
Proceedings of Deep Learning Inside Out (DeeLIO):
The First Workshop on Knowledge Extraction and Integration for Deep Learning Architectures, pages 64–73

Online, November 19, 2020. c©2020 Association for Computational Linguistics

64

Target Concept Guided Medical Concept Normalization in Noisy
User-Generated Texts

Katikapalli Subramanyam Kalyan
Department of Computer Applications

NIT Trichy, India
kalyan.ks@yahoo.com

Sivanesan Sangeetha
Department of Computer Applications

NIT Trichy, India
sangeetha@nitt.edu

Abstract

Medical concept normalization (MCN) i.e.,
mapping of colloquial medical phrases to stan-
dard concepts is an essential step in analysis of
medical social media text. The main drawback
in existing state-of-the-art approach (Kalyan
and Sangeetha, 2020b) is learning target con-
cept vector representations from scratch which
requires more training instances. Our model is
based on RoBERTa and target concept embed-
dings. In our model, we integrate a) target con-
cept information in the form of target concept
vectors generated by encoding target concept
descriptions using SRoBERTa, state-of-the-art
RoBERTa based sentence embedding model
and b) domain lexicon knowledge by enriching
target concept vectors with synonym relation-
ship knowledge using retrofitting algorithm. It
is the first attempt in MCN to exploit both tar-
get concept information as well as domain lexi-
con knowledge in the form of retrofitted target
concept vectors. Our model outperforms all
the existing models with an accuracy improve-
ment up to 1.36% on three standard datasets.
Further, our model when trained only on map-
ping lexicon synonyms achieves up to 4.87%
improvement in accuracy.

1 Introduction

Medical concept normalization (MCN) involves
learning a model which can assign medical con-
cept from a standard lexicon for the given health
related mention. Table 1 shows few examples of
concept mentions and corresponding standard con-
cepts from SNOMED-CT lexicon. Normalizing
medical concepts finds application in tasks like
questions answering, pharmacovigilance, knowl-
edge graph construction etc. In this work, we deal
with medical concept normalization in noisy user-
generated texts like tweets and online discussion
forum posts. With the rising popularity of social
media platforms, common public are using these

platforms to share information. For example, in
twitter people share their health experiences and
in websites like AskAPatient.com, public post re-
views for the drugs they consume. This valuable
health information available in social media plat-
forms can be exploited in applications like pharma-
covigilance, public health monitoring etc (Kalyan
and Sangeetha, 2020c). In general, most of the com-
mon public express their health related concerns
in an informal way using colloquial language. For
example, ‘dizziness’ is expressed as ‘head spinning
a little’ and ‘diarrhoea’ is expressed as ‘bathroom
with runs’ (Limsopatham and Collier, 2016; Lee
et al., 2017). As social media text is highly noisy
with irregular grammar and colloquial words, med-
ical concept normalization in social media text is
more challenging.

Concept Mention Standard Concept

lowering of energy lack of energy ( SNOMED ID: 248274002)

felt weak asthenia (SNOMED ID: 13791008)

very severe pain in arms pain in upper limb (SNOMED ID: 102556003)

only wanted to sleep hypersomnia (SNOMED ID: 77692006)

Table 1: Examples of concept mentions and corre-
sponding standard concepts from Systematized Nomen-
clature of Medicine – Clinical Terms (SNOMED CT)
lexicon.

1.1 Motivation
Most of the existing work in medical concept nor-
malization in social media text ignore valuable
target concept knowledge (Limsopatham and Col-
lier, 2016; Lee et al., 2017; Han et al., 2017; Be-
lousov et al., 2017). Recently researchers (Tu-
tubalina et al., 2018; Miftahutdinov and Tutubalina,
2019; Pattisapu et al., 2020; Kalyan and Sangeetha,
2020b) focused on exploiting target concept knowl-
edge in normalizing concepts. The drawbacks in
these recent works in integrating target concept
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knowledge in deep learning based medical concept
normalization systems are

• Tutubalina et al. (2018) and Miftahutdinov
and Tutubalina (2019) exploit target concept
knowledge in the form of cosine similarity be-
tween tf-idf based vector representations of
concept mentions in social media text and con-
cept descriptions from UMLS. However, tf-idf
based cosine similarity features between con-
cept mentions and concept descriptions are
not effective as concept mentions are noisy,
descriptive and colloquial in nature while con-
cept descriptions are expressed in formal lan-
guage.

