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Abstract

Despite the rapid progress in multihop
question-answering (QA), models still have
trouble explaining why an answer is correct,
with limited explanation training data avail-
able to learn from. To address this, we intro-
duce three explanation datasets in which ex-
planations formed from corpus facts are an-
notated. Our first dataset, eQASC, contains
over 98K explanation annotations for the mul-
tihop question answering dataset QASC, and
is the first that annotates multiple candidate
explanations for each answer. The second
dataset eQASC-perturbed is constructed
by crowd-sourcing perturbations (while pre-
serving their validity) of a subset of explana-
tions in QASC, to test consistency and gen-
eralization of explanation prediction models.
The third dataset eOBQA is constructed by
adding explanation annotations to the OBQA
dataset to test generalization of models trained
on eQASC. We show that this data can be used
to significantly improve explanation quality
(+14% absolute F1 over a strong retrieval base-
line) using a BERT-based classifier, but still
behind the upper bound, offering a new chal-
lenge for future research. We also explore a
delexicalized chain representation in which re-
peated noun phrases are replaced by variables,
thus turning them into generalized reasoning
chains (for example: ”X is a Y” AND ”Y has
Z” IMPLIES ”X has Z”). We find that gener-
alized chains maintain performance while also
being more robust to certain perturbations.1

1 Introduction

While neural systems have become remarkably
adept at question answering (QA), e.g., (Clark and
Gardner, 2018), their ability to explain those an-
swers remains limited. This creates a barrier for
deploying QA systems in practical settings, and

1Code and datasets can be found at https://allenai.
org/data/eqasc

Q: What can cause a forest fire?
(1) rain (2) static electricity (3) microbes (4) ...

A: static electricity
Q+A (declarative): Static electricity can cause a forest fire.

Explanation (reasoning chain): [positive (valid)]
Static electricity can cause sparks // (from corpus)

AND Sparks can start a forest fire // (from corpus)
→ Static electricity can cause a forest fire // (Q+A)

Explanation (Generalized reasoning chain, GRC):
X can cause Y AND Y can start Z → X can cause Z

Figure 1: Our datasets contain annotated (valid and in-
valid) reasoning chains in support of an answer, allow-
ing explanation classifier models to be trained and ap-
plied. We also find that using a variabilized version of
the chains improves the models’ robustness.

limits their utility for other tasks such as education
and tutoring, where explanation plays a key role.
This need has become particularly important with
multihop question-answering, where multiple facts
are needed to derive an answer. In this context,
seeing a chain of reasoning leading to an answer,
can help a user assess an answer’s validity. Our
research here contributes to this goal.

We are interested in questions where the decom-
position into subquestions - hence the explanation
structure - is not evident from the question, but has
to be found. For example, “Does a suit of armor
conduct electricity?” might be answered (hence
explained) by first identifying what material armor
is made of, even though the question itself does
not mention materials. This contrasts with earlier
multihop QA datasets, e.g., HotpotQA (Yang et al.,
2018), where the explanation structure is evident
in the question itself. For example, “What nation-
ality was James Miller’s wife?” implies a chain
of reasoning to first finds Miller’s wife, then her
nationality. Such cases are easier but less represen-
tative of natural questions. Multihop datasets of
the kind where explanation structure is not evident

 https://allenai.org/data/eqasc
 https://allenai.org/data/eqasc
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Figure 2: QASC contains multiple-choice questions, plus one gold (valid) reasoning chain for the correct answer.
To find valid reasoning chains, we first generate candidates for each answer option using a 2-step retrieval process
(Section 3.2). We then collect annotations for the correct answer option chains to train and evaluate models to
detect valid reasoning chains. (Above, chains A1 and A3 are valid, while A2, B1, and B2 are invalid).

include OpenBookQA (Mihaylov et al., 2018) and
more recently QASC (Khot et al., 2020). How-
ever, although providing QA pairs, these datasets
provide limited explanation information. Open-
BookQA does not come with any explanation data,
and QASC only provides a single gold explanation
for each answer, while in practice there may be
multiple valid explanations.

To alleviate this lack of data, we contribute three
new datasets: The first (and largest) is eQASC, con-
taining annotations on over 98K candidate explana-
tions for the QASC dataset, including on multiple
(typically 10) possible explanations for each an-
swer, including both valid and invalid explanations.
The second, eQASC-perturbed, contains se-
mantically invariant perturbations of a subset of
QASC explanations, for better measuring the gen-
erality of explanation prediction models. Finally
eOBQA adds adding explanation annotations to the
OBQA test set, to further test generality of mod-
els trained on eQASC. In addition, we use these
datasets to build models for detecting valid ex-
planations, to establish baseline scores. Finally,
we explore a delexicalized chain representation in
which repeated noun phrases are replaced by vari-
ables, thus turning them into generalized reasoning
chains, as illustrated in Figure 1. We find that gen-
eralized chains maintain performance while also

being more robust to perturbations, suggesting a
promising avenue for further research.

