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Abstract

We introduce ARES (A Reading Comprehen-
sion Ensembling Service): a novel Machine
Reading Comprehension (MRC) demonstra-
tion system which utilizes an ensemble of
models to increase F1 by 2.3 points. While
many of the top leaderboard submissions in
popular MRC benchmarks such as the Stan-
ford Question Answering Dataset (SQuAD)
and Natural Questions (NQ) use model ensem-
bles, the accompanying papers do not publish
their ensembling strategies. In this work, we
detail and evaluate various ensembling strate-
gies using the NQ dataset. ARES leverages
the CFO (Chakravarti et al., 2019) and Reac-
tJS distributed frameworks to provide a scal-
able interactive Question Answering experi-
ence that capitalizes on the agreement (or lack
thereof) between models to improve the an-
swer visualization experience.

1 Introduction
Machine Reading Comprension (MRC) involves
computer systems that can take a question and
some text and produce an answer to that question
using the content in that text. This field has recently
received considerable attention, yielding popular
leaderboard challenges such as SQuAD (Rajpurkar
et al., 2016, 2018) and NQ (Kwiatkowski et al.,
2019).

Currently, the top submissions on both the
SQuAD and NQ leaderboards combine multiple
system outputs. These ensembled systems tra-
ditionally outperform single models by 1-4 F-
measure. Unfortunately, many of the papers for
these systems provide little to no information about
the ensembling techniques they use.

In this work, we use GAAMA, a prototype
question-answering system using the MRC tech-
niques of (Pan et al., 2019), as our starting point
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and explore how to ensemble multiple MRC mod-
els from GAAMA1. We evaluate these techniques
on the NQ short answer task. Using our ensemble
of models, for each example (question, passage
pair), we take the top predictions per system, group
by span (answer extracted from the passage), nor-
malize and aggregate the scores, take the mean
score across systems for each span, and then take
the highest scoring short and long answer spans
as our final prediction. These improved ensem-
bling techniques are applied to our MRC systems
to produce stronger answers.

Whereas other systems such as (Chakravarti
et al., 2019; Yang et al., 2019a) and Allen NLP’s2

make use of a single model, we are able to use
multiple models to produce a stronger result. We
further take advantage of the fact that both the in-
dividual model predictions and the ensembed pre-
dictions are returned to help increase explainability
for the user. For the graphical interface we use a
heatmap to show the level of (dis)agreement be-
tween the underlying models along with the “best
ensemble” answer. An example of this can be seen
in Figure 1.

More completely, our contributions include:

• A novel MRC demonstration system, which
leverages multiple underlying MRC model
predictions and ensembles them for the user.

• A system architecture that provides scalabil-
ity to the system designer (by leveraging the
cloud ready CFO3 (Chakravarti et al., 2019)
orchestration framework) and flexibility to
add and remove models based on the desired
latency versus accuracy trade-off.

1ARES can use any MRC model.
2https://demo.allennlp.org/

reading-comprehension
3https://github.com/IBM/

flow-compiler/

https://demo.allennlp.org/reading-comprehension
https://demo.allennlp.org/reading-comprehension
https://github.com/IBM/flow-compiler/
https://github.com/IBM/flow-compiler/
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Figure 1: ARES client interface. The correct answer
2018 is boxed and the MRC system answers are high-
lighted based on a heatmap.

• A GUI with enhanced explainability that al-
lows users to see the (dis)agreement of re-
sponses from individual models.

• An analysis of various ensembling strategies
with experimental results on the challenging
NQ dataset which show that diversity of mod-
els is better for ensembling than seed variation.
We detail the process for selecting the “best-
diverse” set.

2 Related Work

2.1 Ensembled MRC Systems

There have been multiple works creating systems
utilizing MRC models. BERTserini (Yang et al.,
2019a) is an end-to-end question answering sys-
tem utilizing a BERT (Devlin et al., 2019) model.
(Ma et al., 2019) creates an end-to-end dialogue
tracking system featuring an XLNet (Yang et al.,
2019b) model. (Qu et al., 2020) performs conver-
sational question answering and utilizes separate
ALBERT (Lan et al., 2019) encoders for the ques-
tion and passage in addition to a BERT (Devlin
et al., 2019) model. Allen NLP’s MRC demo pro-
vides reading comprehension through the use of a
variety of different model types. However, to the
best of our knowledge we are the first to propose
using an ensemble of MRC models to provide a
MRC service.

