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Abstract

The recent improvements in machine
translation (MT) have boosted the use of
post-editing (PE) in the translation indus-
try. A new MT paradigm, neural MT
(NMT), is displacing its corpus-based pre-
decessor, statistical machine translation
(SMT), in the translation workflows cur-
rently implemented because it usually in-
creases the fluency and accuracy of the MT
output. However, usual automatic mea-
surements do not always indicate the qual-
ity of the MT output and there is still no
clear correlation between PE effort and
productivity. We present a quantitative
analysis of different PE effort indicators
for two NMT systems (transformer and
seq2seq) for English-Spanish in-domain
medical documents. We compare both sys-
tems and study the correlation between PE
time and other scores. Results show less
PE effort for the transformer NMT model
and a high correlation between PE time
and keystrokes.

1 Introduction

The use of machine translation (MT) systems for
the production of drafts that are later post-edited
has become a widespread practice in the transla-
tion industry. Research has concluded that post-
editing of machine translation (PEMT) is usually
more efficient than translating from scratch (Plitt
and Masselot, 2010; Federico et al., 2012; Green et
al., 2013). Thus, it has been included in the trans-
lation workflow because it increases productivity
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when compared with human translation (Aranberri
et al., 2014) and reduces costs (Guerberof, 2009)
without having a negative impact on quality (Plitt
and Masselot, 2010). Post-editors “edit, modify
and/or correct pre-translated text that has been pro-
cessed by an MT system from a source language
into (a) target language(s)” (Allen, 2003, p. 296).

In recent years, neural machine translation
(NMT) has produced promising results in terms of
quality, for example in WMT 2019 (Barrault et al.,
2019). This has increased the interest in this new
paradigm for the translation industry, which has
begun to substitute its corpus-based predecessor,
statistical machine translation (SMT), with new
NMT models. It has also boosted the incorpo-
ration of PEMT in many translation workflows.
In the 2018 Language Industry Survey,1 37% of
the respondents reported an increase of MT post-
editing and an additional 17% indicated that they
had started implementing this practice.

Given the improved-quality performance of
NMT and its widespread use in industrial scenar-
ios, it is necessary to study the potential this ap-
proach can offer to post-editing. One of the main
problems is that automatic scores give a general
idea of the MT output quality but do not always
correlate to post-editing effort (Koponen, 2016;
Shterionov et al., 2018). However, many profes-
sional translators state that if the quality of the MT
output is not good enough, they delete the remain-
ing segments and translate everything from scratch
(Parra Escartı́n and Arcedillo, 2015).

One of the main goals both of industry and re-
search is to establish a correlation between the
quality measurements of the MT output and trans-
lators’ performance. Regarding post-editing ef-
1http://fit-europe-rc.org/wp-content/uploads/2019/05/2018-
Language-Industry-Survey-Report.pdf?x77803



fort, all research uses the three separate but inter-
related, dimensions established by Krings (2001):
temporal, technical and cognitive. Temporal effort
measures the time spent post-editing the MT out-
put. Technical effort makes reference to the inser-
tions and deletions applied by the translator and is
usually measured with keystroke analysis, HTER
(Snover et al., 2006) or Levenshtein distance (edit
distance). Cognitive effort relates to the cognitive
processes taking place during post-editing and has
been measured by eye-tracking or think-aloud pro-
tocols. Krings (2001) claimed that post-editing ef-
fort could be determined as a combination of all
three dimensions. Even though no current mea-
sure includes them all, cognitive effort was found
to correlate with technical and temporal PE effort
in a study by Moorkens et al. (2015).

In this paper we present a preliminary com-
parative quantitative analysis of different post-
editing effort indicators (technical and temporal)
for two NMT systems for English-Spanish in-
domain medical documents. First of all, we trained
a transformer and seq2seq model and compared
them with Google Translate and an SMT engine
(check section 4.1 for further detail on the results).
As the NMT systems produced better quality re-
sults, we used them to translate three English-to-
Spanish medical texts. Then, two different trans-
lators post-edited each version with PosEdiOn,2 a
post-editing tool developed mainly to collect infor-
mation on different direct and indirect effort indi-
cators (technical and temporal effort).

In Section 2 we analyse some of the previous
work on post-editing effort. We explain the differ-
ent NMT architectures in Section 3. In Section 4
we detail the MT systems and corpora used. We
explain the experimental settings in Section 5 and
we present the results in Section 6.

