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Abstract

The Predictor-Estimator framework for
quality estimation (QE) is commonly used
for its strong performance, where the pre-
dictor and estimator works on feature ex-
traction and quality evaluation, respec-
tively. However, training the predictor
from scratch is computationally expensive.
In this paper, we propose an efficient trans-
fer learning framework to transfer knowl-
edge from NMT dataset into QE mod-
els. A Predictor-Estimator alike model
named BAL-QE is also proposed, aiming
to extract high quality features with pre-
trained NMT model, and make classifica-
tion with a fine-tuned Bottleneck Adapter
Layer (BAL). The experiment shows that
BAL-QE achieves 97% of the SOTA per-
formance in WMT19 En-De and En-Ru
QE tasks by only training 3% of parame-
ters within 4 hours on 4 Titan XP GPUs.
Compared with the commonly used NuQE
baseline, BAL-QE achieves 47% (En-Ru)
and 75% (En-De) of performance promo-
tions.

1 Introduction & Related work

Translation quality estimation (QE) has become
one of the important research topics in the dis-
cipline of machine translation (MT). QE aims to
solve the problem of how to evaluate the qual-
ity of the translation results and predict the types
of errors and locations (Specia et al., 2013), with
only source sentences and machine translation re-
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Figure 1: The architecture of BAL-QE, where two Trans-
formers are used to produce features in both direction, then,
being processed by dual Bottleneck Adapters and fed into
classifiers.

sults, without the post edited reference. (Junczys-
Dowmunt, 2019; Yang et al., 2019b; Yang et al.,
2019a). QE tasks can be divided into word level,
phrase level and sentence level. In this paper, we
only focus on word-level QE tasks.

There are two main categories of neural net-
work machine translation quality estimation sys-
tems, end-to-end neural network framework and
two-stage neural network architecture. A represen-
tative architecture of the first one is named Neural
QE (NuQE) (Kreutzer et al., 2015; Martins et al.,
2016), which directly predicts sequence labels by
passing source and MT results into a unified model
composed with several bi-LSTM layers. The other
one is Predictor-Estimator architecture (Kim and
Lee, 2016; Kim et al., 2017; Wang et al., 2018; Li
et al., 2018), which is composed of two subsequent
neural models: 1) a word prediction model that



Figure 2: (Houlsby et al., 2019) The performance gain of
the transfer learning on 18 GLUE corpus, which is based
on adapters, which achieves 99.6% of SOTA performance by
only adding 3% of training parameters

predicts each word given the left and right context
of the source and target corpus, and 2) a quality es-
timation model, which estimates word-level labels
based on the features generated by the predictor.
Because the predictor itself can be regarded as a
neural machine translation (NMT) system, which
can be trained based on a large volume of exter-
nal parallel corpora and provides high quality se-
mantic features, Predictor-Estimator framework is
much better than NuQE.

Transfer learning (TL) or fine-tuning large pre-
trained language models (PLMs) is an effective
method in NLP, which can produce strong perfor-
mance on many NLP tasks (Dai and Le, 2015;
Howard and Ruder, 2018; Radford et al., 2018).
There are two types of transfer learning. The first
one is full-parameter fine-tuning with in-domain
data, which aims to fit the distribution of in-
domain data without damaging out-domain perfor-
mance. The other one is to add additional layers to
the original architecture as adapters and only up-
date those newly added layers, resulting in a sig-
nificant speed-up for fine-tuning. The Bottleneck
Adapter Layer (BAL) (Houlsby et al., 2019; Re-
buffi et al., 2017) proposed by Google in 2019,
shows that BAL-based transfer learning could ob-
tain 99.6% of the SOTA performance by only train-
ing 3% of the parameters.

The contribution of our paper is as follows:

• We propose an efficient transfer learn-
ing framework which transfers knowledge
learned from NMT tasks to QE tasks by fine-
tuning the pre-trained NMT model with QE
data.