2 Related Work

In the context of QA, there are multiple notions
of explanation/justification, including showing an
authoritative, answer-bearing sentence (Perez et al.,
2019), a collection of text snippets supporting an
answer (DeYoung et al., 2020), an attention map
over a passage (Seo et al., 2016), a synthesized
phrase connecting question and answer (Rajani
et al., 2019), or the syntactic pattern used to lo-
cate the answer (Ye et al., 2020; Hancock et al.,
2018). These methods are primarily designed for
answers to “lookup” questions, to explain where
and how an answer was found in a corpus.

For questions requiring inference, the focus of
this paper, an explanation is often taken as the chain
of steps (typically sentences) leading to an answer.
HotpotQA’s support task goes partway towards this
by asking for answer-supporting sentences (but
not how they combine) (Yang et al., 2018). The
R4C dataset takes this further, annotating how (and
which) HotpotQA supporting sentences chain to-
gether (Inoue et al., 2019). However, in HotpotQA
and R4C, the decomposition (hence structure of the
explanation) is evident in the question (Mihaylov
et al., 2018), simplifying the task. More recently,
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multihop datasets where the decomposition is not
evident have appeared, e.g., WikiHop (Welbl et al.,
2018), OBQA (Mihaylov et al., 2018), and QASC
(Khot et al., 2020), posing more a realistic explana-
tion challenge. However, explanation annotations
are sparse (only QASC contains a single gold ex-
planation per question), limiting their support for
both training and evaluation of explanation systems,
hence motivating this work.

Finally there are a few human-authored expla-
nation datasets. e-SNLI (Camburu et al., 2018)
adds crowdsourced explanations to SNLI entail-
ment problems (Bowman et al., 2015), and CoS-E
(Rajani et al., 2019) adds explanations for Com-
monsenseQA questions (Talmor et al., 2019). This
work differs from ours in two ways. First, the au-
thored explanations are single-hop, directly linking
a question to an answer. Second, the datasets were
primarily designed for (explanation) language gen-
eration, while our goal is to assemble explanations
from an authoritative corpus so that they have cred-
ible provenance.

Our work is quite different from prior work fo-
cusing on textual entailment. Our goal is not to de-
cide if a sentence is entailed, but to identify a valid
explanation for why. For example, a SciTail (Khot
et al., 2018) model may predict that “metals con-
duct heat” entails “a spoon transmits energy”, but
not offer an explanation as to why. Our work fills
this gap by providing an explanation (e.g., “spoon
is made of metal”, “heat is energy” from a larger
retrieved context). Similarly, another entailment-
based dataset is FEVER (Thorne et al., 2018), test-
ing where a larger context entails a claim. How-
ever, the FEVER task requires finding a context
sentence that simply paraphrases the claim, rather
than a reasoned-based explanation from more gen-
eral statements - the aim of this work.

3 Explanation Datasets

We now present our new datasets, first describing
how we construct candidate chains for each QA
pair, and then how they were annotated.

3.1 Task Definition

We consider the task where the input is a question
Q, (correct) answer A, and a corpus of sentences
T . The (desired) output is a valid reasoning chain,
constructed from sentences in T , that supports the
answer. We define a reasoning chain as a sequence
of sentences C = [s1, ..., sn] plus a conclusion sen-

Train Dev Test
Total number of questions 8134 926 920
Total no. of chains tagged 80449 9190 9141

No. of valid chains 21551 2186 2210
No. of invalid chains 58898 7004 6931

Table 1: Summary statistics for eQASC, the annotated
chains for the correct answers in QASC. Each chain is
tagged by three annotators, and we use majority judge-
ment.

tence H , and a valid reasoning chain as one where
C entails H . Following the textual entailment lit-
erature (Dagan et al., 2013), we define entailment
using human judgements rather than formally, i.e.,
C entails H if a person would reasonably conclude
H given C. This definition directly aligns with our
end-goal, namely to provide users with a credible
reason that an answer is correct.

For generating candidate chains C, we construct
each C from sentences in the corpus T , as de-
scribed below. Following the design of the QASC
dataset, we consider just 2-sentence chains, as this
was the maximum chain length used in its creation,
although our approach could be extended to N-
sentence chains.

3.2 Candidate Chain Construction

Given Q + A, we use the procedure described in
(Khot et al., 2020) to assemble candidate chains
from T (below). This procedure aims to find plau-
sible chains by encouraging word overlap:
(1) Using ElasticSearch (a standard retrieval en-

gine), retrieve K (=20 for efficiency) facts F1
from T using Q+A as the search query.

(2) For each fact f1 ∈ F1, retrieve L (=4 to pro-
mote diversity) facts F2, each of which con-
tains at least one word from Q+A \ f1 and
from f1 \ Q+A;

(3) Remove [f1,f2] pairs that do not contain any
word from Q or A;

(4) Select the top M (here, =10) [f1,f2] pairs
sorted by the sum of their individual IR (Elas-
ticSearch) scores.

Step (3) ensures that the chain contains at least
some mention of part of Q and part of A, a mini-
mal requirement. Step (4) imposes a preference for
chains with greater overlap with Q+A, and between
f1 and f2. Note that this procedure does not guaran-
tee valid chains, rather it only finds candidates that
may be plausible because of their overlap. Some
example chains are produced by this method are
shown in Figure 2. In all our experiments, we use
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the QASC corpus2 as the corpus T , namely the
same corpus of 17M cleaned up facts as used in
(Khot et al., 2020).