2 Previous Work

NMT is not a new architecture, but it can only be
applied once the computational limitations have
been solved (Cho et al., 2014; Bahdanau et al.,
2015). The promising results obtained in auto-
matic metrics such as BLEU (Papineni et al., 2002)
have been paired with excellent scores in human
evaluation of NMT (Wu et al., 2016; Junczys-
Dowmunt et al., 2016; Isabelle et al., 2017) when
compared to SMT, which has been the predomi-
nant MT architecture so far.
2https://sourceforge.net/projects/posedion/

Once the improvement in quality has been de-
termined, it was necessary to analyse its benefits
for post-editing. One of the first complete papers
studying the impact of SMT and NMT in post-
editing was (Bentivogli et al., 2016). They car-
ried out a small scale study on post-editing NMT
and SMT outputs of English to German translated
TED talks. They conclude that NMT in general
terms decreases the post-editing effort, but de-
grades faster than SMT with sentence length. One
of the main strengths of NMT is reordering of the
target sentence.

Toral and Sánchez-Cartagena (2017) increase
the initial scope of the study by Bentivogli et al.
(2016) by increasing the language combinations
and the metrics. One of the main conclusions is
an improvement in quality when using NMT, al-
though it is not the same for all the language com-
binations.

Castilho et al. (2017) report on a compara-
tive analysis of phrase-based SMT (PBSMT) and
NMT. They compare four language pairs and dif-
ferent automatic metrics and human evaluation
methods. General results show a quality increase
for NMT, although it also highlights some of the
weaknesses of this new system. It focuses on
post-editing and uses the PET interface (Aziz et
al., 2012) to compare educational domain outputs
from both systems using different metrics. NMT
is shown to reduce word order errors and improve
fluency. However, even if keystrokes are reduced,
temporal PE effort exhibits no significant reduc-
tion.

Koponen et al. (2019) present a comparison of
PE changes performed on NMT, rule-based MT
(RBMT) and SMT output for the English-Finnish
language combination. A total of 33 translation
students participate in this English-to-Finnish PE
experiment. It outlines the strategies participants
adopt to post-edit the different outputs, which con-
tributes to the understanding of NMT, RBMT and
SMT approaches. It also concludes that PE effort
is lower for NMT than for SMT.

In industrial scenarios, Shterionov et al. (2018)
show that NMT systems obtain higher rankings
by human reviewers than phrased-based SMT in
all cases. They highlight that automatic measures
such as BLEU, F-measure (Chinchor, 1992) and
TER scores do not always correlate with NMT
quality. Rather, they usually tend to underesti-
mate it. Even in closely-related languages, which



System BLEU NIST WER DA
Marian S2S 0.3601 7.6142 0.6893 64
Marian Transformer 0.3616 7.3863 0.6334 68
Moses 0.3942 7.8146 0.7386 46
Google Translate 0.3304 7.1197 0.7788 56

Table 1: Automatic and DA evaluation figures

are traditionally post-edited with RBMT systems,
NMT systems with worse automatic metrics show
better results in human evaluation (Costa-Jussà,
2017; Alvarez et al., 2019).

Regarding PE effort indicators, PE time is one
of the most commonly-used elements to study
MT quality, although research shows considerable
variation among translators (Koponen et al., 2019).
HTER is another measure frequently used in the
industry due to its theoretical correlation to PE ef-
fort (Specia and Farzindar, 2010). However, re-
search has shown it does not always correspond to
translators’ perception of quality (Koponen, 2012;
Graham et al., 2016). In fact, some authors sug-
gest new ways of measuring PE effort taking into
account different scores (Scarton et al., 2019) or a
multidimensional approach that combines some of
the currently existing measures (Aranberri et al.,
2014).

Given the undeniable improvements in quality
NMT offers for post-editing, we study two differ-
ent NMT systems and how they affect different
indicators of post-editing effort. We also analyse
the correlation of PE time with different direct and
indirect measures of technical effort (keystrokes,
HBLEU, HTER and edit distance). As far as we
are aware, there are no studies comparing how two
different NMT outputs affect post-editing for En-
glish to Spanish in-domain texts.

3 NMT architectures

The basic architecture of NMT models (Cho et al.,
2014; Sutskever et al., 2014) consists of an encoder
and a decoder. First of all, each word included
in the input sentence is introduced as a separate
element into the encoder so that it can encode it
into an internal fixed-length representation called
the context vector. It contains the meaning of the
whole sentence. Then, the decoder decodes the
context vector and predicts the output sequence.