Figure 3: (Houlsby et al., 2019) Bottleneck Adapter Layer
for Transformer fine-tuning. Only three green parts in the
right, including Feedforward down-project, Nonlinearity and
Feedforward up-project, are need to be trained, the parame-
ters of the left transformer are fixed, total training parameters
ratio is 3%.

• We propose the BAL-QE which achieves
97% of the SOTA performance by only train-
ing the Bottleneck layer which is equivalent
to 3% of parameters of the entire model, and
converges within 4 hours. The model is open-
sourced.

2 Modelling of BAL-QE

2.1 Modelling of QE

For a word-level QE task, tokens correctly trans-
lated should be tagged as OK, while mistranslated
or ignored tagged as BAD. Besides, there should
be tags for gaps. We consider gaps as the po-
sition between each two words. Words correctly
aligned with the source are tagged as OK, other-
wise as BAD. If one or more words are missing in
the translation, their positions (gap) are tagged as
BAD, and OK otherwise. (Wang et al., 2019).

More formally, QE can be considered as taking
two sequences as inputs (i.e. source text and the
translated text (MT) required for evaluation) and
outputs a single sequence (i.e. tags), as shown in
Figure 4. When there are K tokens in MT, the
word tag should have same length, and the gap tag
should have a length of K + 1 which is the num-
ber of positions between two words as well as the
beginning and the end. The length of all tags is
2K+1, representing the combination of word and
gap tags. Here, we define the QE system as a func-
tion f :

[e1, ..., e2K+1] = f([x1, ..., xm], [ŷ1, ..., ŷk]) (1)



Figure 4: An example of QE, where the word tag represents for whether the predicted token is correct, the gap tag means
whether there are missing words between two predicted words. All tag is the staggered arrangements of the word and the gap
tag.

where e represents tags, x is source text and ŷ is the
translation. We stagger the word tags and gap tags
one by one to create the all tag sequence, where
even indices are word tags and odd indices are gap
tags (counting from 1). For a word tag, if the tag is
BAD, it means the translated word is incorrect or
has to be deleted. For a gap tag, if the tag is BAD,
it means there are missing words in the gap.

2.2 Optimized Loss Function

With the improvement of the performance of NMT
systems, the proportion of BAD tags becomes
much fewer than OK tags in QE corpus. There-
fore the loss function has to be optimized to handle
such imbalance. We optimize the imbalance from
three aspects: 1) Improving the effect of BAD tags
on the model. 2) Optimizing three losses with ap-
propriate weights. 3) Applying MCC as evaluation
metrics to obtain reasonable results.

To improve the effect of BAD tags, we use a
hyper-parameter α in the loss function to control
the punishments of incorrect prediction of BAD
tags. The newly introduced loss is denoted as fol-
lows:

L∗ =

{
−[y log p+ (1− y) log(1− p)], if y = 1

−α[y log p+ (1− y) log(1− p)], if y = 0

(2)
where y = 1 represents for OK tag and y = 0

represents for BAD tag. The α is set as 9 in the
experiment due to the ratio of OK and BAD is
0.88:0.12 and 0.93:0.07 for word and gap tag re-
spectively (Wang et al., 2018; Wang et al., 2019).

Apart from the imbalance optimized loss, we

also use multi-task learning to optimize the model
by simultaneously optimizing the loss of words,
gaps and all tags. The merged loss is represented
as:

L =
∑
t∈T

λtL∗t (3)

where T = {all-tag,word-tag, gap-tag}, and∑
t∈T λt = 1.