• Pattisapu et al. (2020) choose appropriate tar-
get concept based on cosine similarity be-
tween concept mention and graph embedding
based target concept vectors. Here concept
mentions are encoded using RoBERTa and
then transformed to target concepts embed-
ding space using two fully connected layers.
However, a) the quality of graph embedding
based target concept vectors depends on the
comprehensiveness of mapping lexicon which
limits the application of this approach ( e.g.,
MedDRA is less comprehensive compared to
SNOMED-CT (Bodenreider, 2009)) b) graph
embedding methods used by Pattisapu et al.
(2020) generate target concept vectors based
on network structure only and completely ig-
nore other information like concept text de-
scription and c) when mapping lexicon used
is different across datasets, it requires more
time and resources to generate target concept
vectors using graph embedding methods for
each dataset (Kalyan and Sangeetha, 2020b).

• Kalyan and Sangeetha (2020b) learn the vec-
tor representations of concept mentions and
concepts jointly. The authors randomly as-
sign values to target concept vectors and up-
date them at the time of training. However,
learning concept vectors from scratch requires
more number of training instances. With less
number of training instances, this approach re-
sults in poor performance which we illustrate
in Section 6.1. This is the current state-of-the-
art approach in medical concept normalization
in social media text.

Our proposed model overcomes the drawbacks in

existing work in utilizing target concept knowledge
and answers the following two research questions.

• RQ1 - How to effectively integrate target con-
cept knowledge in deep learning based medi-
cal concept normalization system?

• RQ2 - How to utilize domain lexicon knowl-
edge in medical concept normalization?

Figure 1: SNOMED-CT Concept and its synonyms.
Here, ‘Drowsy’ is concept description and ‘271782001’
is concept-id.

As shown in Figure 1, every concept has concept-id,
description and set of synonyms. To address RQ1,
we represent each target concept using fixed length
dense vector which is generated by encoding target
concept description using SRoBERTa. SRoBERTa
(Reimers and Gurevych, 2019) is Siamese net-
work based Sentence RoBERTa model trained on
NLI+Multi NLI and STS datasets. It is state-of-
the-art sentence embedding model which encodes
sequence of words into dense fixed length vectors
in a way that sequences which are in close mean-
ing are also close in embedding pace . To address
RQ2, we retrofit target concept vectors produced
by SRoBERTa using synonyms from mapping lex-
icon. Retrofitting algorithm (Faruqui et al., 2015)
enriches concept vectors with synonym relation-
ship knowledge from domain lexicon.

In our model we encode a) input concept men-
tions using RoBERTa and b) target concepts using
SRoBERTa and enrich them with synonym rela-
tionship knowledge. We compute similarity vector
in which each value is equal to cosine similarity
between vectors of concept mentions and all the tar-
get concepts. Finally, the cosine similarity values
are normalized and the target concept with max-
imum similarity is chosen. During training, the
vectors of target concepts are not updated. We eval-
uate our model on three standard MCN datasets
CADEC, PsyTAR and SMM4H2017 and achieve
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accuracy improvements up to 1.36%. Further, our
model when trained only using mapping lexicon
synonyms achieves up to 4.87% improvement in
accuracy. The key aspects of our work are

• A simple approach to integrate both target con-
cept information and domain lexicon knowl-
edge in medical concept normalization in the
form of retrofitted target concept vectors.

• Our model achieves state-of-the-art perfor-
mance on three standard medical concept nor-
malization datasets.

• Our model when trained using mapping lex-
icon synonyms only, achieves up to 4.87%
improvement in accuracy which shows that
our approach to generate target concept vec-
tors is better than graph embedding based
approach (Pattisapu et al., 2020) or learning
from scratch (Kalyan and Sangeetha, 2020b).

