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Abstract
This paper designs a Monolingual Lexicon In-
duction task and observes that two factors ac-
company the degraded accuracy of bilingual
lexicon induction for rare words. First, a di-
minishing margin between similarities in low
frequency regime, and secondly, exacerbated
hubness at low frequency. Based on the ob-
servation, we further propose two methods to
address these two factors, respectively. The
larger issue is hubness. Addressing that im-
proves induction accuracy significantly, espe-
cially for low-frequency words.

1 Introduction

Bilingual Lexicon Induction (BLI) studies how to
generate word-level translations from non-parallel
corpora in two languages. Recently, Irvine and
Callison-Burch (2017) observe that rarer words
are harder to translate than frequent ones. But their
BLI method is based on various “hand-crafted”
features. We show that the same phenomenon
occurs as well in BLI methods that are based on
word embeddings. This type of methods have be-
come especially popular in recent years (Mikolov
et al., 2013; Faruqui and Dyer, 2014; Artetxe et al.,
2016, 2018) and achieved state-of-art accuracies
(Conneau et al., 2018).

We briefly review BLI methods that are based
on word embeddings. Without loss of general-
ity, in this paper, we focus on “supervised” BLI,
which assumes that a seeding dictionary is avail-
able. Unsupervised BLI (Artetxe et al., 2018; Con-
neau et al., 2018) often alternates between induc-
ing a seeding dictionary and using that to refine
generated translations. Therefore, to some extent,
“supervised” BLI is a key step in its “unsuper-
vised” counterpart, and a more basic prototype to
study.

Let the source space be X , [x1, . . . ,xm],
where xi ∈ Rd is the embedding vector for the

i-th source word. Similarly, let the target space
be Y , [y1, . . . ,yn] where yj is the embed-
ding vector for the j-th target word. Here m
and n are the vocabulary sizes for the two spaces.
The seeding dictionary is made up of subsets of
X and Y, denoted as Xs = [xs

1, . . . ,x
s
S ] and

Ys = [ys
1, . . . ,y

s
S ] respectively, where xs

k and ys
k

are the word embeddings of a pair of translations.
S is the size of seeding dictionary.

The typical supervised BLI works by first learn-
ing a transformation W that minimizes the dis-
crepancy between Xs and Ys,

W = argmin
W∈W

‖WXs −Ys‖2F , (1)

where ‖ · ‖F is Frobenius norm, and W is a con-
straint set of W. The easiest choice of W may
be Rd×d, seen in (Mikolov et al., 2013). On the
other hand, Xing et al. (2015) has observed sub-
stantial gain by letting W = O(d), the set of or-
thogonal matrices. In this case, (1) is also called a
Procrustes problem.

Once the transformation W is learned, transla-
tion can be induced for a word xi, by retrieving
the Nearest Neighbor (NN) of Wxi in Y. Cosine
distance is often adopted in the retrieval. Solving
the Procrustes problem (Eq. (1)), followed by NN
search is a representative framework. We use it as
a baseline of this paper.

Despite the existing success in word embed-
ding based BLI, understanding of its performance
against word frequency is still lacking. This pa-
per observes that BLI’s accuracy significantly de-
grades for low-frequency words. Then, two fac-
tors are identified that may explain the observa-
tion. Motivated by them, we propose two methods
that address each of the two factors, both improv-
ing BLI’s performance in low-frequency regime.
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2 Lexicon Induction at Low Frequency

We study how induction accuracies vary for words
of different frequencies. Before we start, it should
be emphasized that the frequency ranking of a
source word and its translation(s) can differ a lot
in their respective language. We term this fact as
frequency mismatch, and the extent of mismatch
also depends on the language pair. To simplify the
problem, we design a “Monolingual Lexicon In-
duction” (MLI) task.

2.1 Monolingual Lexicon Induction (MLI)
MLI works with two sets of word embeddings for
a single language. Given a word to be translated,
the induction is supposed to retrieve the same
word. The embeddings are trained respectively
from two pieces of monolingual corpora (in the
same language). While frequency mismatch still
exists due to the differences in the two corpora, it
is however reduced significantly. Compared with
BLI, the induction task is also much simplified as
the ground-truth is an one-to-one mapping.

We take the fasttext wiki and crawl1 embed-
dings, and build a shared vocabulary of 500K
words. The words are sorted from the most to
least frequent according to the crawl corpora, and
the order is more or less preserved in the wiki cor-
pora. We split the 500K words into 50 frequency
bins. That is, the first bin includes the 10K most
frequent words. The second bin includes the next
10K most frequent words, and so on.

In each frequency bin, we randomly hold out
4K words as test words. The rest 6K are used to
build seeding dictionary. To see how the size of
seeds may impact induction accuracy, we vary the
number of seeds sampled from the 6K words. In
particular, we sample 0.02K, 0.2K and all the 6K
in each frequency bin, resulting in seeding dictio-
naries of size 1K, 10K and 300K respectively. We
ensure that any smaller seeding set is a subset of a
bigger one.

