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Abstract

This paper examines approaches to bias a
neural machine translation model to adhere
to terminology constraints in an industrial
setup. In particular, we investigate varia-
tions of the approach by Dinu et al. (2019),
which uses inline annotation of the target
terms in the source segment plus source
factor embeddings during training and in-
ference, and compare them to constrained
decoding. We describe the challenges with
respect to terminology in our usage sce-
nario at SAP and show how far the investi-
gated methods can help to overcome them.
We extend the original study to a new lan-
guage pair and provide an in-depth evalua-
tion including an error classification and a
human evaluation.

1 Introduction

With over one billion words per year, SAP deals
with a huge translation volume; covering prod-
uct localization and translation of documentation,
training materials or support instructions for up
to 85 languages. With a wide range of prod-
uct lines in different industries, translation settings
are diverse. There are over 100 active transla-
tion domains for which we maintain translation re-
sources such as translation memories and termi-
nologies. At SAP we usually train multi-domain
neural machine translation (NMT) engines, whose
input consists of a multitude of data sources includ-
ing the contents of the company-internal transla-
tion memories from various domains. The result-
∗Employed as a working student at SAP during this project.
© 2020 The authors. This article is licensed under a Creative
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ing NMT system produces high-quality technical
translations, but has difficulties generating appro-
priate and coherent terminology in specific con-
texts. Given the great importance of correct and
consistent terminology in technical translation, this
is a nuisance for the translators that work in a post-
editing scenario as well as for users consumingma-
chine translation (MT) in a self-service scenario.
In our translation environment, translators are

assigned projects along with the relevant transla-
tion domain’s terminology. To achieve term con-
sistency, SAP maintains SAPterm1, a large termi-
nology database which also specifies viable term
translations. Translators can easily select target
terms from SAPterm in a computer-assisted trans-
lation (CAT) environment, but applying terminol-
ogy constraints in NMT is a challenge. As we do
not have reliable term recognition or morphologi-
cal inflection generation tools for all our productive
languages at our disposal, we require an approach
that not only enforces the correct terminology but
also learns its contextually appropriate inflections.
To that end, we investigate the approach pre-

sented in Dinu et al. (2019), which combines in-
line annotation with source factors (Sennrich and
Haddow, 2016), that provide an additional in-
put stream with terminology annotation, to show
how domain-specific terminology can be enforced
in a multi-domain NMT model. The approach
should be capable of handling unseen terminology
while retaining NMT’s ability to produce fluent
output sequences without the need for additional
resources such as morphological generators and
without drastically reducing decoding speed. We
will present results for variations of this approach
which were not investigated in Dinu et al. (2019),

1http://www.sapterm.com/



but could be of interest to users of NMT who plan
to implement that approach in a productive system.
While the WMT news translation task that Dinu

et al. (2019) evaluate on is a viable test bed for
new methods, we aim to validate that the method
is also applicable to other scenarios, such as the
translation of texts from the business and IT con-
text of SAP, when constraining it with entries from
SAPterm. We furthermore extend the original
study to a new language pair (English–Russian) and
provide an in-depth evaluation including a human
assessment. Our study yields very promising re-
sults, amongst others improvements of up to 11
BLEU points on terminology data, and paves the
way to the customization of NMT at SAP: a se-
lected SAPterm glossary can be applied directly
when producing MT proposals for a translation
project. This yields better translation quality, helps
to reduce post-editing costs and eases translators’
frustration with correcting terms.

2 Related Work

Several approaches to make NMT adapt to a
domain-specific terminology have been proposed
in the literature. Fine-tuning on in-domain training
data on-the-fly (Farajian et al., 2018; Huck et al.,
2019) is shown to improve translation quality and
term accuracy but creates additional technological
challenges formodelmanagement and increases in-
frastructure costs. Additionally, terminology con-
straints cannot be specified on a sentence or docu-
ment level, but instead need to be distinctly present
in the available training data, which often is not
the case in a productive scenario. The latter ar-
gument also holds for domain-aware MT (Kobus
et al., 2017), where a multi-domain model distin-
guishes the translation domains using a domain tag,
which is prepended to the source segment.
Since terminology databases are available in