2 Related Work

2.1 Medical Concept Normalization

Traditional concept normalization systems used
string matching (Aronson, 2001; McCallum et al.,
2005; Tsuruoka et al., 2007) or machine learning
approaches (Leaman et al., 2013; Leaman and Lu,
2014). These methods perform poorly in case of
instances with no words in common between con-
cept mention and concept description. With the
introduction of embedding models like Word2vec
(Mikolov et al., 2013) and ELMo (Peters et al.,
2018) which can encode syntactic and semantic
information, researchers focused on exploiting em-
beddings in normalizing medical concepts. For ex-
ample, Limsopatham and Collier (2016) used CNN
and RNN models with word2vec embeddings. Sub-
ramanyam and Sangeetha (2020) proposed a model
based on BiLSTM and clinical ELMo embeddings.
Han et al. (2017) used hierarchical character LSTM
on the top of character embeddings while Belousov
et al. (2017) used Multinomial Logistic Regression
classifier on the top of embeddings inferred from
various corpora.

In recent times, unsupervised pre-trained models
like BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019) achieved significant improvements
in most of the natural language processing tasks.
Most of the recent work in medical concept nor-
malization (Miftahutdinov and Tutubalina, 2019;
Kalyan and Sangeetha, 2020a; Pattisapu et al.,

2020; Kalyan and Sangeetha, 2020b) in social me-
dia text is based on BERT and RoBERTa. Mif-
tahutdinov and Tutubalina (2019) experimented
with BERT and cosine similarity based semantic
features, Kalyan and Sangeetha (2020a) experi-
mented with various general and domain specific
BERT models combined with highway network
layer. Pattisapu et al. (2020) normalize medical
concepts using RoBERTa and graph embedding
based concept vectors while approach of Kalyan
and Sangeetha (2020b) involves learning the vec-
tors representations of target concepts along with
input concept mentions. Our approach is similar to
(Kalyan and Sangeetha, 2020b) by choosing target
concept which has maximum cosine similarity with
the input concept mention. However unlike Kalyan
and Sangeetha (2020b) method which learns target
concept vectors from scratch, we use retrofitted
target concept vectors which are generated using
SRoBERTa and then enriched with synonym re-
lationship knowledge from domain lexicon. It is
the first work to exploit both target concept infor-
mation and domain lexicon knowledge effectively
in MCN in the form of retrofitted target concept
vectors.

2.2 Sentence Embeddings
Sentence embeddings encode sequence of words
into dense fixed size vector. Some of the popular
approaches are averaging word vectors, encoder-
decoder based skip thought (Kiros et al., 2015),
InferSent (Conneau et al., 2017) which is Siamese
BiLSTM+max pooling trained on SNLI, trans-
former based Universal Sentence Encoder (Cer
et al., 2018). Recently, Reimers and Gurevych
(2019) proposed SRoBERTa, Siamese network
based Sentence RoBERTa model and it is trained on
NLI + MultiNLI datasets followed by STS dataset.
It is a state-of-the-art sentence embedding model
which encodes sequence of words into dense fixed
length vector in a way that sequences which are
close in meaning are also close in embedding pace.

2.3 Retrofitting algorithm
Vector representations generated by neural embed-
ding models are rich in syntactic and semantic in-
formation but lack valuable relationship knowledge
from semantic lexicons. To enrich vector represen-
tations with relationship knowledge, Faruqui et al.
(2015) proposed retrofitting algorithm. It is simply
a post-processing step and can be applied to vectors
generated using any embedding model. It learns
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retrofitted concept vectors {v1, v2, v3, .., vn} from
concept vectors {v̂1, v̂2, v̂3, ..., v̂n} by iteratively
minimizing distance between (i) retrofitted vector
vi and its counterpart v̂i and (ii) retrofitted vector
vi and all its neighbors vj . The objective function
is

n∑
i=1

αi ‖vi − v̂i‖2 +
∑

(i,j)∈E

βij ‖vi − vj‖2


(1)
Here retrofitted vectors vi are initialized with val-
ues of concept vectors v̂i and then updated itera-
tively by minimizing the objective function.

3 Datasets

Our proposed model is evaluated on three standard
MCN datasets of noisy user-generated texts. Out of
these, CADEC (Karimi et al., 2015) and PsyTAR
(Zolnoori et al., 2019) datasets contain concept
mentions gathered from user-generated AskAPa-
tient.com reviews and SMM4H2017 (Sarker et al.,
2018) contains adverse drug reaction (ADR) men-
tions extracted from twitter.

