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Abstract

Approaches to Quality Estimation (QE) of
machine translation have shown promis-
ing results at predicting quality scores for
translated sentences. However, QE models
are often trained on noisy approximations
of quality annotations derived from the
proportion of post-edited words in trans-
lated sentences instead of direct human an-
notations of translation errors. The latter is
a more reliable ground-truth but more ex-
pensive to obtain. In this paper, we present
the first attempt to model the task of pre-
dicting the proportion of actual transla-
tion errors in a sentence while minimis-
ing the need for direct human annotation.
For that purpose, we use transfer-learning
to leverage large scale noisy annotations
and small sets of high-quality human an-
notated translation errors to train QE mod-
els. Experiments on four language pairs
and translations obtained by statistical and
neural models show consistent gains over
strong baselines.

1 Introduction

Quality Estimation (QE) for Machine Translation
(MT) is the task of predicting the overall quality of
an automatically generated translation e.g., on ei-
ther word, sentence or document level (Blatz et al.,
2004; Ueffing and Ney, 2007). In opposition to au-
tomatic metrics and manual evaluation which rely
on gold standard reference translations, QE mod-
els can produce quality estimates on unseen data,
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and at runtime. QE has already proven its useful-
ness in many applications such as improving pro-
ductivity in post-editing of MT, and recent neural-
based approaches to QE have been shown to pro-
vide promising performance in predicting quality
of neural MT output (Fonseca et al., 2019).

QE models are trained under full supervision,
which requires to have quality-labelled training
data at hand. Obtaining annotated data for all the
domains and languages of interest is costly and of-
ten impractical. As a result, QE models can suf-
fer from the same limitations as neural MT mod-
els themselves, such as drastic degradation of their
performance on out-of-domain data. As an alter-
native, QE models are often trained under weak
supervision, using training instances labelled from
noisy or limited sources (e.g. data labelled with
automatic metrics for MT).

Here, we focus on sentence-level QE, where
given a pair of sentences (the source and its transla-
tion), the aim is to train supervised Machine Learn-
ing (ML) models that can predict a quality label as
a numerical value. The most widely used label for
sentence-level QE is the Human-mediated Transla-
tion Edit Rate (HTER) (Snover et al., 2006), which
represents the post-editing effort. HTER consists
of the minimum number of edits a human language
expert is required to make in order to fix the trans-
lation errors in a sentence, taking values between 0
and 1. The main limitation of HTER is that it does
not represent an actual translation error rate, but
its noisy approximation. The noise stems mostly
from errors in the heuristics used to automatically
align the machine translation and its post-edited
version, but also from the fact that some edits rep-
resent preferential choices of humans, rather than
errors. To overcome such limitations, QE mod-
els can be improved by using data that has been



Figure 1: Example of a German sentence (top) and its automatic translation into English. The HTER between the translation
and its post-edited version (ANN-1) is 0.091, while the proportion of fine-grained expert-annotated MT errors (ANN-2), is
6/23 = 0.261.

directly annotated for translation errors by human
experts. Figure 1 shows an example of the discrep-
ancy between the HTER score and the proportion
of actual errors from expert annotation, for a raw
translation and its post-edited version.

Annotations of MT errors usually follow fine-
grained error taxonomies such as the Multidimen-
sional Quality Metrics (MQM) framework (Lom-
mel et al., 2014). While such annotations provide
highly reliable labelled data, they are more expen-
sive to produce than HTER. This often results in
datasets that are orders of magnitude smaller than
HTER-based ones. This makes it hard to only
use such high-quality resources for training neural-
based QE models, which typically require large
amounts of training data.

In this paper, we use transfer-learning to develop
QE models by exploiting the advantages of both
noisy and high-quality labelled data. We leverage
information from large amounts of HTER data and
small amounts of MQM annotations to train more
reliable sentence-level QE models. Our aim is to
predict the proportion of actual errors in MT out-
puts. More fine-grained error prediction is left for
future work.