3.3 eQASC - Explanations for QASC

The original QASC dataset includes only a sin-
gle gold (valid) reasoning chain for each correct
answer, and no examples of invalid chains. To de-
velop a richer explanation dataset, suitable for both
training and evaluation, we generate eQASC as fol-
lows. First, we use the above algorithm to generate
(up to) 10 candidate chains for each Q + correct
answer option A pair. This resulted in a total of
98780 chains for QASC’s 9980 questions.

We then use (Amazon Turk) crowdworkers to
annotate each chain. Workers were shown the ques-
tion, correct answer, and reasoning chain, e.g.:

Question: What is formed by rivers flowing over rocks?
Answer: soil
Because:

fact 1: Rivers erode the rocks they flow over, and
fact 2: soil is formed by rocks eroding

They were then asked if fact 1 and fact 2 together
were a reasonable chain of reasoning for the answer,
and to promote thought were offered several cate-
gories of “no” answer: fact 1 alone, or fact 2 alone,
or either alone, justified the answer; or the answer
was not justified; or the question/answer did not
make sense. (Two “unsure” categories were also
offered but rarely selected). The full instructions
to the workers are provided in the Appendix. Each
chain was annotated by 3 workers. To ensure qual-
ity, only AMT Masters level workers were used,
and several checks were performed: First, for cases
where at least two workers agreed, if a worker’s an-
notations disagreed with the majority unreasonably
often (from inspection, judged as more than 25%
of the time), then the worker was (paid but then)
blocked, and his/her annotations redone. Second,
if a worker’s distribution of labels among the six
categories substantially deviated from other work-
ers (e.g., almost always selecting the same cate-
gory), or if his/her task completion time was un-
realistically low, then his/her work was sampled
and checked. If it was of low quality then he/she
again was (paid and) blocked, and his/her anno-
tations redone. Pairwise agreement was 74% (2
class) or 45% (for all six subclasses), with a Fleiss
κ (inter-annotator agreement) of 0.37 (“fair agree-
ment” (Landis and Koch, 1977)). There was a

2https://allenai.org/data/qasc

majority agreement (using all six subclasses) of
84%, again suggesting fair annotation quality. For
the final dataset, we adopt a conservative approach
and treat the no majority agreement cases as invalid
chains. Summary statistics are in Table 1.

3.4 eQASC-perturbed - Testing Robustness

For a test of robustness of model for reason-
ing chain explanation detection, we also created
eQASC-perturbed, a dataset of valid eQASC
reasoning chains, perturbed in a way so as to pre-
serve their validity. To do this, we first randomly
selected a subset of the valid reasoning chains from
the test split of eQASC-perturbed. We then
asked crowdworkers to modify the chains by re-
placing a word or phrase shared between at least
two sentences with a different word or phrase, and
to make sure that the resulting new chain remained
valid. (e.g., ”amphibians” became ”frogs”, or

”eats other animals” became ”consumes its prey”).
We collected 855 perturbed, (still) valid reasoning
chains in this way.

3.5 eOBQA - Testing Generalization

Finally, to further measure the generality of
our model (without re-fine-tuning), we created a
smaller set of annotations for a different dataset,
namely OBQA (4-way multiple choice) (Mihaylov
et al., 2018). The original dataset has no explana-
tions and no associated corpus. Thus to generate
explanations, we use sentences from the QASC
corpus, and annotate the top two (for all test ques-
tions) formed by the retrieval step (Section 3.2).
Note that for some questions, there may be no valid
justification which can be formed from the corpus.
We followed the same annotation protocol as for
eQASC to have crowd workers annotate the chains
(Section 3.3). The resulting dataset containing 998
annotated chains, of which 9.5% were marked as
valid reasoning explanations.

4 Learning to Score Chains

Our full approach to explaining an answer has two
steps, namely candidate chain retrieval followed
by chain scoring, to find the highest-ranked chain
supporting an answer. For chain retrieval, we as-
sume the same procedure described earlier to iden-
tify candidate chains. For chain scoring, we train
a BERT-based model to distinguish valid chains
from invalid ones, using the training data collected
in the eQASC dataset, as we now describe.
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Figure 3: Generalized reasoning chains (GRCs) are formed by replacing repeated noun phrases with variables.

We evaluate using all three collected datasets.
We also evaluate two different ways of present-
ing the chain to the model to score (both train and
test): (a) in its original form (with Q+A flipped to
a declarative sentence), (b) in a generalized form,
where repeated noun phrases are variabilized. Our
interest is how well a model can perform, both to
assess practical use and as a baseline for further
improvement; and how the two different chain rep-
resentations impact performance.

4.1 Chain Representation

Declarative form For a chain to support the an-
swer to a question, we construct H as a declarative
form of the question + answer using standard
QA2D tools, e.g., (Demszky et al., 2018). For ex-
ample, for the question + answer “What can cause
a forest fire? Static electricity”, the hypothesis H
to be entailed by C is “Static electricity can cause
a forest fire.”. An alternate representation for H is
to simply append answer to the end of the question.
We did not observe any significant change in the
best dev split performances on switching to the
alternate representation described above.