CADEC: Karimi et.al released CSIRO Adverse
Drug Event Corpus (CADEC) having user posted
drug reviews gathered from AskAPatient (Karimi
et al., 2015). The annotators manually identified
concept mentions and mapped them to SNOMED-
CT concepts which resulted in a corpus of 6754
concept mentions and 1029 SNOMED-CT codes.
As 66% of instances are common in train and test
splits in the random folds of this dataset released
by Limsopatham and Collier (2016), Tutubalina
et al. (2018) split this dataset into five folds1 with
no overlap.

PsyTAR: Zolnoori et al. (2019) released PsyTAR
corpus which includes 887 user generated psy-
chiatric drug reviews collected from AskAPatient.
This dataset includes manually identified 6556 con-
cept phrases which are mapped to 618 concepts
in SNOMED-CT. Zolnoori et al. (2019) released
random folds of this dataset. However, 56% of in-
stances are common in train and test in these folds.
So, Miftahutdinov and Tutubalina (2019) create
custom folds of this dataset2 to reduce the overlap
between train and test sets.

1https://cutt.ly/Gi6kka6
2https://doi.org/10.5281/zenodo.3236318

SMM4H017: Sarker et al. (2018) released
this dataset3 of ADR mentions for subtask3 of
SMM4H2017 shared task organized by Health Lan-
guage Processing Lab @ University of Pennsil-
vaniya. Initially, twets containing generic and trade
names of drugs were collected. Then, ADR men-
tions were manually identified and mapped to Med-
DRA concepts. In this corpus, train set consists
of 6500 ADR phrases and 472 unique MedDRA
codes, test set consists of 2500 ADR phrases and
254 MedDRA codes.

The significant overlap between train and test
sets in random folds of CADEC and PsyTAR
datasets can result in bias and contribute to high
performance of model (Lee et al., 2017; Kalyan and
Sangeetha, 2020a). So, we evaluate our approach
on custom folds of PsyTAR and CADEC datasets
in addition to SMM4H2017 dataset, like the recent
previous works (Pattisapu et al., 2020; Kalyan and
Sangeetha, 2020b)

4 Methodology

4.1 Model Description

Our model is based on RoBERTa and target concept
embeddings. Initially we compute vector represen-
tations of input phrase and concepts in standard
lexicon using RoBERTa and SRoBERTa respec-
tively. We further enrich target concept vectors
with synonym relationship from domain lexicon
using retrofitting algorithm. Then, we find cosine
similarity between vectors of concept mention and
all the target concepts. Finally, the concept men-
tion is mapped to concept with maximum similarity.
Figure 2 gives an overview of our proposed model.

Target Concept Representation

We use SRoBERTa, state-of-the-art sentence em-
bedding model to compute target concept represen-
tations and then inject synonym relationship using
retrofitting algorithm to get target concept vector
ec ∈ Rh.

ec = Retrofit(SRoBERTa(concept)) (2)

Concept Mention Representation

Learning quality representation of concept men-
tions is a key step in medical concept normalization.
We use RoBERTa, which is an improved version
of BERT with large training batch sizes and more

3https://data.mendeley.com/datasets/rxwfb3tysd/2
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Figure 2: Overview of our proposed model for medical concept normalization in noisy user-generated texts. em -
RoBERTa encoded input concept mention, s - similarity vector computed based on cosine similarity between the
vectors of input phrase and concepts in standard lexicon, ŝ - normalized cosine similarity vector.

training corpus, to compute input concept mention
representation em ∈ Rh.

em = RoBERTa(mention) (3)

We find similarity vector based on cosine similarity
between vectors of input pharse and concepts in
standard lexicon. Finally, we normalize all the
cosine similarity values using softmax which result
in normalized similarity vector ŝ ∈ RC .

ŝ = [ŝi]
C
i=1 (4)

Here C represents total number of
unique target concepts in the dataset,
ŝi = Softmax(f(em, eci)) where the function
f() represents cosine similarity and eci represents
vector of the concept ci. We train the model using
AdamW optimizer (Loshchilov and Hutter, 2019)
which minimize cross entropy loss (LCE) between
normalized similarity vector ŝ and the ground truth
vector s. During training, we freeze the vectors of
target concepts.