Main contributions: (1) We introduce a new
task of predicting the proportion of actual trans-
lation errors using transfer-learning for QE1, by
leveraging large scale noisy HTER annotations and
smaller but of higher quality expert MQM anno-
tations; (2) we show that our simple yet effective
approach using transfer-learning yields better per-
formance at predicting the proportion of actual er-
rors in MT, compared to models trained directly
on expert-annotated MQM or HTER-only data; (3)
we report experiments on four language pairs and
both statistical and neural MT systems.

2 Related Work

Quality labels for sentence-level QE Quirk
(2004) introduced the use of manually created
1https://github.com/sheffieldnlp/tlqe

quality labels for evaluating MT systems. With
a rather small dataset (approximately 350 sen-
tences), they reported better results than those ob-
tained with a much larger set of instances anno-
tated automatically. Similarly, Specia et al. (2009)
proposed the use of a (1-4) Likert scale represent-
ing a translator’s perception on quality with re-
gard to the degree of difficulty to fix a transla-
tion. However, sentence-level quality annotations
appear to be subjective while agreement between
annotators is generally low (Specia, 2011). More
recently, sentence-level QE models are most typi-
cally trained on HTER scores (Bojar et al., 2013;
Bojar et al., 2014; Bojar et al., 2015; Bojar et al.,
2016; Bojar et al., 2017; Specia et al., 2018; Fon-
seca et al., 2019).

Transfer-learning for QE Transfer-learning
(TL) is a machine learning approach where models
trained on a source task are adapted to a related
target task (Pan et al., 2010; Yosinski et al., 2014).
Transfer-learning methods have been widely used
in NLP, e.g., machine translation (Zoph et al.,
2016) and text classification (Howard and Ruder,
2018). Previous work on TL for QE focused on
adapting models for labels produced by different
annotators (Cohn and Specia, 2013; Shah and
Specia, 2016) which is different to this work.

More recent work on TL techniques for QE ex-
plore pre-trained word representations. This was
first done by POSTECH (Kim et al., 2017), best per-
forming neural-based architecture in the QE shared
task at WMT’17 (Bojar et al., 2017). POSTECH

re-purposes a recurrent neural network encoder
pre-trained on large parallel corpora, to predict
HTER scores using multi-task learning at differ-
ent levels of granularity (e.g., word, phrase, or sen-
tence). Then, Kepler et al. (2019) used a predictor-
estimator architecture similar to POSTECH along-
side very large scale pre-trained representations
from BERT (Devlin et al., 2018) and XLM (Lam-
ple and Conneau, 2019), and ensembling tech-
niques, to win the QE tasks at WMT’19 (Fonseca



et al., 2019). These models are pre-trained on un-
labelled data, as opposed to noisier labelled data,
and aim to predict HTER scores, which is differ-
ent to the focus of this paper.

To the best of our knowledge, this paper is the
first attempt to repurpose a QE model pre-trained
on one quality label to a model that predicts an-
other quality label; we first train a model on noisy
HTER data to predict post-editing effort, and lever-
age its knowledge to train a model capable of pre-
dicting the actual proportion of translation errors
using expert-annotated MQM data.

3 Transfer-Learning Approach

We use inductive transfer-learning (Pan et al.,
2010), where given a source learning task TS and a
target task TT , the aim is to improve performance
in the latter by re-using knowledge from TS , where
TS 6= TT . Here, TS corresponds to predicting post-
editing effort based on noisy HTER annotations,
and TT to predicting the proportion of actual pro-
portion of errors based on MQM annotations.