There have likewise been multiple approaches
to visualization of system results. BertSerini high-
lights the answer in the context. Allen NLP’s demo
allows using gradients to view the most important
words in the passage. ARES allows for viewing

the most important regions of the passage from
the perspective of different models in addition to
boxing in the ensembled answer as seen in Figure
1.

2.2 Ensembling Techniques

Many of the top recent MRC systems publish few
details on their ensembling strategies. Systems
such as (Devlin et al., 2019; Alberti et al., 2019;
Liu et al., 2019; Wang et al., 2019; Lan et al., 2019;
Group, 2017; Seo et al., 2016) report using ensem-
bles of 5 to 18 models to gain 1.3 - 4 F1 points
on tasks such as GLUE, SQuAD 1.0, and SQuAD
2.0; unfortunately most of these systems report
little information on their ensembling techniques.
(Liu et al., 2020) reports slightly more information:
gaining 1.8 and 0.6 F1 points short answer (SA)
and long answer (LA) respectively on the NQ dev
set with an ensemble of three models with different
hyperparameters.

We also consider work in the field of information
retrieval (IR) as a way to aggregate multiple scores
for the same span. Similar to the popular Comb-
SUM and CombMNZ (Kurland and Culpepper,
2018; Wu, 2012) methods, considering the spans
as the “documents”, we use span-score weighted
aggregation in our noisy-or aggregator. Futher, we
additionally incorporate the use of rank-based scor-
ing from Borda (Young, 1974) and RRF (Cormack
et al., 2009) for our exponential sum approach (in
addition to utilizing score for this approach). We
finally consider a reciprocal rank sum aggregation
strategy based on the ideas in RRF (Cormack et al.,
2009). To our knowledge this is the first published
application of IR methods for this purpose.

3 System Overview
We describe the architecture of the system and ad-
ditionally provide an overview of the client (GUI)
used in this demonstration. The system is com-
posed of MRC and ensembling services which are
orchestrated by CFO. The MRC services (in our
case GAAMA) provide reading comprehension via
a transformer model (Pan et al., 2019); multiple
services utilizing different model architectures are
run to extract answers for a given question and pas-
sage. After the MRC services extract their answers,
they are all passed to ARES which ensembles the
results. The ensembling algorithm used by ARES
is detailed in Sections 4 and 5. Note that the MRC
service only extracts short answers, therefore only
those portions of our ensembling approach are used.
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Both the ensembled and original answers are then
returned to the caller, allowing the clients to dis-
play the final ensembled answers and the original
answers they were generated from to the end user.

More completely, the system takes the follow-
ing as input through a grpc (Talvar, 2016) inter-
face: question, passage, minimum confidence score
threshold δ, maximum number of answers N , max-
imum number of answers per model n, and num-
ber of models k. These inputs are sent from the
client (we discuss our client below) and received
by the CFO node which orchestrates the contain-
ers. The choice of k is bounded on how many
GAAMA containers are deployed (e.g. if there
are 3 then k ∈ {1, 2, 3}). By tweaking the pa-
rameter k, clients can opt for increased accuracy
(higher k) or decreased latency (lower k) as when
multiple models run on the same GPU the request
latency increases. As depicted in Figure 2 (where
there are 3 MRC models running), each of the k=2
GAAMA containers then receive the question and
passage from CFO, returning at most n answers
to CFO. These answers, together with their con-
fidence scores, are then sent to the ensembler by
CFO which produces at most N ensembled an-
swers (each with confidence score at least δ) and
returns them to CFO. Finally, both the answers of
the k models and the ensembled answers predicted
by ARES are returned by CFO to the caller.