An orthogonal transformation is learned using
the seeds. Then, for the transformed source em-
beddings, nearest neighbors are retrieved in the
target space. Figure 1a shows the accuracies of re-
trievals in each frequency bin. The accuracies drop
significantly at low frequency. One may wonder if
adding more seeds can help. It helps but is not
very effective, as the gain diminishes quickly. In-
deed, the improvement is tiny from a seeding size

1https://fasttext.cc/docs/en/english-vectors.html

of 10K to 300K. In the next two subsections, we
look into two statistics as diagnostics of the obser-
vation.

2.2 Cosine Similarities and Margin

Consider a source word xi, when we apply NN
retrieval, it is supposed that its true translation
trans(xi) is the closest to Wxi, among all the can-
didates in Y. In other words, we want

cos(Wxi, trans(xi)) ≥ cos(Wxi,yj),

for yj 6= trans(xi). Further define the dif-
ference between cos(Wxi, trans(xi)) and
maxj cos(Wxi,yj) as a margin associated with
xi, i.e.,

M(xi) , cos(Wxi, trans(xi))

−max
j

cos(Wxi,yj), yj 6= trans(xi).
(2)

When M(xi) < 0, a translation error occurs. Fig-
ure 1b plots the (averaged) M(x) values within
each frequency bin. We observe that the margin
decreases in low frequency regime, leading to the
degraded accuracies. Again, when the seeding size
increases, the margin can be enlarged, but it also
saturates quickly.

2.3 Hubness and Tail of k-occurrence

Hubness is a tendency in high dimensional space
that some data points, called hubs, appear to be
suspiciously close to many others (Radovanovic
et al., 2010). Hubness is detrimental as NN search
may retrieve these hubs more often than should be.

A variable to measure the degree of hubness is
k-occurrence. k-occurrence, Nk, is defined for
any one item in the target space. It is the num-
ber of times the item being retrieved as a k-nearest
neighbor against a query set Q. Formally,

Nk(y;Q) = |{x ∈ Q : y ∈ k-NN(x)}|.

To see the degree of hubness, one makes a his-
togram of Nk(y;Q) for all the y’s in the target
space. A long tail of the histogram is an indication
of strong hubness. The “tailness” can be measured
by the number of times theNk values being bigger
than a threshold n, formally defined as

Tn(Nk) , |y : {Nk(y;Q) > n}|. (3)

A bigger Tn(Nk) indicates longer tail of the distri-
bution of Nk, hence more hubness.
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In our MLI case, the ground-truth translation is
one-to-one. Therefore if a target word y has a big
value of N1(y), it is a “hub” that is incorrectly re-
trieved for at least N1(yj) − 1 times. Note that
Nk and Tn(Nk) both depend on the query set Q.
We vary the Q from the most frequent to the least
words, and plot T2(N1) values in figure 1c. For
all seeding sizes, hubness becomes more promi-
nent for low-frequency words, implying that some
“hubby” target words are being retrieved more of-
ten than should be.

Summarizing this section, we have identified
two statistics that may explain the inferior accu-
racy for low-frequency words. Moreover, adding
more seeds is not very effective for improving the
accuracy.

3 Two Methods

Motivated by the two diagnostics in the last sec-
tion, we introduce two methods, each individually
improving the accuracy in low frequency regime.

3.1 Hinge Loss for Learning Transformation

We first design a learning objective that enlarges
the margin, as follows,

min
W∈O(d)

∑
i

∑
j:yj 6=trans(xs

i )

max {0,

γ − cos(Wxs
i ,y

s
i ) + cos(Wxs

i ,yj)}
,

(4)
where γ > 0 is a threshold. The objective encour-
ages the margin cos(Wxs

i ,y
s
i )−cos(Wxs

i ,yj) to
be bigger than γ.

It should be noticed that using hinge loss to
learn the transformation is not a new idea. Ex-
amples are seen not only for BLI (Lazaridou
et al., 2015), but also zero-shot image classifica-
tion (Frome et al., 2013). Our difference with
(Lazaridou et al., 2015) is that W is set to O(d)
instead of Rd×d, as empirically we observe some
gain. This is consistent with the discovery in (Xing
et al., 2015), although they experiment with the
Procrustes loss (Eq. (1)) instead.

We apply the hinge loss to train the orthogonal
transformation, using a seeding dictionary of 10K.
Accuracy is reported as the green line in figure 2a.
A notable gain is observed over the Procrustes loss
(blue line), especially in low frequency regime.
Figure 2b validates that the margins (for low-
frequency words) are indeed enlarged by adopting
a hinge loss.