3.1 Source task QE model

BiRNN-HTER We use the BiRNN model pro-
posed by Ive et al. (2018) as our base model to
predict HTER scores. Figure 2 illustrates the high-
level architecture of the model. Words in source
and translated sentences are first mapped into em-
bedding vectors. Then, the word embeddings are
passed through bidirectional Gated Recurrent Unit
encoders (Cho et al., 2014) to learn context-aware
word representations in both the source and tar-
get sentences. The two sentence representations
are learned independently from each other before
being concatenated as a weighted sum of their
word vectors, generated by an attention mecha-
nism. The concatenated representation is finally
passed through a dense layer with sigmoid acti-
vation to generate the quality estimate. BiRNN
performed competitively in the WMT’18 shared
task on QE (Specia et al., 2018) without rely-
ing on any parallel data nor expensive pre-training
regimes such as the POSTECH approach (Sec-
tion 2). Overall, it is easier and faster to train
with a smaller number of parameters compared to
POSTECH, which makes it more suitable for this
task.

3.2 Adaptation to the target task

Our target task is to predict the proportion (be-
tween 0 and 1) of actual MQM errors in a trans-
lated sentence. Therefore, we adapt our BiRNN-
HTER model to the target task.

BiRNN-MQMTL We first replace the BiRNN-
HTER output layer with two new layers: (1) a
fully-connected layer followed by a rectified linear
unit (Nair and Hinton, 2010) as the activation func-
tion; and (2) a fully-connected output layer with a
sigmoid activation to produce the predictions. We
train these two layers on target task data by freez-
ing the rest of the model.

BiRNN-MQMTL+FT We further fine-tune our
BiRNN-MQMTL model on the target task data us-
ing a small learning rate following (Howard and
Ruder, 2018).

Hybrid Finally, we hypothesise that linguis-
tic information (e.g., number of tokens in the
source/target sentence, language model probabil-
ity of source/target sentence, etc.) might be com-
plementary to the source-target representations ob-
tained by our BiRNN-MQMTL+FT model. For
that purpose, we first extract a representation of
the source and translated sentence by removing
the BiRNN-MQMTL+FT output layer and then
we concatenate it with the widely used 17 black-
box sentence-level QE features extracted with the
open-source QuEst++ toolkit (Specia et al., 2015).
The joint neural and linguistic information of the
source and target sentences is fed into a linear re-
gression2 model using a L2 regularisation penalty.

4 Experimental Setup

4.1 Data

For our experiments, we use the freely available
QT21 dataset3 (Specia et al., 2017) used in the QE
shared task (Bojar et al., 2017; Specia et al., 2018).
This dataset contains both post-edited (HTER)
and error-annotated (MQM) data in four language
pairs: English into German, Latvian and Czech,
and German into English; and phrase-based statis-
tical (PBMT) and neural (NMT) translation mod-
els. The annotation for errors was produced by
professional translators using the MQM taxonomy

2We also tried to jointly feed the features during fine-tuning
but did not yield better performance.
3http://www.qt21.eu/resources/data/



Figure 2: High-level architecture of the BiRNN sentence-
level QE model.

HTER data (Source) MQM data (Target)
# sentences # sentences

PBMT NMT PBMT NMT
EN-DE 25,305 12,564 2,655 3,386
EN-LV 10,561 11,116 3,284 3,244
DE-EN 25,922 – 3,374 –
EN-CS 37,725 – 3,460 –

Table 1: Statistics for HTER and MQM data for statistical
(PBMT) and neural (NMT) translation systems across lan-
guage pairs.

with 21 error categories (e.g., mistranslation, mor-
phology, etc.). To obtain a score for the entire sen-
tence, we divide the number of words annotated
with any error category by the length of the sen-
tence. Predicting the actual type of MQM errors is
left for future work. Note that the MQM-annotated
sentences are a subset of the HTER data (i.e. some
of them have both annotations), so we removed
these from the HTER data.

By design, all sentences selected for MQM an-
notation have at least one error. In order to increase
the size and variety of the MQM dataset, we dou-
bled the number of MQM-annotated sentences by
taking sentences for which no edit was made dur-
ing PE (i.e. perfect translations with zero MQM
errors). Table 1 summarises the statistics of the la-
belled data used for our experiments.