The GUI client for our system is based on a Reac-
tJS4 web interface. A request is taken as input from
the user and sent to the system where is is processed
as described above. When an answer with suffi-
cient confidence score is returned, it is displayed
to the user as seen in Figure 1. Both the ensem-
bled answer and the individual answers are shown
together with their respective confidence scores.
These answers are also shown in the context of the
original passage. The ensembled answer is boxed
in. For the individual answers a character heatmap
is created representing how many of the candidate
answers each character appears in. This heatmap
is used to highlight the passage different different
colors corresponding to the heatmap (characters
not used in any answers are not highlighted). Both
the boxing and highlighting of answers are done us-
ing MarkJS5. Note that while these visualizations
only show the top answer for each MRC model,
n answers per model are ensembled together. If

4https://reactjs.org/
5https://markjs.io/

Figure 2: Architecture of the the ARES system. We
use GAAMA as our MRC service.

an answer with sufficient confidence score is not
returned, this is relayed to the user through the
GUI.

4 Methods
We investigate a number of strategies for ensem-
bling models on the NQ dataset. We use the NQ
dataset as it is more realistic and challenging than
SQuAD, as its questions were created by Google
Search users prior to seeing the answer documents
(so they do not suffer from observational bias). In
order to formally compare approaches we partition
the NQ dev set into “dev-train” and “dev-test” by
taking the first three dev files for the “train” set and
using the last two for the “test” set (the original dev
set for NQ is partitioned into 5 files for distribu-
tion). This yields “train” and “test” sets of 4,653
and 3,177 examples respectively.

For each strategy considered we search for the
best k-model ensemble over the “train” set and then
evaluate on the “test” set. For these experiments
we use k = 4 as this is the number of models
that we can decode in the 24 hours (the limit for
the NQ leaderboard). We begin by outlining our
core strategy that underlies the approaches we have
investigated.

Using this strategy we investigate a baseline ap-
proach of ensembling multiple versions of the same
model trained with different seeds. We then investi-
gate search strategies for choosing the best models
from candidates trained with different hyperparam-
eters, in addition to different normalization and
aggregation strategies that are used on a set of can-
didates.

https://reactjs.org/
https://markjs.io/
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4.1 Core Strategy

For each example processed by the k systems being
ensembled, our system assigns a score to each long
and short span according to the normalization and
aggregation strategies (see below). Note that our
system currently only predicts single short spans
rather than sets, so we currently score each short
span independently.

We use the top-20 candidate long and short an-
swers (LA and SA respectively) for each system.
We experimented with additional values, but em-
pirically found 20 to provide an ideal accuracy
versus latency trade-off given hardware resources.
To combine systems we take the arithmetic mean
of the scores for each long and short span predicted
by at least one system. We have experimented with
other approaches such as median, geometric mean,
and harmonic mean; however these are omitted
here as they resulted in much lower scores than
arithmetic mean. For spans which are only pre-
dicted by some systems a score of zero is assigned
(for the systems which do not predict the span) to
penalize spans which are only predicted by some
systems. The predicted long span is then the span
with the greatest arithmetic mean. Similarly for
short answers the predicted span is the one with
the greatest arithmetic mean (it must also be in a
non-null long answer span).

4.2 Seed Ensembles

We first examine the baseline approach of ensem-
bling k versions of the same model trained with
the same hyperparameters, only varying the seed
between models. We use the model with the best
hyperparameters based on (Pan et al., 2019) having
the highest sum of short and long answer F1 scores
on dev. This model is trained k−1 additional times
with different seeds and then they are all ensembled
using the core strategy.

4.3 Search Strategies

We consider two main strategies when searching for
ensembles: exhaustive and greedy. These search
over model candidates with different hyperparame-
ters as described in (Pan et al., 2019). Note that we
also considered a “simple greedy” approach where
the k best models on dev were selected, however
this underperformed other approaches by 1 - 2 F1
points.

In exhaustive search we consider all possible
ensembles, whereas in greedy search we build the
ensemble one model at a time by looking for which

model we can add to an i model ensemble to make
the best i+ 1 model ensemble.