Generalized Reasoning Chains (GRC) : We ob-
serve that specific reasoning chains are often in-
stantiations of more general patterns. For example,
in Figure 1, the specific explanation can be seen
as an instantiation of the more general pattern “X
can cause Y” AND “Y can start Z” IMPLIES “X
can cause Z”. We refer to such patterns as Gener-
alized Reasoning Chains (GRCs). To encourage
our model to recognize valid and invalid chains at
the pattern level, we explore the following strategy:
First, we transform candidate chains into gener-
alized chains (GRCs) by replacing repeated noun
phrases with variables (special tokens), a process
known as delexicalization (Suntwal et al., 2019).
We then train and test the model using the GRC

representation. We hypothesize that distinguish-
ing a valid justification chain from an invalid one
should not need typing information in most cases.

To identify the phrases to variabilize, (1) we first
perform part-of-speech tagging on the sentences,
and (2) extract candidate entities by identifying
repeating nouns i.e. those which occur in at least
two of the sentences in the chain (We stem the
words before matching, and include any matching
preceding determiners and adjectives into detected
entities). e.g. ‘the blue whale is a mammal’ and
‘the blue whale breathes..’ leads to detection of ’the
blue whale’). (3) Then, we assign a special token
to each of the candidates, using a predefined set
of unused tokens, which can be viewed as a set of
variables. Some examples of GRCs are shown in
Figure 3 and later in Figure 4, using X,Y,Z as the
special token set (As our models are BERT-based,
we use unusedi i ∈ {1, 2, ...} to denote these
tokens).

4.2 Model Training
To distinguish valid from invalid chains, we fine-
tune a pre-trained BERT model (Devlin et al., 2019)
for scoring the possible explanation chains. We
encode a chain f1 AND f2→ H as:

[CLS] f1 [SEP] f2 [SEP] H

where [SEP] is a sentence boundary marker. There-
after, we pass the chain through the BERT model
(BERT-base-uncased). We employ a two layer feed-
forward neural network with ReLU non-linearity,
as a binary classifier on the pooled [CLS] represen-
tation to predict valid vs invalid reasoning chains.
Model parameters are trained to minimize the bi-
nary cross entropy loss.

5 Experiments

For training, we use the annotated chains in the
train split of eQASC alongwith the ‘gold’ chains
provided in the QASC dataset (QSC gold chains
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Model Delexicalized Classification Ranking
Representation F1 AUC-ROC P@1 NDCG

(dev) test (dev) test (dev) test (dev) test

RETRIEVAL n/a (0.52) 0.50 (0.75) 0.74 (0.47) 0.47 (0.59) 0.60
BERT-QA n/a (0.44) 0.43 (0.52) 0.51 (0.47) 0.47 (0.48) 0.49
BERT-CHAIN No (0.68) 0.64 (0.88) 0.87 (0.57) 0.55 (0.65) 0.65
BERT-GRC Yes (0.63) 0.62 (0.85) 0.85 (0.55) 0.54 (0.64) 0.64

Performance upper-bound: (1.00) 1.00 (1.00) 1.00 (0.76) 0.76 (0.76) 0.76

Table 2: The ability of models to identify valid explanations (classification) or rank the set of explanations for each
answer (ranking), with best test results highlighted. BERT-GRC and BERT-CHAIN perform better than RETRIEVAL
and BERT-QA methods, though fall short of the upper bound. Using the generalized chains (BERT-GRC) performs
similarly to BERT-CHAIN, even though it is using less information (masking out overlapping noun phrases).

are always considered valid reasoning chains). We
try two different ways of presenting chains to the
model, namely the original and generalized chain
representations (GRCs), thus produce two models
that we refer to as BERT-CHAIN and BERT-GRC
respectively. In earlier experiments, we did not find
using chains for negative answer options (which
are all invalid chains) to be useful (see Section 6.3),
so we use chains for correct answer options only.
We use AllenNLP (Gardner et al., 2018) toolkit to
code our models.

We test on all the three proposed datasets. Since
we are interested in finding explanations for the cor-
rect answer, we ignore the incorrect answer chains
for the purpose of testing (they still accompany
the dataset and can be used as additional training
data since they are invalid reasoning chains by def-
inition: Section 6.3). For eQASC and eOBQA, we
evaluate in two ways: First, treating the task as clas-
sification, we measure F1 and AUC-ROC (below).
Second, treating the task as ranking the set of ex-
planations for each answer, we measure P@1 and
Normalized Discounted Cumulative Gain (NDMC)
(also below). We use the trained model’s proba-
bility of a chain being valid to rank the retrieved
candidate chains for a given question and answer.

