
performance. For the LSTM, we use a batch size

of 16 and a BPTT length of 32. For both baseline
models we use AdamW (Loshchilov and Hutter,
2017) with a learning rate of 1e-3 and a dropout rate
of 0.3 on the activations in the model. Both models
use a hidden dimension of h = 256 throughout.
These same hyperparameters were applied on both
PENN TREEBANK and WIKITEXT-2.

For the HMMs we use a batch size of 16 and
a BPTT length of 32. We use state dropout with
rate λ = 0.5. We reset the state distribution to
p(z1 | z0) after encountering the EOS symbol. We
use AdamW (Loshchilov and Hutter, 2017) with a
learning rate of 1e-2 for PENN TREEBANK, and a
learning rate of 1e-3 for WIKITEXT-2.

All weights are initialized with the Kaiming uni-
form initialization. The FF model was trained for
100 epochs, while all other models were trained for
50. Validation likelihood was checked 4 times per
epoch, and learning rates were decayed by a factor
of 4 if the validation performance did not improve
after 8 consecutive checks.

Hyperparameter search was performed manually,
using the best validation perplexity achieved in a
run. Bounds:

1. Learning rate ∈ {0.0001, 0.001, 0.01, 0.1}

2. Dropout λ ∈ {0, 0.25, 0.5, 0.75}

3. Hidden dimension h ∈ {128, 256, 512}

4. Batch size ∈ {16, 32, 64, 128}

Experiments were run on RTX 2080 GPUs.
On PTB the FF model takes 3s per epoch, the

LSTM 23s, and the VLHMM 215 433s. The in-
ference for VLHMM was not heavily optimized,
and uses a kernel produced by TVM (Chen et al.,
2018) for computing gradients through marginal
inference.

A.3 HMM Parameterization

Let E,D ∈ Rv×h be an embedding matrix and a
matrix of the same size, where v is the size of the
vocab and h the hidden dimension. We use the
following residual network as our MLP:

fi(E) = gi(ReLU(EWi1))

gi(D) = LayerNorm(ReLU(DWi2) +D)
(8)

https://doi.org/10.3115/993268.993313
https://doi.org/10.3115/993268.993313
http://arxiv.org/abs/1808.10122
http://arxiv.org/abs/1808.10122
http://arxiv.org/abs/1409.2329
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Constraint |Z| k M Val PPL

Brown 16384 512 32 137
Brown 16384 256 64 138
Brown 16384 128 128 134
Brown 16384 64 256 136

None 1024 - - 180
Brown 1024 256 4 182
Brown 1024 128 8 194

Uniform 8192 128 - 150
Brown 8192 128 64 142
Uniform 16384 128 - 146
Brown 16384 128 128 136

Table 3: Emission constraint ablations on PENN TREE-
BANK. |Z| is the size of the hidden space, k is the size
number of hidden states in each block, and M is the
number of blocks.

with i ∈ {out, in, emit}, Wi1,Wi2 ∈ Rh×h. The
state embeddings are then obtained by

Hout = fout(Ez)

Hin = fin(Ez)

Hemit = femit(Ez)

(9)

In order to reduce the number of parameters fur-
ther, we experiment with factored state embeddings.
We factor the state embeddings into a composition
of smaller steate embeddings (E′z ∈ R|Z|×h/2) as
well as block embeddings (Em ∈ R|Z|×h/2), which
are shared across all states within the same emis-
sion block, i.e. all z ∈ Zx share a block embedding.
To compose these embeddings, we introduce new
residual networks fj , j ∈ {o, i, e} similar to the
above, yielding

Hout = fout(fo([Em,E
′
z]))

Hin = fin(fi([Em,E
′
z]))

Hemit = femit(fe([Em,E
′
z]))

(10)

We ablate the factored state embeddings in
Sec. A.5.

A.4 Emission Constraint Ablation

Table 3 shows the results from emission constraint
ablations. With a VL-HMM that has |Z| = 214

states, the model is insensitive to the number of
blocks M explorable given computational con-
straints. However, with fewer states |Z| = 210 we
are able to explore a lower number of blocks. With

M = 4 blocks, the block-sparse HMM matches
an unconstrained HMM with the same number of
states. When M = 8, the block-sparse model un-
derperforms, implying there may be room for im-
provement with the larger HMMs that use M > 8
blocks.

We additionally compare the blocks induced by
Brown clustering with a uniform constraint that
samples subsets of states of size n independently
and uniformly from Z . This does not admit a par-
titioning, which makes it difficult to apply state
dropout. We therefore zero out half of the columns
of the transition matrix randomly before normaliza-
tion. In the bottom of Table 3, we find that models
with uniform constraints are consistently outper-
formed by models with Brown cluster constraints
as measured by validation perplexity. The models
with uniform constraints also have poor validation
performance despite better training performance, a
symptom of overfitting.

These ablations demonstrate that the constraints
based on Brown clusters used in this work may
not be optimal, motivating future work that learns
sparsity structure.

A.5 Factored State Representation Abla-
tion

We examine the effect of factoring state representa-
tions into block embeddings and independent state
embeddings. The results of the factored state abla-
tion are in Figure 4. We find that the performance
of independent state embeddings with is similar to
a model with factored embeddings, but performs
slightly worse in perplexity.

In Table 4 we see that although the factored state
embeddings reduce the total number of parame-
ters, the computation time and perplexity both get
worse.

A.6 Computational Considerations

We reproduce the technique ablation table in Ta-
ble 4 for reference. As we remove neural compo-
nents, the number of parameters increases but the
time of the forward pass decreases. This is because
generating parameters from a neural network takes
strictly more time than having those parameters
available.

When block embeddings are removed and the
full state representations are directly parameterized,
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Figure 4: Perplexity on PTB by number of blocks M
(λ = 0.5 and |Z| = 214). The independent embed-
dings (ind) represent state embeddings by directly pa-
rameterizing Ez , while the factored embeddings (fac)
compose a smaller state embeddings matrix with block
embeddings.

Model Param Train Val Time

VL-HMM (214) 7.2M 115 134 40
- neural param 423M 119 169 14
- dropout 7.2M 88 157 100
+ block emb 5.6M 122 136 48

Table 4: Ablations on PTB (λ = 0.5 and M = 128).
Param is the number of parameters, while train and val
give the corresponding perplexities. Time is ms per
eval batch (Run on RTX 2080).

the model is faster due to not needing to recom-
pute the full state representations. This contrast
is even more pronounced when removing neural
components altogether and using a scalar param-
eterization, with an almost 3x speedup. This is
because the distributional parameters do not need
to be regenerated by a neural network if they are
parameterized directly.