LCE = − 1

K

K∑
i=1

C∑
j=1

sijlog(ŝij) (5)

4.2 Implementation Details
We do basic pre-processing steps like lower-casing,
removing non-ASCII and special characters in con-
cept mention and concept descriptions. We remove
unnecessary words like ‘nos’, ‘unspecified’ and
‘finding’ in concept descriptions. In case of con-
cept mentions, we do additional pre-processing
steps like removing repeating characters (e.g., sooo
much→ so much) , replacing medical acronyms4

4Gathered from UMLS Methathesaurus, Wikipedia and
https://www.acronymslist.com/cat/medical-acronyms.html

( ‘ra’ → ‘rheumatoid arthritis’) and contractions
(isn’t→ is not) with full forms.

Pattisapu et al. (2020) treat synonyms in map-
ping lexicon as concept mention and augment
the training set with the labeled instances gener-
ated from synonyms. However, we augment train-
ing set with synonyms of less frequently occur-
ring concepts only. In case of CADEC and Psy-
TAR datasets, we use synonyms from the mapping
lexicon SNOMED-CT. In case of SMM4H2017
dataset, we use synonyms from UMLS Metathe-
saurus as synonyms are very few in number in Med-
DRA. For each concept in MedDRA, we find the
corresponding concept unique identifier(CUI) in
UMLS and then gather all the associated synonyms
excluding non-English synonyms.

In case of retrofitting algorithm, we choose num-
ber of iterations = 10 as suggested by the authors.
Further, we use the implementation5 provided by
the authors. As there is no official validation set
in case of all the three datasets, we use 10% of
the augmented training set for validation. We find
optimal hyperparameter values by performing ran-
dom search over the range of hyperparameter val-
ues. During training, we freeze target concept vec-
tors. We implement all our models in PyTorch us-
ing transformers package from huggingface (Wolf
et al., 2019).

4.3 Evaluation Metrics
In case of all the three datasets, standard evaluation
metric is accuracy (Miftahutdinov and Tutubalina,
2019; Pattisapu et al., 2020; Kalyan and Sangeetha,
2020b). In case of CADEC and PsyTAR datasets
which are multi-fold, reported accuracy is average
accuracy across all five folds.

5https://github.com/mfaruqui/retrofitting
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4.4 Comparison with existing methods

Here, we compare our approach with the following
existing methods.

Hierarchical Character-LSTM Han et al. (2017)
use hierarchical character level LSTM to normal-
ize the concept mentions. Intially, they generate
character level word representations using LSTM
over embeddings of characters and their classes and
then apply bidirectional LSTM over these word rep-
resentations to generate contextual word vectors.
Finally, vector obtained by max-pooling of con-
textual word vectors is given to fully connected
softmax layer.

Multinomial LR Belousov et al. (2017) generate
concept mention vector representation as average
of three weighted vectors of words in the concept
mention. Here, word weights are based on inverse
document frequencies of words and word vectors
are obtained as average of GoogleNews, twitter
and drugtwitter embeddings. With these mention
representations as input, Multinomial Logistic Re-
gression classifier assigns the concepts.

BERT + Cosine Semantic Features Miftahutdi-
nov and Tutubalina (2019) generate representation
of concept mention using BERT. To integrate target
concept knowledge , the authors generate seman-
tic features based on cosine similarity between tf-
idf vector representations of concept mention and
all the target concepts in the dataset. Finally, the
output of BERT and cosine semantic features are
concatenated and given to fully connected softmax
layer which assigns the concepts.

BERT + Highway Network Layer Kalyan and
Sangeetha (2020a) experiment with various gen-
eral and domain specific BERT models for medical
concept normalization. The output of BERT model
is passed through highway network layer to elimi-
nate the unnecessary information and then passed
through fully connected softmax layer to get the
target concept.

RoBERTa + Graph based Concept Vectors Pat-
tisapu et al. (2020) generate target concept vec-
tors using graph embedding algorithms. They train
RoBERTa based model which embeds input con-
cept mention into the embedding space of target
concept vectors. For a given input phrase, the
nearest standard concept in embedding space is
assigned.