4.3.1 Exhaustive Search (ES)

In the exhaustive search approach where we con-
sider each of the

(
m
k

)
ensembles of k candidates

from our group of m models. We then use our
core strategy for each ensemble to obtain short and
long answer F1 scores for each ensemble. After
searching all possible ensembles we return two en-
sembles: (i) the ensemble with the highest long
answer F1 score and (ii) the ensemble with the
highest short answer F1 score.

4.3.2 Greedy Search (GS)

We select the models by greedily building 1, 2, ..., k
model ensembles optimizing for short or long an-
swer F1 using our core strategy.

4.4 Normalization Strategies

We investigate two primary methods for normaliz-
ing the scores predicted for a span: not normalizing
and logistic regression. We also investigated nor-
malizing by dividing the scores for a span by the
sum of all scores for the span, however we omit
these results for brevity as they did not produce
interesting results.

4.4.1 None

As a baseline we run experiments where the scores
for a span are used as-is.

4.4.2 Logistic Regression

We also experiment with normalization using lo-
gistic regression where the scores from the top pre-
diction for the “dev-train” examples is used to pre-
dict whether the example is correctly answered. In
our experiments using the top example performed
equally well to using the top 20 predictions per ex-
ample to train on. We also experimented with using
other features which did not improve performance.
To ensure an appropriate regularization strength
is used, we use the scikit-learn (Pedregosa et al.,
2011) implementation of logistic regression with
stratified 5-fold cross-validation to select the L2
regularization strength.

4.5 Aggregation Strategies

We consider a number of aggregation strategies to
produce a single span score for each span predicted
by a system for an example. These include the base-
line approach of max as well as the exponentially
decaying sum, reciprocal rank sum, and noisy-or
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methods influenced by IR. These approaches op-
erate on a vector P of scores on which one of the
above normalization strategies has been applied.

4.5.1 Max

For a vector P , score = max
|P |
i=1 Pi.

4.5.2 Exponential Sum (ExS)

Based on the ideas of (Young, 1974; Cormack et al.,
2009), we sort P in descending order and take

score =

|P |∑
i=1

Pi ∗ βi−1

for some constant β (we use β = 0.5).

4.5.3 Reciprocal Rank Sum (RRS)

Based on the ideas of (Cormack et al., 2009), we
sort P in descending order and take

score =

|P |∑
i=1

Pi ∗
1

i

4.5.4 Noisy-Or (NO)

Based on the ideas of (Kurland and Culpepper,
2018; Wu, 2012), we take

score = 1−
|P |∏
i=1

(1− Pi)

5 Experiments and Results
We examine two types of ensembling experiments:
(i) ensembling the same model trained with dif-
ferent seeds and (ii) ensembling different models.
Ensembling the same model trained on different
seeds attempts to smooth the variance to produce a
stronger result. On the other hand ensembling dif-
ferent models attempts to find models that may not
be the strongest individually but harmonize well
to produce strong results. Throughout this section
we will use SA F1 and LA F1 to denote the short
and long answer performance on “dev-test”. Sim-
ilarly we will use NS to indicate the number of
models searched for an experiment and types SA
and LA to indicate optimization for SA and LA F1
respectively.

5.1 Seed experiments

In Table 1 we find that there is a benefit to ensem-
bling multiple versions of the same model trained
with different seeds. Note that there is some data

# Models SA F1 LA F1

1 56.1 67.1
4 58.7 69.6

Table 1: Ensembling the same model trained with dif-
ferent seeds.

Search NS Type SA F1 LA F1

- - - 58.7 69.6
ES 20 LA 59.6 70.5
ES 20 SA 59.6 70.0
GS 41 LA 59.7 70.8
GS 41 SA 59.1 69.8

Table 2: Comparison of Search Strategies. All exper-
iments run without normalization using max aggrega-
tion. The first row is 4 seed ensemble from Table 1.

snooping ocuring here as the model is selected
based on full dev performance (which is a superset
of “dev-test”). RikiNet (Liu et al., 2020) and the
1 model performance reported above represent the
top published NQ models at the time of writing this
paper.