Instead of encoding the input sequence into a
single fixed context vector, attention (Bahdanau et
al., 2015) is proposed as a solution to the limitation

of the encoder-decoder model encoding the input
sequence to one fixed length vector. It develops a
context vector that is filtered specifically for each
output time step.

Transformer (Vaswani et al., 2017) follows
mainly the encoder-decoder model with attention
passed from encoder to decoder. It employs a self-
attention mechanism that allows the encoder and
decoder to account for every word included in the
entire input sequence. Transformer proposes to en-
code each position, apply self-attention in both de-
coder and encoder, and enhance the idea of self-
attention by calculating multi-head attention. This
improves performance expanding the model’s abil-
ity to focus on different positions and gives the
attention layer multiple sets of weight matrices.
There are no recurrent networks, only a fully con-
nected feed-forward network.

4 MT systems and training corpora

4.1 MT systems
For the experiments, we used Marian3 (Junczys-
Dowmunt et al., 2018) to train two NMT sys-
tems. For the first one (1) we used an RNN-based
encoder-decoder model with attention mechanism
(s2s), layer normalization, tied embeddings, deep
encoders of depth 4, residual connectors and
LSTM cells. For the second one (2), the trans-
former, we used the configuration in the example
of the Marian documentation,4 that is, 6 layer en-
coder and 6 layer decoder, tied embeddings for
source, target and output layer, label smoothing,
learn rate warm-up and cool down.

To establish a comparison baseline, we trained a
Moses model with the same corpus, and also used
Google translate. We assessed the resulting en-
gines with standard automatic metrics (see Table
1). The best scores for BLEU were obtained by
the Moses engine, even though WER was better
for the two NMT systems. This is in line with the
3https://marian-nmt.github.io
4https://github.com/marian-nmt/marian-
examples/tree/master/transformer



Corpus Segments/Entries Tokens eng Tokens spa
BMTR 816,544 14,726,693 16,836,428
Medline Abstracts 100,797 1,772,461 1,964,860
UFAL 258,701 3,202,162 3,437,936
Kreshmoi 1,500 28,454 32,158
IBECS 72,168 13,575,418 15,014,299
SciELO 741,407 17,464,256 19,305,165
MedLine 140,479 1,649,869 1,846,374
MSD Manuals 241,336 3,719,933 4,467,906
EMEA 366,769 5,327,963 6,008,543
Portal Clinic 8,797 159,717 169,294
Glossary MeSpEn 125,645 - -
ICD10-en-es 5,202 - -
SnowMedCT Denom. 887,492 - -1
SnowMedCT Def. 4,268 177,861 184,574
Total 4,430,765 66,147,518 74,663,550

Table 2: Size of the corpora and glossaries used to create the corpus to train the MT systems

results of recent research, which has shown certain
automatic metrics tend to underestimate NMT sys-
tems (Shterionov et al., 2018; Alvarez et al., 2019).

Additionally, we conducted a manual evaluation
of a 30-segment sample for the three MT outputs
employing monolingual direct assessment (DA) of
translation adequacy (Graham and Baldwin, 2014;
Graham and Liu, 2016). We used this DA setup
because it simplifies the task of translation assess-
ment (usually done as a bilingual task) into a sim-
pler monolingual assessment task. We obtained the
results averaging the assessment of two annotators
and the NMT systems received higher marks.

As it can be seen in Table 1, DA classified
Moses as the worst rated. Therefore, we decided
to include only the two NMT systems for the post-
editing tasks.

4.2 Corpora

To train the system we have used several publicly
available corpora in the English-Spanish pair:

• Biomedical translation repository (BMTR)5

• Medline abstracts training data provided by
Biomedical Translation Task 20196

• The UFAL Medical Corpus7 v1.0.
• The Khresmoi development data8

5https://github.com/biomedical-translation-corpora/corpora
6http://www.statmt.org/wmt19/biomedical-translation-
task.html
7https://ufal.mff.cuni.cz/ufal medical corpus
8https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-
2122

• The IBECS9 (Spanish Bibliographical Index
in Health Sciences) corpus.

• The SciELO corpus10

• The EMEA11 (European Medicines Agency)
corpus.

We have also created several corpora from web-
sites with medical content:

• Medline Plus12: we have compiled our own
corpus from the web and we have combined
this with the corpus compiled in MeSpEn.

• MSD Manuals13 English-Spanish corpus,
compiled for this project under permission of
the copyright holders.