most translation environments, integrating them
into NMT at run-time to enable domain-specific
translation is an ongoing research topic. Early ap-
proaches use placeholder tokens for source and
target (for example (Crego et al., 2016)). Place-
holder approaches often suffer from disfluency as
the NMT model does not have access to the term
and therefore has difficulties creating a fluent and
morphologically sound translation.
Constrained decoding is one of the most promi-

nent approaches to enforcing terminology in NMT.
The decoder is subject to a set of constraints that

are strictly enforced during decoding (Hokamp and
Liu, 2017; Chatterjee et al., 2017). Some issues
with constrained decoding have already been ad-
dressed, such as better positioning of target terms
by exploiting the correspondence between source
and target terms (Hasler et al., 2018), and improv-
ing performance for the base approach (Post and
Vilar, 2018; Hu et al., 2019). Nevertheless, the in-
crease in decoding time compared to unconstrained
decoding is still considerable (cf. Section 5). Also
the output surface form is enforced exactly as pro-
vided by the constraint and nomorphological adap-
tation is applied by the decoder. This leads to mis-
placed constraints and broken sentences (Burlot,
2019) as well as special cases where surface form
variants of an enforced term are being produced
by the decoder but not picked up by the constraint,
leading to a duplication as the constraint produces
the terminology again (Dinu et al., 2019).
Dinu et al. (2019) offer a different approach to

applying terminology constraints in NMT. The tar-
get terms are inserted into the source string during
training and decoding, and thus the model learns
a copying behavior. An indication of which words
are source terms, target terms or no terms is pro-
vided to the model via an additional input stream.
This input is encoded as source factors, in the
same way that linguistic features can be encoded
(Sennrich and Haddow, 2016). For the English–
German WMT 2018 news translation task, mod-
erate improvements in BLEU and term accuracies
>90% are reported. The zero-shot nature of this
approach enables the application of unseen termi-
nology at test time. Furthermore, Dinu et al. (2019)
report cases of generating morphological variants
of terminology entries in the output, while decod-
ing times are not increased compared to the base
model. As the ability to apply terminology con-
straints is trained into the NMT model by either
appending the target term to the source term or by
replacing it, Dinu et al. (2019) refer to their models
as train-by models, and we will continue doing so.
Many commercial providers of MT offer an op-

tion to upload a user dictionary in order to cus-
tomize the NMT output to enforce a certain termi-
nology.2 This is a feature that users became ac-
2Accessed on February 21st, 2020:
Amazon Translate: https://aws.amazon.com/blogs/machine-
learning/introducing-amazon-translate-custom-terminology/
Google Translate: https://cloud.google.com/translate/docs/
advanced/glossary
Microsoft Translator: https://docs.microsoft.com/en-
us/azure/cognitive-services/translator/dynamic-dictionary



customed to in rule-based and statistical MT, and
consequently they expect a similar functionality for
NMT as well. Naturally, the commercial providers
usually leave us in the dark about the technology
that is used for the implementation of that feature.
Such custom terminology features are described
more for marketing purposes rather than from an
objective technical viewpoint. Usually, no trans-
parent evaluation results are available. Some prod-
uct descriptions are nevertheless fair enough to de-
scribe the limitations of the feature and best prac-
tices.

3 Methodology

We experiment with variants of the train-by ap-
proach introduced by Dinu et al. (2019), which is a
form of inline term annotation. Target terms tt are
inserted into a source sentence by either appending
them to the source term ts (append) or by replac-
ing ts completely (replace). An additional signal is
provided by a term annotation for each input token,
where 1 means part of a source term, 2 means part
of a target term and 0 is the default. An example
for the input is provided in Table 1.
The term annotations are presented as source

factors and have their own embedding vectors,
which are combined with the respective (sub-)
word embeddings to represent the input of the
encoder in an encoder-decoder NMT architecture
(Sennrich and Haddow, 2016). The two embedding
vectors can be combined by either concatenating
(concat) or summing (sum) them. This makes the
dimensionality of the source factor embedding ei-
ther a variable-sized (concat) or a fixed sized (sum)
vector. While Dinu et al. (2019) only report results
for the concatenation strategy with an embedding
size of 16, we investigate an embedding size of 8
as well as the vector summarization combination.
We are also interested in the impact of the source

factors themselves, and thus investigate whether
the additionally provided annotation is actually
necessary by using only the inline annotation and
no term factor annotation.
The source sentences are annotated as described

for all terminology entries (ts, tt ), when ts is present
in the source and tt occurs in the reference. To