5.1 Metrics

F1 and AUC-ROC: Viewing the task as classi-
fying individual explanations, we report the area
under the ROC (Receiver Operating Characteris-
tics) curve, treating the valid explanation chains
as the positive class. ROC curves are plots of true
positive rate on the Y-axis against false positive
rate on the X-axis. A larger area under the curve
is better, with 1.0 being the best. Additionally, we
report F1 for the positive class.
P@1 and NDCG: Viewing the task as ranking the
set of explanations for each answer, P@1 measures
the fraction of cases where the topmost ranked

chain is a valid chain. This reflects the model’s abil-
ity to find a valid explanation for an answer, given
the retrieval module. Note that the upper bound
for this measure is less than 1.0 for eQASC, as
there are questions for which none of the candidate
chains are valid (discussed shortly in Section 6.4).
NDCG (Normalized Discounted Cumulative Gain)
measures how well ranked the candidates are when
ordered by score, and is a measure widely used in
the learning-to-rank literature. Consider an ordered
(as per decreasing score) list of N(=10) chains and
corresponding labels yi ∈ {0, 1}; i ∈ 1, 2, .., N ,
where yi = 1 represents a valid chain. NDCG is
defined per question (then averaged) as:

NDCG =
1

Z

N∑
i=1

yi
log2(i+ 1)

where Z is a normalization factor so that perfect
ranking score (when all the valid chains are ranked
above all the invalid chains) is 1. We define NDCG
as 0 if there are no valid chains.

5.2 Baselines

We compare our model with two baselines, RE-
TRIEVAL and BERT-QA. Recall that our method
first collects the top M candidate chains, ordered by
retrieval score (Section 3.2). Thus a simple base-
line is to use that retrieval score itself as a measure
of chain validity. This is the RETRIEVAL baseline.

We also consider a baseline, BERT-QA, by
adapting the approach of Perez et al. (2019) to our
task. In the original work, given a passage of text
and a multiple choice question, the system identi-
fies the sentence(s) S that are the most convincing
evidence for a given answer option ai. To do this,
it iteratively finds the sentence that most increases
the probability of ai when added to an (initially
empty) pool of evidence, using a QA system origi-
nally trained on the entire passage. In other words,
the probability increase is used as a measure of how
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Original chain Edited chain BERT BERT
-CHAIN -GRC

tadpole changes into a frog tadpole changes into a frog
AND the frog is a totem of metamorphosis AND the frog is a totem of transformation 0.21 0.00
→ tadpoles undergo metamorphosis → tadpoles undergo transformation

insects can spread disease and destroy crops insects can spread disease and decimate crops
AND food crops are produced for local consumption AND food crops are produced for local consumption 0.11 0.00
→ insects can destroy food → insects can decimate food

Table 3: Prediction Consistency: Examples from eQASC-perturbed with changes in probability score (of
being a valid reasoning chain) for different methods. Here, BERT-GRC has (desirably) not changed its score due to
an immaterial perturbation, while BERT-CHAIN has, indicating greater stability for the GRC representation. This
trend holds generally (Table 4).

% cases with
Model 0.0 change

BERT-CHAIN 0.23%
BERT-GRC 40.80%

Table 4: Given an immaterial perturbation to a reason-
ing chain, a model’s predicted probability of validity
should not change if it is making consistent predic-
tions. We evaluate the absolute difference in proba-
bility scores of original and edited reasoning chains in
eQASC-perturbed. We observe that for 40.8% and
0.23% of the cases did not show any change in score
for BERT-GRC and BERT-GRC respectively. The results
suggest that GRCs improve prediction consistency.

convincing the evidence sentence is. We adapt this
by instead finding the chain that most increases the
probability of ai (compared with an empty pool
of evidence), using a QA system originally trained
with all the candidate chains for ai. For the QA
system, we use the straightforward BERT-based
model described in (Khot et al., 2020). We then
use that increase in probability of the correct an-
swer option, measured for each chain, as a measure
of chain validity. We call this baseline BERT-QA.

5.3 Results: Performance on eQASC

The test results on the eQASC are shown in Table 2.
There are several important findings:
1. The best performing versions of BERT-CHAIN

and BERT-GRC significantly outperforms the base-
lines. In particular, the AUC-ROC is 11% higher
(absolute), NDCG rises from 0.60 to 0.64, and P@1
rises from 0.47 to 0.54 for BERT-GRC, indicating
substantial improvement.
2. The generalized chain representation does not
lead to a significant reduction (nor gain) in per-
formance, despite abstracting away some of the
lexical details through variabilization. This sug-
gests the abstracted representation is as good as the
original, and may have some additional benefits

Model P@1 AUC-ROC
RETRIEVAL 0.70 0.58
BERT-CHAIN 0.85 0.89
BERT-GRC 0.89 0.86

Table 5: Application of our (eQASC-trained) model to
a new dataset eOBQA. The high AUC-ROC figure sug-
gests the model remains good at distinguishing valid
from invalid chains. We report P@1 only for the ques-
tions which have at least one valid chain, i.e., where
ranking is meaningful.

(Section 5.4).
3. The BERT-QA baseline scores surprisingly low.
A possible explanation is that, in the original set-
ting, Perez et al. (2019)’s model learned to spot a
(usually) single relevant sentence among a passage
of irrelevant sentences. In our setting, though, all
the chains are partially relevant, making it harder
for the model to distinguish just one as central.