2.3 Evaluation Metrics

QE can be considered as a sequential labelling
problem with two classes. A fine-grained F1-score
and MCC are used to evaluate the results because
of the imbalance. The fine-grained F1-score is
composed of F1all, F1word and F1gap. For each F1,
it can be computed as F1t = F1t-OK×F1t-BAD, t ∈
T . The F1 is calculated as standard form: F1=(2
× precision × recall) / (precision + recall)

Additionally, we use Matthews correlation coef-
ficient (MCC) for producing unbiased evaluations
over the unbalanced predictions. MCC is com-
puted as follows:

S =
TP + FN

N
(4)

P =
TP + FP

N
(5)

MCC =
TP
N − SP√

SP (1− S)(1− P )
(6)

2.4 Model Architecture of BAL-QE

When applying transfer learning on QE, we need
a pre-trained NMT model and an adapter layer for



MT(ALL) MT(Word) MT(Gap)

F1all F1-BAD F1-OK MCC F1word F1-BAD F1-OK MCC F1gap F1-BAD F1-OK MCC

EN RU

UNBABEL 0.45961 0.478018 0.960251 0.401625 0.48894 0.529076 0.924197 0.418838 0.18664 0.189196 0.984127 0.1836
ETRI 0.3895 0.4051 0.9617 0.3325 0.4215 0.4561 0.924 0.34675 0.1609 0.1631 0.9803 0.152

baseline 0.2412 0.250005 0.9325 0.2145 0.222286 0.284211 0.914 0.21913 0.101053 0.102 0.932 0.096
Uni BAL-QE 0.35055 0.36459 0.942 0.29925 0.37935 0.41049 0.922 0.312075 0.1358 0.14679 0.972 0.1368
Bi BAL-QE 0.424555 0.441559 0.96098 0.367063 0.45522 0.492588 0.924098 0.382794 0.1876 0.176148 0.982213 0.1678

EN DE

UNBABEL 0.4523324 0.47 0.962 0.380471 0.495305 0.5336 0.933962 0.367166 0.313835 0.317975 0.987382 0.2737
ETRI 0.4028 0.4198 0.9595 0.342088 0.4307 0.464 0.9283 0.319275 0.2729 0.2765 0.9871 0.238

baseline 0.2974 0.311702 0.954984 0.254 0.319795 0.34452 0.927326 0.237062 0.202628 0.205301 0.985366 0.175172
Uni BAL-QE 0.346408 0.361028 0.955679 0.294195 0.370402 0.39904 0.948718 0.274577 0.234694 0.23779 0.987342 0.20468
Bi BAL-QE 0.4275662 0.4449 0.96075 0.361279 0.463003 0.4988 0.931131 0.343221 0.293368 0.297238 0.987241 0.25585

Table 1: The experimental result, note that top-2 results are bold. F1all, F1word, F1tag are the multiplication of F1-OK and
F1-BAD in specific level.

Split Pair Sentences Words BAD source BAD target HTER

Train
EN-DE 13,442 234,725 28,549(12.16%) 37.040(7.06%) 0.15(±0.19)
EN-RU 15,089 148,551 15,599 (10.50%) 18,380 (6.15%) 0.13 (±0.24)

Dev
EN-DE 1,000 17,669 2,113 (11.96%) 2,654 (6.73%) 0.15 (±0.19)
EN-RU 1,000 9,710 1,055 (10.87%) 1,209 (6.17%) 0.13 (±0.23)

Test
EN-DE 1,023 17,649 2,415 (13.68%) 3,136 (8.04%) 0.17 (±0.19)
EN-RU 1,023 7,778 1,049 (13.49%) 1,165 (7.46%) 0.17 (±0.28)

Table 2: The detail of WMT19 QE dataset

downstream tasks. However, different from orig-
inal MT tasks which generate tokens depending
on previous history, the input of QE is a known
sequence which means that when evaluating the
token in the current step, we can use future con-
texts. Therefore, we propose the BAL-QE model
which contains three parts: 1) Two pre-trained
NMT models, ML2R and MR2L. 2) Two Bottle-
neck Adapters for decoders of ML2R and MR2L. 3)
A classifier layer.

The two pre-trained NMT models are
Transformer-big (Ng et al., 2019; Junczys-
Dowmunt, 2019), including 6 encoders and 6
decoders composed of multi-head self-attentions
and cross-attentions. The only difference of
the two Transformers used in BAL-QE is the
generating direction.