SDL: https://www.sdl.com/about/news-media/press/
2018/sdls-neural-machine-translation-sets-new-industry-
standards-with-state-of-the-art-dictionary-and-image-
translation-features.html
Systran: https://blog.systransoft.com/our-neural-network-
just-learned-syntax/

check whether a term occurs in a sentence, we use
a matching strategy that also covers morphologi-
cal variants. This is essential as our terminological
database contains base forms only. Note that we in-
sert tt into the source in its base form, because this
will also be the scenario at test time.
During training, the model learns to copy the in-

jected target terms to the output. We expect to see
morphological variants of the base terms in the out-
put in accordance with the context of the sentence,
as is reported in Dinu et al. (2019).

4 Experimental Setup

We evaluate the application of terminology con-
straints in the usage scenario of MT at SAP, for
two language pairs English–German (en–de) and
English-Russian (en–ru). We use target languages
that are relatively morphologically rich because we
want to investigate whether the approach is able to
produce the target terms in an appropriate morpho-
logical form.

4.1 Data and Data Preparation
Corpus Our parallel data consists of a large
collection of proprietary translation memories
from within SAP. It is a multi-domain corpus
covering different content types, such as doc-
umentation, user interface strings and training
material in relation to various SAP products.
For all our training/validation/test sets we use
5,000,000/2,000/3,000 parallel segments respec-
tively. We use two test sets, where the first is tar-
geted towards the evaluation of terminology and
contains at least one terminology entry pair in each
sentence, whereas the other does not have terminol-
ogy annotated. We will refer to them as terminol-
ogy and no-terminology test sets respectively.

Terminology SAPterm is organized into con-
cepts where terms that are translations of each
other are linked. A concept can cover different
term types, such as a main term entry, its syn-
onyms, acronyms or abbreviations. To generate
a high-quality glossary, we only consider source-
target term pairs consisting of main term entries
and their synonyms. To avoid common words and
spurious entries, we filter out high-frequency and
low-frequency entries.3 We therefore only select
a subset of all entries in SAPterm, consisting of
3We filter out term pairs where the English side occurs more
than 5,000 times or less than 100 times in a large corpus (>20
million sentences) of proprietary SAP data.



append en This0 indicator0 is0 only0 necessary0 for0 manual1 depreciation1 manuelle2 Abschreibung2 and0
write-ups0 .0

replace en This0 indicator0 is0 only0 necessary0 for0 manuelle2 Abschreibung2 and0 write-ups0 .0
Ref. de Das Kennzeichen wird nur für manuelle Abschreibungen und Zuschreibungen benötigt .

Table 1: Example input for the two term injection methods append and replace. Source factors are indicated as indices. The
terminology entry is (manual depreciation, manuelle Abschreibung).

en–de en–ru

train 784,666 582,281
validation 303 238
terminology test 4,868 3,510
no-terminology test 0 0

Table 2: Number of term annotations

116,188 entries for English–Russian and 153,417
entries for English–German.

We apply a fuzzy matching strategy to find and
annotate the terms in our data, as motivated in Sec-
tion 3. Specifically, we lemmatize4 on the English
side, and allow for differences of two characters
on the target side. In case of multiple overlapping
matches, we keep only the longest match. Inspired
by Dinu et al. (2019), we strictly separate training
and testing terminology entries and select our par-
allel data accordingly to demonstrate the zero-shot
learning capabilities of the model. For train-by
methods we annotate 10% of the training and vali-
dation segments with terminology using the train-
ing terms. The term annotation statistics can be
found in Table 2.