5.4 Results:Consistency in eQASC-perturbed

We posit that the generalized (GRC) chain repre-
sentation may improve robustness to small changes
in the chains, as the GRC abstracts away some
of the lexical details. To evaluate this, we use
the crowdworker-perturbed, (still) valid chains in
eQASC-perturbed. As the perturbed chain of-
ten follows the same/similar reasoning as the orig-
inal one, this test can be considered one of con-
sistency: the model’s prediction should stay same.
To measure this, we record the model’s predicted
probability of a chain being valid, then compare
these probabilities for each pair of original and per-
turbed chains. Ideally, if the model is consistent
and the perturbations are immaterial, then these
probabilities should not change.

The results are shown in Table 4. In a large frac-
tion of the instances, generalized chain representa-
tion exhibits no change. This is perhaps expected
given the design of the GRC representations. Thus,
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X can cause Y AND Y can start Z → X can cause Z
X is used for Y AND Z are X → Z are used for Y
X are formed by Y AND Y are made of Z

→ X are formed by Z
X are Y AND Y are Z → X are Z
X produce Y AND Y is a Z → X produce Z
X increases Y AND X occurs as Z → Z increases Y
X changes Y AND Y is Z → X changes Z
X is Y AND X carries Z → Y carries Z
X changes an Y AND Z are examples of X → Z change an Y
X are formed by Y AND X are formed through Z

→ Y can cause Z
X changes a Y AND Z start most X → Z can change Y

Figure 4: Examples of some of the highest scoring gen-
eralized reasoning chains (GRCs) found in eQASC.

using GRC not only achieves similar performance
(Table 2), but produces more consistent predictions
for certain types of perturbations. Table 3 shows
some examples.

5.5 Results: Generalization to eOBQA

We are also interested in the generality of the
model, i.e., how well it can transfer to a new dataset
with no explanation training data (i.e., the situation
with most datasets). To measure this, we ran our
(eQASC-trained) models on eOBQA, namely the
annotated top-2 candidate chains for OBQA test
questions, to see if the models can still detect valid
chains in this new data.

The results are shown in Table 5, and again illus-
trate that the BERT trained models continue to sig-
nificantly outperform the retrieval baseline. High
P@1 scores suggest that model is able to score a
valid reasoning as the highest among the candidate
whenever there is at least one such valid chain. The
high AUC-ROC suggests that the model is able to
effectively distinguish valid from invalid chains.

6 Analysis and Discussions

6.1 GRC as Explicit Reasoning Rationale

A potentially useful by-product of GRCs is that the
underling reasoning patterns are made explicit. For
example, Figure 4 show some of the top-scoring
GRCs. This may be useful for helping a user under-
stand the rationale behind a chain, and a repository
of high-scoring patterns may be useful as a knowl-
edge resource in its own right. This direction is
loosely related to certain prior works on inducing
general semantic reasoning rules (such as Tsuchida
et al. (2011) who propose a method that induces
rules for semantic relations based on a set of seed
relation instances.)

6.2 Error Analysis

However, the BERT-GRC model was not always
able to correctly distinguish valid from invalid
GRC explanations. To better understand why, we
analyzed 100 scoring failures on eQASC (dev),
looking at the top 50 chains (i.e., ranked as most
valid by our model) that were in fact annotated
as invalid (false positives, FP), and the bottom
50 chains (ranked most invalid) that were in fact
marked valid (false negatives, FN). We observed
four main sources of error:

1. Over-generalization: (≈ 45% of the FP cases,
≈ 40% of FN cases). Some generalized reasoning
chains are merely plausible rather than a deductive
proof, meaning that their instantiations may be an-
notated as valid or invalid depending on the context.
For example, for the GRC

X contains Y AND Z are in X→ Z are in Y
its instantation may have been marked as valid in

Cells contain nuclei AND Proteins are in cells
→ Proteins are in nuclei

but not for
Smog contains ozone AND Particulates are in

smog→ Particulates are in ozone
(Ozone itself does not contain particulates). Here
the context is important to the perception of validity,
but has been lost in the generalized form.
2. Incorrect Declarative Form: (FP ≈ 20%, FN
≈ 30%). Sometimes the conversion from question
+ answer to a declarative form H goes wrong, eg

What do octopuses use ink to hide from? sharks
was converted to the nonsensical sentence

Octopuses do use sharks ink to hide from.
In these cases, the annotations on chains supporting
the original answer do not meaningfully transfer to
the declarative formulation. (Here, FP/FN are due
to label rather than prediction errors).
3. Shared Entity Detection: (FP ≈ 10%, FN
≈ 10%) To detect and variabilize shared entities
during GRC construction, we search for repeated
noun phrases in the sentences. This operational
definition of “shared entities” can sometimes make
mistakes, for example sometimes shared entities
may be missed, e.g., frog and bullfrog, or incor-
rectly equated due to stemming or wrong part of
speech tagging, e.g., organic and organism. The
resulting GRC may be thus wrong or not fully gen-
eralized, causing some errors.
4. Model Failures: (FP ≈ 25%, FN ≈ 10%)
The remaining failures appear to be simply due
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the model itself, representing incorrect generaliza-
tion from the training data. Additional training data
may help alleviate such problems.

Despite these, GRCs often abstract away irrele-
vant details, and may be worthy of further study in
explanation research.