4.2 Baseline and comparison models
To assess our models, we compare them against
the following baselines.

BiRNN-HTER A BiRNN-HTER model trained
on the HTER data and used as is, to predict the pro-

portion of MQM errors. That is using the source
task base model to predict the scores in the target
task.

BiRNN-MQM This is the same BiRNN archi-
tecture as our source task model (BiRNN-HTER)
but trained from-scratch on the MQM data without
transfer-learning.

LR-QEfeat A feature-based approach used in
the WMT shared tasks as an official baseline. We
use the 17 black-box sentence-level QE features
introduced above (see Section 3.2) to train a lin-
ear regression4 model with a L2 regularization
penalty.

4.3 Model hyper-parameters
For the BiRNN-HTER model, we use default pa-
rameters as in (Ive et al., 2018). For the BiRNN-
MQMTL, we use a 5-fold Cross Validation ap-
proach. We use a dense layer5 of 50 and choose
the number of epochs in {1, .., 40}, training learn-
ing rate in

{
1e−2, 1e−3

}
and fine-tuning learning

rate in
{
1e−3, 1e−4

}
on a validation set, by min-

imising the Mean Absolute Error (MAE) between
the predicted score and gold standard labels. We
also experimented with two approaches for fine-
tuning: (1) unfreezing all the layers at the same
time; and (2) a gradual unfreezing approach pro-
posed by (Howard and Ruder, 2018). We use
Adam (Kingma and Ba, 2014) with default pa-
rameters, and a batch size of 100. For the Hybrid
model, we optimise the L2 regularisation penalty.

Table 2 reports on the optimal values determined
by hyper-parameters optimisation.

5 Results

Tables 3 and 4 show respectively the average ab-
solute Pearson’s r correlation co-efficient and the
Root Mean Square Error (the official metrics for
this task (Graham, 2015)) between actual and pre-
dicted MQM error proportions in six combinations
of MT models (PBMT, NMT) and language pairs
(EN-DE, EN-LV, DE-EN and EN-CS).

First, we observe that the baseline model (LR-
QEfeat) performs fairly well on predicting the pro-
portion of errors, especially for the EN-DE and
EN-CS PBMT. However, it is not robust across
language pairs and types of translation systems.
4We have also tested a Support Vector Regression with a ra-
dial basis function kernel, but it yielded lower performance.
5We did not observe noticeable differences in performance
using smaller or larger size in early experimentation.



Training Fine-tuning
Epochs Learning rate Epochs/Method Learning rate

EN-DENMT 22 0.01 gradual unfreezing 0.001
EN-LVNMT 16 0.001 gradual unfreezing 0.001
EN-DEPBMT 15 0.001 1 0.001
EN-LVPBMT 18 0.01 gradual unfreezing 0.001
DE-ENPBMT 19 0.01 1 0.001
EN-CSPBMT 18 0.001 gradual unfreezing 0.001

Table 2: Optimal values selected for the adaptation of the source task sentence-level BiRNN QE model (BiRNN-HTER) to
the target task (i.e. proportion of actual MT error in MT). For each language pair: number of epochs and learning rates for the
training, and number of epochs or method used for the fine-tuning of the model.

EN-DENMT EN-LVNMT EN-DEPBMT EN-LVPBMT DE-ENPBMT EN-CSPBMT

(1) LR-QEfeat 0.152 ±0.06 0.404 ±0.19 0.585 ±0.02 0.471 ±0.06 0.329 ±0.02 0.635 ±0.02
(2) BiRNN-HTER 0.297 ±0.04 0.003 ±0.09 0.146 ±0.06 0.110 ±0.05 0.113 ±0.07 0.426 ±0.05
(3) BiRNN-MQM 0.584 ±0.04 0.542 ±0.05 0.619 ±0.05 0.583 ±0.03 0.606 ±0.08 0.757 ±0.01
(4) BiRNN-MQMTL 0.575 ±0.04 0.596 ±0.06 0.644 ±0.02 0.612 ±0.03 0.594 ±0.02 0.787 ±0.03
(5) BiRNN-MQMTL+FT 0.649 ±0.05 0.612 ±0.06 0.648 ±0.04 0.649 ±0.04 0.601 ±0.05 0.793 ±0.02
(6) Hybrid 0.644 ±0.05 0.522 ±0.28 0.658 ±0.04 0.655 ±0.03 0.610 ±0.05 0.795 ±0.02