3.2 Hubless Nearest Neighbor (HNN) Search

To motivate, let us first consider a case where the
translation is an one-to-one mapping. We should
be able to take advantage of this strong prior,
so that each target word is retrieved exactly only
once. To this end, we introduce an assignment ma-
trix P ∈ [0, 1]m×n such that Pi,j is the probability
of assigning yj as a translation of xi. By this def-
inition, ∑

j

Pi,j = 1.

On the other hand,
∑

i Pi,j measures how each
yj is likely to be retrieved. We want them to be
equally preferred, so we constrain

∑
i Pi,j to be

uniform over all j. In other words,∑
i

Pi,j = m/n.

Observe that m does not necessarily equal n, so in
fact we do not constrain the mapping to be one-to-
one. The P is such that

∑
i,j Pi,j cos(Wxi,yj) is

minimized, which can be considered as the “cost”
of translation. In summary, we want to solve the
following optimization problem,

min
P∈[0,1]m×n

∑
i,j

Pi,j cos(Wxi,yj)

s.t.
∑
j

Pi,j = 1,
∑
i

Pi,j = m/n
. (5)

(5) is a linear assignment problem. It can be solved
by Hungarian algorithm (Jonker and Volgenant,
1987) with cubic complexity. Recently, a more ef-
ficient solver is rediscovered in (Cuturi, 2013) by
regularizing the entropy of P,

min
P∈[0,1]m×n

∑
i,j

Pi,j cos(Wxi,yj)− εH(P)

s.t.
∑
j

Pi,j = 1,
∑
i

Pi,j = m/n
, (6)

where H(P) = −
∑

i,j Pi,j logPi,j is entropy of
P. It is known that as ε→ 0, the solution of prob-
lem (6) converges to that of problem (5).

Now a key challenge in solving (6) is its ex-
pensive computational cost, when m and n are
huge. One way to circumvent that is by solving a
dual problem (Genevay et al., 2016) of (6) instead.
Since the math is lengthy and less relevant, we
refer interested readers to a sister paper, (Huang
et al., 2019), for all details. Our implementation
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Figure 1: Applying the Procrustes + NN pipeline for MLI: In each plot, the x-axis are frequency bins of words,
from the most (left) to least (right) frequent. All statistics are averaged within each bin. (a) Accuracy is inferior in
low-frequency regime. The accuracies saturate though more seeds are used. (b) Margin decays for low-frequency
words, resulting in lower accuracy. (c) Tailness of N1 values. Hubness exacerbates in low frequency regime.
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Figure 2: Using a seeding dictionary of 10K: (a) improved accuracy for low-frequency words by hinge loss (green
line) and HNN (red line) (b) Margin increases (mostly in low-frequency regime) by using hinge loss to learn the
transformation; (c) Hubness decreases significantly by using HNN.

(a) en-fr (b) fr-en (c) en-fi (d) fi-en

Figure 3: BLI experiments on (a)(b) English and French; (c)(d) English and Finnish.

can be found at github2. Once we obtain the P by
solving (6), translation of the xi is induced as the
yj where j = argmaxj Pi,j .

We learn the transformation by solving the Pro-
crustes problem (with 10K seeds) but replace NN
with HNN search. The accuracies across all fre-
quency bins are reported as the red line in fig-
ure 2a. It significantly outperforms Procrustes
+ NN, especially in the low-frequency regime.
The reduced hubness is validated by the smaller

2code at https://github.com/baidu-research/HNN

T2(N1) values in figure 2c. While HNN is ef-
fective, it is not the only method to reduce hub-
ness. For example, CSLS (Conneau et al., 2018)
is a recent state-of-art. Fig. 2a also compares our
HNN (solid red line) against CSLS (dashed red
line) across all frequency bins, and HNN outper-
forms CSLS for rare words.

3.3 Bilingual Experiments

We experiment with two language pairs, an eas-
ier pair (English, French) and a harder pair (En-
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glish, Finnish). The embeddings and ground-truth
dictionaries are downloaded from MUSE repo3.
We use a vocabulary of size 200K for both source
and target languages. Following the same setup as
in section 2.1, we create 30 frequency bins and a
seeding dictionary of size 10K by uniformly sam-
pling from each bin. The remaining words are
used for test. Figure 3 shows accuracy as a func-
tion of frequency rank.

In all cases, the proposed two methods both im-
prove upon the baseline (blue curve), and HNN
shows more gain over hinge loss. However, com-
pared with MLI (figure 2a), now the improvement
seems to be more evenly distributed over all fre-
quencies, especially on the harder language pair.

Moreover, HNN is on-par with or slightly better
than CSLS for closer language pair. In contrast,
en-fi (fig. 3c) is a case where CSLS works better
than HNN notably. We think it is due to a strong
morphology in Finnish.

4 Conclusion

Accuracy of bilingual lexicon induction decays for
low-frequency words, as indicated by two factors:
(1) diminishing margin between cosine similari-
ties, and (2) exacerbated hubness. Two methods
are proposed to address each factor. Experimental
results validate their effectiveness.
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