Preprocessing We tokenize all data using
NLTK5 and perform a joint source and target
BPE encoding (Sennrich et al., 2016) using 89.5k
merge operations. We furthermore inject the target
terms for annotated terms according to the append
and replace methods and generate source factors
on BPE-level accordingly (cf. Table 1).

4.2 NMT Models
We make use of the Sockeye toolkit (Hieber et al.,
2018) for this investigation. It supports source fac-
tors and constrained decoding out-of-the-box.6

For all our experiments, we use a transformer
network (Vaswani et al., 2017). We configure two
encoding and two decoding layers, unless stated
otherwise. We also conduct experiments with a
4http://www.nltk.org/api/nltk.stem.html#module-
nltk.stem.wordnet
5https://www.nltk.org/api/nltk.tokenize.html
6https://awslabs.github.io/sockeye/training.html

six layer setup (6 layers), which corresponds to the
base configuration of Vaswani et al. (2017). The
early stopping criterion is computed on the vali-
dation data (32 validation runs without improve-
ment). All evaluations are performed with beam
size 5.
For both the append and replace method, we

train and evaluate models in which the embedding
of the term annotation is added or concatenated to
the corresponding subword embedding. We exper-
iment with embedding sizes of 8 and 16 for con-
catenation. To investigate the impact of the term
annotation in the form of source factors, we also
train and evaluate models without source factors
(nofactors), while still using the term injection of
the append and replace method.
For comparison, we train a baseline without

injected terms and source factors. We further
compare against Sockeye’s implementation of con-
strained decoding, which is based on Post and Vi-
lar (2018). For this, we use the baseline model and
constrain the output to contain the target terms of
the terminology entries that are annotated in the
terminology test set.

5 Automatic Evaluation

In this section we present the results of our experi-
ments using automatic evaluation.

5.1 Metrics

To automatically assess the translation quality, we
report BLEU (Papineni et al., 2002) and CHRF
(Popović, 2015) on de-BPEed output, using the im-
plementation in NLTK7. To evaluate how well the
models adhere to the terminology constraints, we
report term rates (TR), computed as the percentage
of times the target term is generated in the MT out-
put out of the total number of term annotations. We
also employ the previously used fuzzy matching
strategy to match the words in the output against
the annotated terms in the reference. Note that we
are not interested in generating the exact morpho-
7https://www.nltk.org/api/nltk.translate.html



logical form of the term that occurs in the refer-
ence or in the terminology database, but we want
the term in whatever form is required in the sen-
tential context of the MT output. We also report
the variant term rate (variant TR), in which a tar-
get term is also counted as correct if it coincides
with one of the other possible translations of the
source term according to SAPterm. We are aware
that those term rates only approximate the truth, as
do all automatic MT evaluation metrics. Hence we
quantify some shortcomings in Section 7.2 and add
a human evaluation in Section 6.

5.2 Results

Results for en–de and en–ru can be found in Ta-
bles 3 and 4 respectively. Our train-by systems
are labeled according to whether they use the ap-
pend or replace method from Dinu et al. (2019)
and which kind of source factor embedding strat-
egy they employ. We present results for the test sets
terminology and no-terminology separately. The
first allows us to demonstrate how the different ap-
proaches fare in terms of translation quality and
term accuracy, while the latter serves as a san-
ity check to make sure that the general translation
quality does not suffer for data without terminol-
ogy.
The first thing to note is that BLEU scores for

en–ru on the terminology data set are a lot higher
than for en–de. This can be explained by the test
sets that differ in sentence length and grammati-
cal complexity. With an average of 17.7 words, the
en–de data contains a large number of longer sen-
tences with a higher term density. The en–ru data
in contrast contains many short simple sentences
with an average of 9.04 words per segment with
mostly only one term.

Terminology test data It can be easily seen that,
for both language pairs, all train-by models out-
perform the baseline in terms of translation qual-
ity and term rate by a wide margin. Comparing the
term rate with the variant term rate for the individ-
ual models reveals that, while the baseline some-
times chooses an alternative translation for a term,
this does not hold for the train-by models where
the two term rates are basically the same. Over-
all, the results show that the train-by approach is
effective in improving the translation quality using
terminology constraints in the evaluated usage sce-
nario of SAP data annotatedwith terminology from
SAPterm.