• Portal Clı́nic14 English-Spanish corpus, com-
piled by us for this project.

We have also used several glossaries and
glossary-like databases treating them as corpora.
These resources contain a lot of useful terms
and expressions in the medical domain. Namely,
we have used the English-Spanish glossary from
MeSpEn, the 10th revision of the International
Statistical Classification of ICD and SnowMedCT.
With all the corpora and glossaries we have cre-
ated an in-domain training corpus of 4,430,765
segments and entries.
9http://ibecs.isciii.es
10https://sites.google.com/view/felipe-soares/datasets
11http://opus.nlpl.eu/EMEA.php
12https://medlineplus.gov/
13https://www.msdmanuals.com/
14https://portal.hospitalclinic.org



T1 (S2S) T2 (S2S) T3 (T) T4 (T)
mean st. dev. mean st. dev. mean st. dev. mean st. dev.

HTER 0.16 0.12 0.11 0.09 0.17 0.17 0.12 0.17
HBLEU 0.53 0.27 0.65 0.27 0.56 0.29 0.67 0.33
HEd 1.28 1.19 0.84 0.94 1.56 2.04 1.09 2.07
Keys/tok 6.36 28.25 3.38 5.25 7.53 27.62 5.91 25.59
PETpT 9.19 33.97 4.61 8.56 4.57 12.22 3.03 8.69

Table 3: PE-based metrics (mean and standard deviation) for the task

S2S NMT Transf. NMT
mean st. dev. mean st. dev.

HTER 0.13 0.10 0.11 0.09
HBLEU 0.59 0.27 0.65 0.27
HEd 1.06 1.06 0.84 0.94
Keys/tok 4.87 16.75 3.38 5.25
PETpT 6.90 21.26 4.61 8.56

Table 4: Total PE-based metrics for each NMT model

In Table 2 the size of all corpora and glossaries
used for training the MT systems is shown. Figures
are calculated eliminating all the repeated source
segment-target segment pairs in the corpora.

5 Experiment

We used the two NMT systems (transformer and
s2s) trained with the corpora described above to
translate from English into Spanish three texts
(1468, 631 and 2247 words respectively) from the
medical domain.

Four professional translators with at least one
year of post-editing experience carried out the
task: two of them post-edited the s2s output (T1
and T2) and the other two, the transformer output
(T3 and T4). They were asked to produce publish-
able quality translations. As we wanted to reduce
the external variables as much as possible, they
all used PosEdiOn15, a computer-assisted transla-
tion tool specifically designed for assessing post-
editing effort, which logs both post-editing time
and edits (keystrokes, insertions and deletions, that
is, technical effort). The main characteristics of
the post-editing tool were also explained to them
before starting the task.

In order to avoid any bias, translators never post-
edited the same text twice. However, they were
told that an NMT system was used to produce the
output. They received previous information on

15https://sourceforge.net/projects/posedion/

the tool and a three day period to test it before
doing the task. They were paid their usual rate
and had a two-week deadline. Two of them ex-
pressed concerns about the tool, as they preferred
to work with their usual tools. However, they did
not think it would affect the final quality of their
job or their usual working speed. While post-
editing, they could search for all the required in-
formation in order to produce the final translation.
They could also pause the post-editing task when-
ever they wanted.

6 Results

6.1 PE effort indicators

Once translators finished post-editing, we calcu-
lated the following task-specific (PE based) met-
rics (showed in Table 3):

• PETpT, PE time in seconds normalised by
the length of the target segment in tokens.

• HTER, the TER value comparing the raw
MT output with the post-edited segment.

• HBLEU, the BLEU score obtained by com-
paring the raw MT output with the post-edited
segment.

• HEd, an edit distance value (Levenshtein dis-
tance) calculated comparing the raw MT out-
put with the post-edited segment.

• Keystrokes normalized by the number of to-
kens.



Post-editor Unmodified seg.
T1 (S2S) 22
T2 (S2S) 31
T3 (T) 19
T4 (T) 58

Table 5: Unmodified segments after post-editing

Figure 1: Scatter plot of keystrokes and time for all of the translators

In order to avoid the maximum number of out-
liers, we did not include those segments in which
(normalized) time or (normalized) keystrokes dou-
bled the mean plus the standard deviation of the to-
tal time or number of keystrokes. As usually hap-
pens in these types of tasks, post-editing effort in-
dicators show a considerable variation among dif-
ferent translators. For the seg2seg model, transla-
tors showed a difference of 4.58 PETpT between
them. This difference was reduced to 1.54 in the
case of the transformer model. However, if we
check the total figures for each of the systems (see
Table 4), post-editing time is clearly reduced for
the transformer model, as well as all the other
scores.