5.2 Main experiments

We investigate the different search strategies in Ta-
ble 2. We find that the greedy approach performs
best overall, with the greedy ensemble optimized
for LA performance performing the best on both
short and long answer F1. Note that the numbers
seen here, particularly when optimizing greedily
for long answer performance are higher than those
observed for ensembling the same model with mul-
tiple seeds. We hypothesize the superior general-
ization of greedy is due to exhaustive search “over-
fitting”. For the remainder of this paper we will
focus on greedy search optimized for long answer
to keep the number of experiments presented to a
manageable level.

We investigate the impact of the IR inspired nor-
malization strategies in Table 3. The max exper-
iment is as-before run without normalization to
greedily optimize for long answer F1. The other
experiments here are normalized with logistic re-
gression, as our experiments showed that not nor-
malizing decreased performance. We find that us-
ing max aggregation results in the best short answer
F1 whereas using normalized noisy-or aggregation
results in the best long answer F1. Based on these
results, we run a final experiment using unnormal-
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Aggregator SA F1 LA F1

Max 59.7 70.8
Exponential Sum 58.3 70.4
Reciprocal Rank Sum 57.3 70.7
Noisy-Or 57.3 71.5

Table 3: Comparison of IR inspired aggregation strate-
gies. All experiments run with a greedy search strategy
optimized exclusively for long answer F1 with logistic
regression normalization (except max which is not nor-
malized).

ized max for short answers and logistic regression
normalized noisy-or works for long answers. We
find that this approach produces the strongest per-
formance for both short and long answers with 59.3
SA F1 and 71.5 LA F1. Consequently we use un-
normalized max ensembling of GAAMA answers
(as GAAMA works on short answers) from 4 mod-
els in ARES. These numbers translate to a full dev
performance of 59.3 short answer F1 and 71.1 long
answer F1, which represents an improvement of
2.3 short answer F1 and 4.0 long answer F1 over
our best single model.

6 Ensemble Candidate Contributions
When doing manual error analysis on the NQ dev
set, we do observe patterns suggesting that each
of the ensemble components do bring different
strengths over the single best model. For exam-
ple, the Wikipedia article for Salary Cap contains
multiple sentences related to the query “when did
the nfl adopt a salary cap”:

The new Collective Bargaining Agreement (CBA)
formulated in 2011 had an initial salary cap of
$120 million...The cap was first introduced for
the 1994 season and was initially $34.6 million.
Both the cap and...

The later sentence contains the correct answer,
1994, since the question is asking for when the
salary cap was initially adopted. One of our mod-
els A correctly makes this prediction whereas an-
other one of our models B predicts 2011 from the
earlier sentence. There are also cases where the
correct answer span appears in the middle or later
part of a paragraph and, though our model B pre-
dict the spans correctly, they assign a lower score
(relative to its optimal threshold) than the model
A. The position bias, therefore, appears to hurt
the performance of the system in certain situations
where location of the answer span relative to the
paragraph is not a useful signal of correctness.

Finally, in our manual review we do see that the
ensemble of these models performs better in the
expected ways: (1) boosting scores when multiple
models agree on an answer span even though no
one model is extremely confident (2) reducing con-
fidence when there is disagreement among models.

7 Conclusion
We introduce a novel concept for a MRC service,
ARES, which uses an ensemble of models to re-
spond to requests. This provides for multiple advan-
tages over the traditional single model paradigm:
improved F1, the ability to control the performance
vs runtime tradeoff for each individual request, and
improved explaiability of results by showing both
candidate answers in addition to the final ensem-
bled answer. We outline several ensembling ap-
proaches for question answering models investi-
gated for use in ARES and compare their perfor-
mance on the NQ challenge. Our findings show
that ensembling unique models outperforms en-
sembling the same model trained with different
seeds and provide further analysis to show how
ensembling diverse models improves performance.
We also show that using unnormalized max aggre-
gation for short answers and logistic regression
normalized noisy-or aggregation for long answers
yields an F1 improvement of 2 to 4 points over
single model performance on the NQ challenge.
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