Table 3: Average absolute Pearson’s r correlation between actual and predicted MQM error proportions across all folds
in six combinations of MT models and language pairs: (1) feature-based baseline (LR-QEfeat) – (2) BiRNN model trained
on HTER data, and used as is – (3) BiRNN model trained from scratch on MQM annotated data – (4) BiRNN MQM trained
with transfer-learning, i.e. trained on HTER data and adapted using MQM data – (5) BiRNN-MQMTL model fine-tuned with
additional training epochs – (6) fine-tuned BiRNN-MQMTL+FT model used as feature extractor along with the 17 sentence-
level QE features and a linear regression algorithm (Hybrid). Measurements not significantly outperformed by any other overall,
are underlined. Significance is computed with Hotelling-Williams test (Williams, 1959).

EN-DENMT EN-LVNMT EN-DEPBMT EN-LVPBMT DE-ENPBMT EN-CSPBMT

(1) LR-QEfeat 0.112 ±0.01 0.157 ±0.10 0.161 ±0.01 0.114 ±0.01 0.115 ±0.00 0.175 ±0.01
(2) BiRNN-HTER 0.117 ±0.01 0.523 ±0.01 0.250 ±0.01 0.460 ±0.01 0.605 ±0.03 0.333 ±0.01
(3) BiRNN-MQM 0.093 ±0.01 0.108 ±0.01 0.157 ±0.01 0.110 ±0.01 0.097 ±0.00 0.152 ±0.01
(4) BiRNN-MQMTL 0.094 ±0.01 0.102 ±0.01 0.158 ±0.01 0.108 ±0.01 0.110 ±0.00 0.145 ±0.01
(5) BiRNN-MQMTL+FT 0.091 ±0.01 0.105 ±0.01 0.152 ±0.01 0.100 ±0.01 0.100 ±0.00 0.139 ±0.01
(6) Hybrid 0.087 ±0.01 0.212 ±0.26 0.149 ±0.01 0.098 ±0.01 0.097 ±0.00 0.138 ±0.01

Table 4: Average absolute RMSE between actual and predicted MQM error proportions across all folds in six combinations
of MT models and language pairs: (1) feature-based baseline (LR-QEfeat) – (2) BiRNN model trained on HTER data, and used
as is – (3) BiRNN model trained from scratch on MQM annotated data – (4) BiRNN MQM trained with transfer-learning, i.e.
trained on HTER data and adapted using MQM data – (5) BiRNN-MQMTL model fine-tuned with additional training epochs –
(6) fine-tuned BiRNN-MQMTL+FT model used as feature extractor along with the 17 sentence-level QE features and a linear
regression algorithm (Hybrid). Measurements not significantly outperformed by any other overall, are underlined. Significance
is computed with Hotelling-Williams test (Williams, 1959).

Second, the BiRNN-HTER model, trained on
HTER data and used as is, is not able to predict
the proportion of actual MQM errors. Surprisingly,
the BiRNN-MQM model trained on MQM data di-
rectly achieves relatively good performance for all
language pairs. This seems to confirm that (i) the
BiRNN architecture, as simple as it may be, allows
to train models that perform well while keeping
low the computational resources required; and (ii)
that HTER is a noisy approximation of the qual-
ity of a translation and post-edits are not actually
well-aligned to actual translation errors.