We also used the distribution-agnostic Kol-
mogorov–Smirnov test to compare the distribution
of PETpT for the two translators of each NMT
model. We found there was no clear distribution
(considering p <0.05). This would seem to indi-

cate the need to increase the number of translators
for any given post-editing test to obtain a more rep-
resentative mean.

Another interesting figure to understand PE ef-
fort is the number of unmodified segments. Even
though that does not mean those segments imply
no PE effort, it could give an indication of MT out-
put. Table 5 shows the number of unmodified seg-
ments per translators from a total of 224 segments.
There is not a clear tendency for any MT system,
but rather a preference corresponding to the indi-
vidual translator, especially T4, who didn’t modify
a high number of segments, which correlates to the
low PE time recorded.

We also checked PETpT related to segment
length, as research has shown longer segments
tend to imply higher PE effort (Bentivogli et al.,
2016). We studied segments with more than 35
tokens to see if PETpT or any other PE effort indi-
cator increased. We could find no statistically sig-



T1 (S2S) T2 (S2S) T3 (T) T4 (T) ALL
HTER 0.309* 0.545* 0.418* 0.00705* 0.49*

HBLEU -0.072 -0.209 -0.148 -0.370* -0.21*
HEd 0.043* 0.706 0.0770* 0.809* 0.66
Keys 0.823* 0.868* 0.824* 0.822* 0.82*

Table 6: Spearman’s correlation with time as a gold standard for different effort indicators (*p<0.001)

Figure 2: Correlation for best and worst segments

nificant evidence linking segment length to trans-
lators’ effort in our experiments. This could indi-
cate newer NMT models do not always reduce MT
quality in longer segments.

Our results with a limited number of transla-
tors confirm previous studies (Castilho et al., 2017;
Shterionov et al., 2018; Alvarez et al., 2019) and
further, more extensive experimentation is needed
in order to obtain meaningful indicators of MT out-
put quality.

6.2 Correlation between scores

Once we established the overall results per each
model, we tried to identify which metric produced
scores that were closest to the total time spent per
segment. We calculated Spearman’s correlation
coefficient between the total amount of time and
all other metrics.

As can be seen in Table 6, the best overall cor-
relation is found with the number of keys (see Fig-
ure 1) for all translators as well as for the total,
followed by the calculated edit distance. Most of
the results obtained show a statistically significant
correlation, especially those figures relating to the
number of keystrokes (*p<0.001).

These results are in line with the conclusions
reported by previous work (Graham et al., 2016;
Scarton et al., 2019) that found no clear correla-
tion between temporal effort and the most frequent
metrics, even though the number of keystrokes was
the metric more closely related.

6.3 Tails distribution

There was a lack of correlation between the distri-
bution of PE time among translators, and between
this indicator and the others. We wanted to take a
closer look at the best and worse segments to anal-
yse if the correlation improved. We counted the
number of common segments between the 50 best
and worst time segments and all other metrics cal-
culated.

As can be seen in Figure 2, there is a better cor-
relation for the segments in which less time was
spent. Furthermore, the edit distance shows the
best correlation in these cases. For the segments
with the higher time recorded, correlation is no-
tably reduced in all cases and the edit distance and
the number of keystrokes show a higher correla-
tion.

7 Concluding remarks

There is a need for reliable metrics to evaluate MT
quality in order to produce outputs which trans-
lators can post-edit without too much effort. Our
experiments have shown that no single PE indica-
tor can provide all the information necessary to as-
sess the quality of the MT output. PE time pro-
vides a useful measure, even though it does not
always correspond with other PE metrics and in-
cludes a great variation among translators. The
only score that seems directly related to tempo-
ral effort are keystrokes (technical effort), but not



HTER or HBLEU.
In industrial scenarios, the quality of a certain

MT output is usually linked to PE time. The re-
sults of our experiments suggest that the analy-
sis of temporal effort can indicate the quality of
the MT output, but we believe a multidimensional
approach that includes different effort indicators
would be a safer path to assess to convenience of
post-editing a certain MT output.

Our future work will study further indicators of
MT quality for post-editing in depth, mainly the
characterization of source text to assess PE effort.
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