As shown in Figure 3, the Bottleneck Adapter
is like an auto-encoder (Houlsby et al., 2019;
Artetxe and Schwenk, 2019; Howard and Ruder,
2018; Rebuffi et al., 2017), which is composed
of three parts: 1) The feed-forward down-project,
which maps the input vector into low-dimensional
space. 2) The nonlinear layer, which is actually
is an activation function. 3) The feed-forward up-
project, which recovers the vector back to high-
dimensional space. 4) A residual connection be-
tween the inputs and outputs.

The last classifier layer is a linear layer, which
takes the concatenated output vectors from two
adapters as input, and makes binary classification
of each tag. Not surprisingly, we find that bidirec-
tional predictor (dual Transformer) could improve
8% of the performance compared with unidirec-
tional predictor (single Transformer).

3 Experiment

3.1 Dataset

The Dataset used in the experiment is from
WMT19 Quality Evaluation Task1, including two
languages (En-De, En-Ru). There are 13,000 sen-
tence pairs for En-De, with approximately 234,000
tokens. The proportion of BAD tag in German MT
sentences is 7.06%. En-Ru contains totally 15,000
sentence pairs with 148,000 tokens and 6.15% of
BAD tags. More details are shown in Table 2.

3.2 Setup of Pre-training Two Transformers

The pre-training of the Transformer is similar
with the setup of FAIR SOTA model in WMT19
(Ng et al., 2019), which is implemented with
fairseq1. BPE is used for tokenizing, where 32000
tokens are reserved. We use UN corpus and
Common Crawl parallel corpus with the size of

1https://github.com/pytorch/fairseq



Total Params Training Params Training Ratio

Uni BAL-QE 216,235,012 6,323,204 2.92%
Bi BAL-QE 432,470,002 12,646,406 2.92%

Table 3: The comparison of parameters of BAL-QE

27,000,000. We also use back-translation to pro-
duce 20,000,000 augmented corpus. The BLEU of
ML2R andMR2L are 42.3 and 41.8 for EN-DE, 36.2
and 35.9 for EN-RU respectively, with less than
2% of difference compared with the SOTA result
of published fairseq implementation.

3.3 Setup of Fine-tuning BAL-QE
In the fine-tuning of BAL-QE, the parameter of
two Transformers are fixed, and we only update
the two adapters as well as the classifier, which
means that only 2.92% of parameters are trained
in the fine-tuning, as shown in Table 3. Adam
is used as the optimizer with a triangular learn-
ing rate schedule with peak learning rate as 5e-
5. We use a maximum of 1,024 tokens per batch
and save checkpoints every 1,000 steps, on the ex-
ponential moving averaged parameters (Junczys-
Dowmunt, 2019) with a decay rate of 1e-4. BPE
is applied with subword-nmt, and 32,000 tokens
are reserved. It takes 2 hours and 38 minutes and
4 hours and 02 minutes to train the unidirectional
and bidirectional BAL-QE on 4 Titan XP GPUs,
respectively.

3.4 Analysis
As shown in Table 1, MT (ALL), MT (Word) and
MT (Gap) represents evaluation results of All Tag,
Word Tag and Gap Tag, respectively. The base-
line is a model of NuQE. On En-De and Ee-Ru
datasets, the unidirectional BAL-QE improves per-
formance by 17% and 45%, and the bidirectional
BAL-QE improves by 44% and 75%, compared
with the baseline. All metrics of bidirectional
BAL-QE achieves top-2 rank, and the F1-OK of
En-Ru achieves the SOTA result.

4 Conclusion

This paper proposes a Predictor-Estimator QE
model based on the Bottleneck Adapter Layer and
the Transformer. An efficient transfer learning
framework is also proposed, which could trans-
fer knowledge learned from NMT parallel cor-
pora into the QE task to improve the training ef-
ficiency of the proposed BAL-QE model. Experi-

ments shows that partially training the model (esti-
mator) could effectively speed up the training and
achieves 97% of the SOTA performance.
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