Overall, the best performing model is BiRNN-
MQMTL with transfer-learning and fine-tuning,
while our Hybrid model seems to further improve

performance in predicting quality on statistical MT
output. This is in line with recent findings demon-
strating the benefits of feature-based approaches
for predicting the quality of statistical MT, but not
for predicting the quality of neural MT, which is
better modelled with learned representations using
neural networks (Specia et al., 2018). This also
confirms our main hypothesis that noisy data, but
from a closely related task, encapsulates useful in-
formation that our TL model is able to leverage.

6 Leveraging Pre-trained Token-level
Representations

As reported in (Fonseca et al., 2019), state-of-
the-art models for supervised QE follow current



trend in the NLP community in 2019: leveraging
large-scale pre-trained language models to com-
pute word- or sentence-level representations. Fol-
lowing (Kepler et al., 2019) and their Transformer-
based Predictor-Estimator model, we considered
two variants of our BiRNN-HTER model intro-
duced in Section 3:

LM-BiRNN By default, the weights of both the
source and target bidirectional GRU encoders of
the BiRNN model are first randomly initiated and
then learned, simultaneously, during training of
the task at hand. In this variant, we first learn
the weights of each encoder independently in a
language modelling fashion with a Cross-Entropy
loss, using the additional resources provided by the
organisers of the WMT’18 QE shared task6. We
then reuse the learned weights to initiate each en-
coder of the BiRNN model.

BERT-BiRNN In this variant of the BiRNN
model, the token-level representations are ex-
tracted from a pre-trained multilingual base cased
BERT (Devlin et al., 2018) model. Concretely, we
replace both the source and the target embedding
layers in Figure 2 by a single custom BERT em-
bedding layer. During training, we fine-tune the
weights of the word embeddings layer, as well as
the weights of the last 4 encoding layers of the
BERT model.

In the rest of the paper, and similarly to the
naming of our models in Sections 3.1 and 3.2, we
will refer to as “BERT-BiRNN-HTER”, “BERT-
BiRNN-MQM” and “BERT-BiRNN-MQMTL”,
the three variants of this model trained from
scratch on the source task (-HTER), on the target
task (-MQM) and adapted to the target task using
TL (-MQMTL), respectively.

6.1 Experimental Results

We evaluate the benefit of using pre-trained token-
level representations, by comparing the perfor-
mance of our previously introduced BERT vari-
ants, against our base BiRNN model.

Predicting HTER

Table 5 summarises the performance of each
model at predicting HTER scores on the HTER
data described in Table 1. We include the BiRNN-
HTER models from Tables 3 and 4 (row (2)) for di-
rect comparison when trained at predicting HTER.

6http://statmt.org/wmt18/quality-estimation-task.html

First, we observe that, overall, relying on pre-
trained token representation helps to improve the
performance of our BiRNN model, confirming the
findings in (Fonseca et al., 2019). Second, while
relying on advanced token representations such as
those extracted from BERT significantly help im-
proving across language pairs and types of trans-
lation, relying on simpler representations seems to
mainly help on neural-based MT output, and with
limited gains.

However, pre-trained representations usually re-
quire to be fine-tuned for the task at hand. In our
scenario of application, where only a few data-
points of the target task is available, this may be
a challenging task when using complex and deep
architectures such as the BERT model, which con-
tains millions of parameters trained on large scale
training data (BERT models are trained on the
Wikipedia dataset).

Predicting MQM with Transfer-Learning

We replicated the experimental settings for induc-
tive transfer-learning described in Section 4, by
considering this time the BERT variant of our base
BiRNN model. Our experimental results are sum-
marised in Tables 6 and 7, which report on Pear-
son’s r correlation and RMSE, respectively. We
include LR-QEfeat, the feature-based approach, as
well as the default BiRNN-HTER and BiRNN-
MQM models from Tables 3 and 4 (rows (1)-(4))
for direct comparison when trained at predicting
MQM error proportions.

First, we observe that when our BiRNN model
is trained at predicting the source task (HTER) and
used as is to predict on the target task (MQM),
more advanced representations can help improve
its performance (rows (2) vs. (b)). However, both
variants are usually outperformed by the baseline
model (LR-QEfeat) on predicting the proportion of
errors, apart from EN-DE NMT.