Taking all results into account, the append
method works better than the replace method for
our experimental setup. Looking only at the ap-
pend method results, concatenation of the two
embedding vectors works better than summariza-
tion. From the approaches that use source factors,
the append-concat16 setting consistently performs
best, both in terms of overall translation quality and
term rate. This finding holds for both language
pairs.
We rerun the most promising setting as well as

the baseline with the six-layer transformer for en–
de. As expected, both show an improvement for
all metrics over their respective two-layer coun-
terpart. The finding that the append-concat16 ap-
proach outperforms the baseline in terms of trans-
lation quality and term rate by a wide margin thus
holds for the shallow model as well as for the
deeper model.
Somewhat surprisingly, we can observe that the

impact of source factors is small for en–de and
nonexistent, or even slightly detrimental for en–
ru. It seems that the model has learned the code
switching that happens in the source sentence and
the intended copy behavior of the injected terms
to the output, without requiring the additional in-
put signal. We hypothesize that the different scripts
of English and Russian, Latin and Cyrillic, are the
reason why the model picks up the code switching
better than for en-de, which both use the Latin al-
phabet.
Finally, when comparing the train-bymethods to

constrained decoding, we observe that even though
constrained decoding reaches almost perfect term
rates (>99%), the overall translation quality that is
achieved with the train-by models is clearly supe-
rior. The decrease in BLEU further confirms ob-
servations that have previously been made in the
literature (cf. Section 2), namely that constrained
decoding can sometimes lead to questionable trans-
lation quality. In addition, it is important to note
that constrained decoding caused an approximate
sixfold increase in translation time in our experi-
ments, while no such impact was observed for the
train-by models.

Test data without terminology The results of
the individual approaches on the no-terminology
test data show slight differences in translation qual-
ity as measured by BLEU and CHRF. We deem
those to be within the regular variation that we see
amongst different training runs with the same data



terminology no-terminology

BLEU CHRF TR Variant TR BLEU CHRF

Baseline 42.74 72.11 71.20 76.73 48.02 71.87
Constrained decoding 41.81 73.91 99.51 99.65 – ” – – ” –

Append-concat16 47.08 76.06 96.40 96.52 48.22 72.01
Append-concat8 46.72 75.81 96.30 96.50 47.67 71.59
Append-sum 46.45 75.74 96.24 96.42 47.83 71.62
Replace-concat16 45.41 75.31 96.30 96.34 47.79 71.67
Replace-sum 45.75 75.46 96.44 96.50 48.21 71.99

Append-nofactors 46.19 75.58 95.06 95.43 47.26 71.56
Replace-nofactors 45.50 75.16 95.37 95.52 48.04 72.13

Baseline (6 layers) 43.50 72.66 71.98 77.31 48.66 72.52
Append-concat16 (6 layers) 47.45 76.60 96.87 97.16 48.98 72.79

Table 3: Results for English–German on the terminology and no-terminology test sets

terminology no-terminology

BLEU CHRF TR Variant TR BLEU CHRF

Baseline 50.24 72.57 64.10 69.09 41.79 63.21
Constrained decoding 42.10 78.08 99.12 99.23 – ” – – ” –

Append-concat16 61.23 81.06 95.72 95.81 41.80 63.02
Append-sum 60.94 80.91 95.30 95.32 41.77 62.99
Replace-concat16 60.30 80.46 94.92 94.92 42.04 63.11
Replace-sum 60.29 80.33 95.10 95.10 41.87 63.15

Append-nofactors 61.47 81.48 96.07 96.18 41.98 63.14
Replace-nofactors 60.83 80.67 95.33 95.33 41.78 62.99

Table 4: Results for English–Russian on the terminology and no-terminology test sets

and configuration. We thus conclude that the train-
by approach in the investigated setting generally
does not seem to have a negative impact on data
without terminology constraints.