6.3 Chains for Negative Answer Options
We also investigated whether we could skip using
the eQASC annotations completely, and instead
simply use the single QASC gold chains as posi-
tives, and chains for wrong answers as negatives
(a form of distant supervision). However, we ob-
served that but the results were significantly worse.
We also tried adding chains for wrong answers as
additional negative examples to the full eQASC
dataset. However, we observed that this did not sig-
nificantly improve (or hurt) scores. One possible
reason for this is that eQASC may already contain
enough training signal. Another possible reason is
that (invalid) chains for wrong answers may quali-
tatively differ in some way from invalid reasoning
chains for right answers, thus this additional data
does not provide reliable new signal.

6.4 Limitations of Retrieval
Our focus in this paper has been on recognizing
valid chains of reasoning, assuming a retrieval step
that retrieves a reasonable pool of candidates to
start with (Section 3.2). However, the retrieval step
itself is not perfect: For QASC, designed so that
at least one valid chain always exists, the retrieved
pool of 10 contains no valid chains for 24% of
the questions (upper bound in Table 2), capping
the overall system’s performance. To gauge the
performance of our model when coupled with an
improved retrieval system, we ran an experiment
where, at test time, we explicitly add the gold chain
to the candidate pool if it does not get retrieved
(and even if there is some other valid chain already
in the pool). We find the P@1 score rises from 0.54
(Table 2) to 0.82 (upper bound is now 1.0). This
indicates the model scoring algorithm is perform-
ing well, and that improving the retrieval system,
e.g., by considering may more chains per question
or modifying the search algorithm itself, is likely
to have the biggest impact on improving the overall
system. Note also that the corpus itself is an impor-
tant component: finding valid chains requires the
corpus to contain a broad diversity of general facts
to build chains from, hence expanding/filtering the
corpus itself is another avenue for improvement.

6.5 Future Directions

The main purpose of this dataset is to generate
explanations as an end-goal in itself, rather than
improve QA scores (we do not make any claims
in terms of QA accuracy or ability to improve QA
scores). Although much of NLP has focused on
QA scores, more recent work has targeted explana-
tion as an end-goal in itself, with ultimate benefits
for tutoring, validation, and trust. Nonetheless, a
useful future direction is exploring answer predic-
tion and explanation prediction as joint goals, and
perhaps they can benefit each other.

Additionally, in the current work we have ex-
plored only a sequence of two sentences as an ex-
planation for the third. Extending the proposed
approaches for longer chains is an important future
direction. We have proposed a technique for re-
ducing reasoning chains to abstract chains. This
technique makes assumptions about being able to
match overlapping words. A future extension could
explore more robust techniques for identifying ab-
stract chains which do not make such assumptions.

7 Summary

Explaining answers to multihop questions is impor-
tant for understanding why an answer may be cor-
rect, but there is currently a dearth of suitable, anno-
tated data. To address this, and promote progress in
explanation, we contribute three new explanation
datasets, including one with over 98k annotated
reasoning chains - by far the largest repository of
annotated, corpus-derived explanations to date. We
also have shown this data can significantly improve
explanation quality on both in-domain (QASC) and
out-of-domain (OBQA) tasks. Finally, we have pro-
posed and explored using a lightweight method to
achieve a delexicalized representation of reasoning
chains. While preserving explanation quality (de-
spite removing details), this representation appears
to be more robust to certain perturbations.
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APPENDIX

A. Additional Implementation Details

• Optimizer: We use Adam optimizer with ini-
tial learning rate of 2e-5

• Number of params: ∼ 110M parameters
(Bert-base uncased and classification layer)

• Hyper-parameters: We search over following
options for hyperparameter (1) one layer vs
two layer classifier (2) negative class weight
( (0.1, 0.2, ..., 0.9)) (3) using negative option
chains or not; for BERT-GRC as well as BERT-
CHAIN. We perform model selection based on
best dev split performance as per P@1.

• Best model configuration for BERT-Chain:
negative class weight = 0.2; without using
negative option chains; using a two layer clas-
sifier. Best model configuration for BERT-
GRC: negative class weight = 0.3; without us-
ing negative option chains; using a two layer
classifier.

• We have uploaded code at
https://github.com/harsh19/

Reasoning-Chains-MultihopQA
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B. Instructions to Crowdworkers
Below are the instructions provided to the (Amazon Mechanical Turk) crowdworkers for chain annotation.

Instructions (click here to collapse/expand instructions)

As part of an artificial intelligence (AI) project, we are trying to teach the computer to reason. We are
planning to eventually make the system available as a free, open source resource on the internet.

To measure how well the computer is reasoning, we are wanting to assess whether the computer can explain
a (correct) answer to a question. The HIT here is to look at five computer-generated explanations for five
answers, and assess whether the explanations seem reasonable or not.

Each explanation consists of two facts. A good explanation is one where the two facts combine or "chain"
together to explain an answer in a sensible way. Or, in some cases, just one of the facts is sufficient to justify
the answer. For example:

Question: What is formed by rivers flowing over rocks?
Answer: soil 
Because: 
      fact 1: Rivers erode the rocks they flow over, and
      fact 2: soil is formed by rocks eroding

Now select a choice below: Do fact 1 and fact 2 seem like a good explanation for the Answer to the
Question?