Second, when trained from scratch on MQM an-
notated data, the BERT-BiRNN model is signif-
icantly outperformed by our base BiRNN model
across all language pairs and types of translation
(rows (3) vs. (c)). While we previously observed
the benefit of using advanced representations from
BERT when at least 10,000 training datapoints are
available (see Table 5), we now observe degraded
performances when the number of training set is
lower than 4,000 datapoints.

Third, when trained on HTER data and adapted



EN-DENMT EN-LVNMT EN-DEPBMT EN-LVPBMT DE-ENPBMT EN-CSPBMT

(2) BiRNN-HTER 0.290 0.436 0.347 0.416 0.505 0.480
(a) LM-BiRNN-HTER 0.372 0.443 0.395 0.384 0.495 0.476
(b) BERT-BiRNN-HTER 0.390 0.561 0.612 0.520 0.641 0.537

Table 5: Absolute Pearson’s r correlation between actual and predicted HTER scores, for the HTER data introduced in
Table 1: (2) default BiRNN model trained on HTER data – (a) BiRNN model with the weights of each source and target
encoders pre-trained in a language modelling fashion using the additional resources of the QE shared task at WMT’18 – (b)
BiRNN model with token-level representations extracted from a pre-trained multilingual base cased BERT model. Measure-
ments not significantly outperformed by any other overall, are underlined. Significance is computed with Hotelling-Williams
test (Williams, 1959).

EN-DENMT EN-LVNMT EN-DEPBMT EN-LVPBMT DE-ENPBMT EN-CSPBMT

(1) LR-QEfeat 0.152 ±0.06 0.404 ±0.19 0.585 ±0.02 0.471 ±0.06 0.329 ±0.02 0.635 ±0.02
(2) BiRNN-HTER 0.297 ±0.04 0.003 ±0.09 0.146 ±0.06 0.110 ±0.05 0.113 ±0.07 0.426 ±0.05
(b) BERT-BiRNN-HTER 0.211 ±0.03 0.220 ±0.04 0.467 ±0.04 0.302 ±0.05 0.311 ±0.09 0.175 ±0.03
(3) BiRNN-MQM 0.584 ±0.04 0.542 ±0.05 0.619 ±0.05 0.583 ±0.03 0.606 ±0.08 0.757 ±0.01
(c) BERT-BiRNN-MQM 0.227 ±0.05 0.343 ±0.07 0.445 ±0.02 0.451 ±0.05 0.276 ±0.06 0.461 ±0.05
(4) BiRNN-MQMTL 0.575 ±0.04 0.596 ±0.06 0.644 ±0.02 0.612 ±0.03 0.594 ±0.02 0.787 ±0.03
(d) BERT-BiRNN-MQMTL 0.189 ±0.06 0.349 ±0.06 0.510 ±0.03 0.491 ±0.07 0.083 ±0.03 0.477 ±0.06

Table 6: Average absolute Pearson’s r correlation between actual and predicted MQM error proportions across all folds in
six combinations of MT models and language pairs: (1) feature-based baseline (LR-QEfeat) – (2) default BiRNN model trained
on HTER data, and used as is – (b) BERT-BiRNN model trained on HTER data, and used as is – (3) BiRNN model trained
from scratch on MQM annotated data – (c) BERT-BiRNN model trained from scratch on MQM annotated data – (4) BiRNN-
MQM model trained with transfer-learning, i.e. trained on HTER data and adapted using MQM data. (d) BERT-BiRNN-MQM
model trained with transfer-learning, i.e. trained on HTER data and adapted using MQM data. Measurements not significantly
outperformed by any other overall, are underlined. Significance is computed with Hotelling-Williams test (Williams, 1959).