6 Translators’ Assessment

As we apply MT in post-editing scenarios, it is of
importance that our translators approve of our pro-
posed solution of enforcing SAP-specific terminol-
ogy. Taking the shortcomings of automatic metrics
for MT into account, we therefore also conducted a
human evaluation.

6.1 Setup
For the human evaluation, we chose to compare
the baseline and the two best-performing train-
bymodels append-concat16 and append-nofactors
from the automatic evaluation. The latter scored
surprisingly well, requires less involved prepro-
cessing and a simpler network architecture, which
is appealing in a commercial setup. We selected
100 segments from the terminology test set (cf.
Section 4.1). As we were primarily interested in
the differences between the three systems, wemade
sure that none of the three translations are identi-

cal to each other or to the reference translation. We
made sure that 35 of the test sentences containmore
than one term annotation, to also cover this partic-
ular case.
For both language pairs, we had three testers

who evaluated the same 300 translations in a blind
evaluation using our in-house MT evaluation tool.
Testers were shown the source with highlighted ter-
minology, the relevant terminology entries and one
translation at a time in random order. They were
asked to rate the target term accuracy and the over-
all translation quality, both on a scale from one
(poor) to six (excellent). Note that the human tar-
get term accuracy does not directly correspond to
the automatic term rates (cf. Section 5), as testers
were advised to also consider whether target terms
appear in the expected syntactic position and fit
mophologically into their context.

6.2 Results
To consolidate the results of the human evalua-
tion, the accuracy and quality ratings of all testers
were averaged for each evaluated segment. Ta-
ble 5 shows the respective results. Generally, they
confirm the findings of the automatic evaluation in



Term accuracy Transl. quality

en–de en–ru en–de en–ru

Baseline 4.52 4.99 4.40 4.90
Append-concat16 5.74 5.70 4.54 4.98
Append-nofactors 5.79 5.69 4.50 4.90

Table 5: Results of human evaluation: term accuracy rating
and translation quality rating

Rating baseline nofactors concat16

ende enru ende enru ende enru

excellent 50% 53% 86% 80% 87% 77%
very good 6% 12% 9% 13% 7% 14%
good 5% 15% 2% 2% 0% 4%
medium 13% 8% 0% 0% 1% 2%
poor 14% 8% 1% 3% 2% 3%
very poor 12% 4% 2% 2% 3% 0%

Table 6: Distribution of term accuracy ratings for baseline
and append systems

Section 5. In addition, Table 6 shows the distribu-
tion of the average term accuracy ratings.
The accuracy of the term translations of the

baseline model clearly lags behind the train-by
models for both language pairs. The results how-
ever also show that terminology is quite well cov-
ered by the baseline model already.
The term accuracies for append-concat16 and

append-nofactors approach the maximum score for
both language pairs, and are very close to each
other. This gives rise to the conclusion that the ap-
proach works similarly well for enforcing terminol-
ogy on both morphologically average (de) as well
as rich (ru) target languages.
In terms of overall translation quality, the differ-

ence between the baseline and the append systems
is less pronounced than suggested by the automatic
scores. For both language pairs, the quality ratings
of the append models are comparable. Term en-
forcement does not seem to have noticeable nega-
tive side effects on overall translation quality.
Human evaluation also reveals that there is no

quality loss when more than one term is injected
into a sentence. In the 35% of test segments
with multiple terms, term accuracies of the append
models are even sightly higher than for sentences
with one term. This also has an effect on the overall
translation quality. For append-concat16, for ex-
ample, we see a positive difference of 0.13 (en–de)
and 0.18 (en–ru) points between the average qual-
ity ratings of sentences with one and with multiple
terms.

7 Examples & Discussion

In this section, we present examples of correct term
translations as well as an in-depth human analysis
of the terms that were not produced according to
the automatic evaluation. Examples for en–de and
en–ru are displayed in Table 7.