 Yes - fact 1 and fact 2 together seems like a reasonable chain of reasoning for the answer
 Yes - fact 1 alone is enough to justify the answer.
 Yes - fact 2 alone is enough to justify the answer.
 Yes - fact 1 alone, AND fact 2 alone, are both separately enough to justify the answer.
 No - the facts don't combine together to support the answer
 No - the question/answer itself is incorrect/doesn't make sense.
 Not quite - the facts combine, but an additional fact is needed:

           Additional fact: 

 Unsure - this seems like a borderline case

NOTE: In this case, as rivers erode rocks (fact 1), and eroding rocks forms soil (fact 2), it follows that the
answer to What is formed by rivers flowing over rocks? is soil. Thus fact 1 and fact 2 seem like a reasonable
explanation for the given Answer (soil).

Some important notes:

A good explanation is one with a reasonable chain of reasoning. Examples are below. Think of what
would be a good explanation if you were explaining an Answer to a friend, or writing an explanation as
part of an exam.
Additionally, in some cases a single fact is enough to justify the Answer (i.e., the other fact is not
needed). We'd like you to identify these caess also.
A bad explanation is one where the facts don't combine into a sensible line of reasoning (e.g., the facts
are irrelevant to the question, or don't arrive at the Answer)
Ignore minor grammatical errors, e.g., typo's, extra words - so long as it's clear what the facts are
saying.
If the question/answer itself seems wrong or weird, seleect the "No - the question/answer itself is
incorrect/doesn't make sense" option
Note: a few questions are "complete the sentence" form, e.g., "Question: Dogs are... Answer:
mammals"
Feel free to use the Web for information, if that helps assess the explanations
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Thank you for your help!!

Now please read the examples below carefully!

The following are examples of good explanations ("Yes - fact 1 and fact 2 together seems like a reasonable
explanation for the answer")

Question: What are some invertebrates? Answer: insects 
Because: 
      fact 1: Some examples of invertebrates are arthropods., and
      fact 2: Most arthropods are insects.

Question: Black objects... Answer: absorb sunlight
      fact 1: Black objects are the best heat absorbers., and
      fact 2: absorbing sunlight causes objects to heat

Question: what is very deadly? Answer: the ground shaking 
Because: 
      fact 1: Earthquakes Earthquakes are very deadly., and
      fact 2: an earthquake causes the ground to shake

Question: What can our ears detect? Answer: matter vibrating 
Because: 
      fact 1: When the waves pass our ears, a sound is detected., and
      fact 2: matter vibrating can cause sound

In all these cases, you can see a chain of reasoning from the question to the answer using the facts.

The following are examples of a single fact explanations ("Yes - fact 1/2 alone is enough to justify the
answer"):

Question: what do flowers attract? Answer: bees 
Because: 
      fact 1: How flowers attract honey bees and why they do it., and
      fact 2: bees convert nectar into honey
Here, fact 1 alone is enough to justify the answer that "flowers attract bees"

Question: What has permeable skin? Answer: frogs 
Because: 
      fact 1: skin is used for breathing air by frogs, and
      fact 2: Frogs have permeable skin that both breathes and takes in water.
Here, fact 2 alone is enough to justify the answer that "frogs have permeable skin"

The following is an example of a bad question/answer ("No - the question/answer itself is
incorrect/doesn't make sense.")
Question: What powers rockets? Answer: Mechanical energy 
Because: 
      fact 1: Power is what they seek, and power is what they get., and
      fact 2: Most ecosystems get energy from sunlight.
The answer seems wrong here - rockets are powered by chemical energy, not mechanical energy.
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The following are examples of bad explanations ("No - the facts don't combine together to support the
answer"):

Question: What do bats do with seeds? Answer: spread 
Because: 
      fact 1: Insects and bats do it., and
      fact 2: Insects spread disease and destroy crops.
Here, neither fact seems relevant to the question.

Question: What do amphibians easily absorb? Answer: chemicals 
Because: 
      fact 1: Light, easily absorbed., and
      fact 2: a flashlight converts chemical energy into light energy

Question: What results from plucking a string? Answer: sound waves 
Because: 
      fact 1: Plucked strings are another matter., and
      fact 2: matter vibrating can cause sound

Question: How is limestone formed? Answer: Deposition. 
Because: 
      fact 1: Limestone is the rock formed by calcite., and
      fact 2: sedimentary rocks are formed by deposition
The link between limestone and sedimentary rocks is unstated.

Question: What powers sweat? Answer: The body's fuel 
Because: 
      fact 1: Sweat glands produce sweat., and
      fact 2: when the body is hot , sweat is produced to cool the body

The following is an example of an additional fact being needed ("Not quite - the facts combine, but an
additional fact is needed"):
Question: Snow leopards coats can be used for what? Answer: protection from the cold 
Because: 
      fact 1: Snow leopards coats have thick, dense fur., and
      fact 2: thick fur protects animals in winter
Here an additional fact that it is cold in winter is needed: 
           Additional fact: It is cold in winter.

Thank you for your help! You rock!