EN-DENMT EN-LVNMT EN-DEPBMT EN-LVPBMT DE-ENPBMT EN-CSPBMT

(1) LR-QEfeat 0.112 ±0.01 0.157 ±0.10 0.161 ±0.01 0.114 ±0.01 0.115 ±0.00 0.175 ±0.01
(2a) BiRNN-HTER 0.117 ±0.01 0.523 ±0.01 0.250 ±0.01 0.460 ±0.01 0.605 ±0.03 0.333 ±0.01
(b) BERT-BiRNN-HTER 0.117 ±0.01 0.249 ±0.01 0.184 ±0.01 0.146 ±0.00 0.206 ±0.01 0.294 ±0.01
(3) BiRNN-MQM 0.093 ±0.01 0.108 ±0.01 0.157 ±0.01 0.110 ±0.01 0.097 ±0.00 0.152 ±0.01
(c) BERT-BiRNN-MQM 0.113 ±0.01 0.121 ±0.01 0.189 ±0.01 0.128 ±0.02 0.120 ±0.01 0.204 ±0.01
(4) BiRNN-MQMTL 0.094 ±0.01 0.102 ±0.01 0.158 ±0.01 0.108 ±0.01 0.110 ±0.00 0.145 ±0.01
(d) BERT-BiRNN-MQMTL 0.116 ±0.01 0.123 ±0.01 0.178 ±0.01 0.116 ±0.01 0.137 ±0.01 0.207 ±0.02

Table 7: Average absolute RMSE between actual and predicted MQM error proportions across all folds in six combinations
of MT models and language pairs: (1) feature-based baseline (LR-QEfeat) – (2) default BiRNN model trained on HTER data,
and used as is – (b) BERT-BiRNN model trained on HTER data, and used as is – (3) BiRNN model trained from scratch
on MQM annotated data – (c) BERT-BiRNN model trained from scratch on MQM annotated data – (4) BiRNN-MQM model
trained with transfer-learning, i.e. trained on HTER data and adapted using MQM data. (d) BERT-BiRNN-MQM model trained
with transfer-learning, i.e. trained on HTER data and adapted using MQM data. Measurements not significantly outperformed
by any other overall, are underlined. Significance is computed with Hotelling-Williams test (Williams, 1959).

using MQM data (rows (4) vs. (d)), we observe
that the performance of the BERT-BiRNN model
slightly improve compared to training from scratch
on MQM data (row (c)) across all language pairs
but EN-DENMT and DE-ENPBMT . For the lat-
ter, we even observe a significant drop in the per-
formance of the model. There is no obvious ex-
planations for that, so we hope that further experi-
ments would help us to understand the reasons be-
hind it. On the one hand, this confirms that fine-
tuning deep architectures such as BERT to extract
advanced token level representation is a challeng-
ing task when only a few training instances is avail-
able. On the other hand, we saw the benefit of us-

ing advanced representation from pre-trained mod-
els such as BERT, and plan to continue working
towards that research direction.

7 Conclusions

We introduced a new task of predicting the propor-
tion of actual errors in a translated sentence as an
alternative to the commonly used noisy estimate
HTER. The reported results from using induc-
tive transfer-learning are particularly encouraging
considering the simplicity of our BiRNN model.
Our transfer-learning method helps to train mod-
els which are better at predicting the proportion of
actual errors for different language pairs and trans-



lation systems, compared to models trained on the
target task only.

However, whereas we were expecting to observe
significant gains with the use of more advanced
token-level pre-trained representations (here from
BERT), we report drastic degradation in perfor-
mances for this configuration when re-purposing
the QE models via transfer-learning. These some-
what counter-intuitive results are an indication that
further work can be done in this area to refine our
transfer-learning approach, as the use of large scale
pre-trained representations has become a common
practice in NLP applications, including QE.

In addition to this, we plan in furture to estimate
the quality of machine translation using more fine-
grained MQM annotations for subsentence-level
QE.
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Kepler, Fábio, Jonay Trénous, Marcos Treviso, Miguel
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