7.1 Analysis of Term Translations
With the high term rates of all train-by models (cf.
Tables 3 and 4) it is expected that themodels adhere
well to the terminology constraints. When taking a
closer look into the output of append-concat16, we
make the following observations (examples taken
from Table 7):

• Terminology integrates smoothly into the
context of the target language using correct
morphological forms (ex. 2). This is espe-
cially important for a highly inflecting lan-
guage like Russian where case information is
properly transferred (ex. 5, 6)

• Single terms can build natural compound
words in German (ex. 3).

• When enforcing nominal terminology, En-
glish verb-noun ambiguities are often re-
solved towards nouns, which is reflected in the
translation (ex. 5 compared to baseline). An-
other effect is the verbal translation of English
imperatives instead of using its nominaliza-
tion (ex. 7 compared to baseline).

• Enforcing nominal terminology leads
to less compounding and prevents over-
compounding in German target (ex. 4).

• Abbreviations in the translation are prevented.
In our case, they are caused by large amounts
of training data from heavily abbreviated con-
tent (ex. 4 reference and ex. 8 baseline).

• The baseline translation often uses synonyms
of the expected term (ex. 2, 6). This means
that the translation does not adhere to the ter-
minology constraint, but that it is not com-
pletely wrong either.

7.2 Missed Term Translations
We also analyzed sentences for which term en-
forcement did not work as expected, i.e. the remain-
ing 3.6% and 4.3% from append-concat16 in Ta-
bles 3 and 4 respectively. For this, 75 segments
with missing term translations according to the au-
tomatic evaluation were analyzed manually. The
results of this investigation are shown in Table 8.



(1) product substitution – Produktsubstitution
location substitution – Lokationsfindung

Source Product Substitution e.g. no location substitution for oversea customer
Baseline Produktersetzung, z.B. keine Lokationsersetzung für ÜberseeKunde
Append-concat16 Produktsubstitution z.B. keine Lokationsfindung für Überseekunden
Reference Produktsubstitution; Beispiel: keine Lokationsfindung für Überseekunden

(2) budget hierarchy – Haushaltsstruktur
budget – Haushalt

Source Defining a budget hierarchy is the first step in setting up an overall budget.
Baseline Die Definition einer Budgethierarchie ist der erste Schritt bei der Einrichtung eines Gesamtbudgets.
Append-concat16 Die Definition einer Haushaltsstruktur ist der erste Arbeitsschritt im Aufbau eines Haushalts.
Reference Der Aufbau einer Haushaltsstruktur ist der erste Schritt beim Einrichten eines Haushalts.

(3) inconsistency – Inkonsistenz
program error – Programmfehler

Source The table inconsistency is probably due to a program error.
Baseline Wahrscheinlich liegt ein Programmfehler vor.
Append-concat16 Die Tabelleninkonsistenz wird wahrscheinlich durch einen Programmfehler verursacht.
Reference Die Tabelleninkonsistenz ist vermutlich durch einen Programmfehler entstanden.

(4) processing time – Bearbeitungszeit

Source Field: Goods receipt processing time
Baseline Feld: Wareneingangsbearbeitungszeit
Append-concat16 Feld: Bearbeitungszeit für den Wareneingang
Reference Field: WE Bearbeitungszeit

(5) release order – отзыв
package number – номер пакета

Source Purchase order: release order package number
Baseline Заказ на поставку: деблокировать номер пакета заказов
Append-concat16 Заказ на поставку: номер пакета отзыва
Reference Заказ на поставку: номер пакета отзыва

(6) logical port – логический порт
proxy class – прокси-класс

Source No logical port found for the proxy class &1
Baseline Логический порт для класса прокси &1 не найден
Append-concat16 Логический порт для прокси-класса &1 не найден
Reference Логический порт для прокси-класса &1 не найден

(7) markup – надбавка
replacement category – тип замены

Source To define a relative markup, choose the RelativeMarkup value in the Replacement Category field.
Baseline Для определения относительной наценки выберите значение Относительная наценка в поле Тип

замены.
Append-concat16 Чтобы определить относительную надбавку, выберите значениеОтносительная надбавка в поле

Тип замены.
Reference Чтобы определить относительную надбавку, выберите значение Относительная надбавка в поле

Тип замены.

(8) table key – ключ таблицы

Source Table Key > 70 Char
Baseline Табл. ключ > 70 символов
Append-concat16 Ключ таблицы > 70 символов
Reference Ключ таблицы > 70 символов

Table 7: Examples for en–de and en–ru. Terminology constraints are provided above each example. Underlining is used to
highlight linguistic aspects described in Section 7.1.



Type of term match en–de en–ru

True negative (unmatched) 56% 55%
False negative (matched) 44% 45%

Table 8: Results of analysis of negative term rate samples

It was found that among the analyzed examples
there are many false negatives, i.e. the expected
term translations were indeed produced. The rea-
son is that our fuzzy term matching strategy on
which the term rates are based does not cover them.
In the investigated examples, for both languages,
around 45% of the terms were not recognized by
the term rate for the following reasons:

• The term occurs in an inflected form that es-
capes the fuzzy match of the term rate (ex. 7).

• The term is part of a compound word that es-
capes the fuzzy match of the term rate (ex. 3).

When analyzing truly problematic terms, i.e. the
true negatives that were not generated in the trans-
lation at all, patterns that hint at a reason are harder
to detect. Generally, there are three types of be-
havior: most of the time, the term in question is
translated by a synonym, sometimes it is mistrans-
lated, and in rare cases it is dropped. For en–ru,
there are a few terms in our test set that were not
produced by the NMT model, for example trans-
action control - управление транзакциями. The
problem also occurs for en–de but to a lesser ex-
tent. All those missed terms are properly annotated
in the source text and, as the other terms in the
test set, all segments containing these terms were
removed from the training data. Without looking
at the decoder in detail, we cannot draw any con-
clusions for now. It is possible that some transla-
tions are not enforced since another translation is
too “strong”, or the target word does not exist in
the training data and is therefore difficult to assem-
ble and produce. We also noticed some problems in
compounding, for example an incorrect connecting
element on non-head words.
From our analysis we conclude that term en-

forcement using the train-by method does not al-
ways work perfectly - but we also know that MT
in general does not always work perfectly either.
Nevertheless, we have shown that the term rate is
higher than what we have reported in Tables 3 and
4. This is due to the large number of false negatives
of the term rate caused by the automatic evaluation
strategy.

7.3 Considerations for a Production Setting

With the high term rates paired with an improved
translation quality and no negative impact on trans-
lation speed, the train-by method, specifically the
append variant, offers a good trade-off for termi-
nology enforcement in a production setting, partic-
ularly compared to current alternatives in the class
of constrained decoding. Whether term rates are
high enough for a productive scenario obviously
depends on the specific requirements on the MT
system and cannot be answered universally.
Note that we did not perform a human analysis of

segments without terminology and only interpret
the automatic scores. It remains to be seen whether
the inline annotation, particularly if used without
source factors, is reliable enough to not apply the
learned copy mechanism in unsuitable occasions.
Clearly, the results of this approach depend to a

high extent on the quality of the term dictionary.
Grammatical and lexical ambiguity of terms as
well as the quality of translation correspondences
are to be considered. Performance and precision of
the term recognition mechanism are additional key
factors for making this approach work.

8 Conclusion

We have investigated a new approach for termi-
nology integration into NMT, originally proposed
by Dinu et al. (2019), in an real-world setup. Our
experimental setting was IT-related corporate data
from SAP with terminology from SAP’s terminol-
ogy database, for two language pairs with rather
morphologically rich target languages. Our study
yields positive results, namely term rates >95%
and improvements in translation quality compared
to a baseline model as well as constrained decod-
ing, with neither impacting the translation speed
nor the translation quality on data without termi-
nology. The improvements in term accuracy were
furthermore confirmed in a human evaluation for
both language pairs. In an additional manual in-
vestigation, we inspected the problematic cases and
found that almost half of them are false negatives,
meaning that term rates are in fact even higher.
We have furthermore confirmed that with this ap-
proach the term translations are used flexibly in
the surface form required by the sentential context.
Overall, it seems to be a promising approach for
applying terminology constraints.
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