RoBERTa + Random Concept Vectors Kalyan
and Sangeetha (2020b) propose a model based on
RoBERTa which jointly learns the representations
of concept mention and the standard concepts. The
authors randomly initialize the target concept vec-
tors and then they are updated during training. The
standard concept with maximum cosine similarity
with input phrase is chosen.

4.5 Models

RoBERTa We generate the representations of in-
put concept mention using RoBERTa. We ex-
periment with both variants of RoBERTa namely
RoBERTa-base and RoBERTa-large. In both the
cases, the size of concept mention vector is equal to
the hidden vector size i.e., 768 in case of RoBERTa-
base and 1024 in case of RoBERTa-large.

+ Concept Vectors (CV) We generate target con-
cept vectors by encoding their descriptions using
SRoBERTa. In case of a) RoBERTa-base model,
we use target concept vectors generated by ‘roberta-
base-nli-stsb-mean-tokens’ and b) RoBERTa-large
model, we use target concepts generated by
‘roberta-large-nli-stsb-mean-tokens’.

+ Retrofitted Concept Vectors(RCV) We enrich
target concepts generated by SRoBERTa with syn-
onym relationship knowledge from mapping lexi-
con using retrofitting algorithm.

5 Results

Our proposed model is evaluated on the stan-
dard MCN datasets CADEC, PsyTAR and
SMM4H2017. The performance of our model and
existing models is presented in Table 2. From Table
2, we notice that our proposed model achieves the
best results of 86.40%, 85.04% and 91.73% across
CADEC, PsyTAR and SMM4H2017 datasets. Our
model outperforms existing methods with accu-
racy improvement up to 1.36%. The existing state-
of-the-art model Kalyan and Sangeetha (2020b)
learns target concept vectors from scratch and so
it requires more number of training instances. Our
model outperforms the approach of Kalyan and
Sangeetha (2020b) (i) up to 1.9% in case of base
version and (ii) up to 1.36% in case of large version.
The use of retrofitted concept vectors improved per-
formance only in case of SMM4H2017. The per-
formance of retrofitted concept vectors depends on
the number of available synonyms for each concept.
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Method CADEC PsyTAR SMM4H2017

Existing Methods
(Han et al., 2017) - - 87.20

(Belousov et al., 2017) - - 87.70

(Miftahutdinov and Tutubalina, 2019) 79.83 77.52 89.28

(Kalyan and Sangeetha, 2020a) 82.62 - -

(Pattisapu et al., 2020) 83.18 82.42 -

(Kalyan and Sangeetha, 2020b)π 82.60 81.90 90.15

(Kalyan and Sangeetha, 2020b)Π 85.49 83.68 90.84

Our Method
RoBERTa-base+ CVγ 84.53 82.41 91.34

RoBERTa-base+ RCVδ 84.11 82.34 91.19

RoBERTa-large + CVγ 86.40 85.04 91.19

RoBERTa-large+ RCVδ 86.04 85.02 91.73

Table 2: Performance of our mdoel and existing methods on CADEC, PsyTAR and SMM4H2017 datasets. π
- model based on Roberta-base and Π - model based on Roberta-large. γ - concept vectors generated using
SRoBERTa and δ - concept vectors generated using SRoBERTa and then retrofitted using synonym relationship
from domain lexicon.

The synonyms for SMM4H2017 are gathered from
UMLS Metathesaurus and as they are more number
in number compared to SNOMED-CT synonyms,
retrofitted concept vectors improve accuracy only
in case of SMM4H2017 (Roberta-large). In fu-
ture, we would like to see whether using UMLS
synonyms instead of SNOMED-CT synonyms im-
prove performance in case of CADEC and PsyTAR
datasets also.

6 Analysis and Discussion

6.1 Training only on mapping lexicon
synonyms

There will be a set of synonyms for each con-
cept in mapping lexicon. Table 3 shows some of
the concepts and corresponding synonyms from
SNOMED-CT lexicon. We consider each synonym
as user-generated concept mention and generate
labeled instances from mapping lexicon synonyms.

To show the performance of our model in the
absence of human annotated instances in training
set, we train our model using labeled instances gen-
erated from mapping lexicon synonyms and then
evaluate our model on the corresponding test set.
Tabel 4 shows the performance of our model and ex-
isting models across three datasets. As reported in
the table, our model outperforms existing methods
with accuracy improvement up to 4.46% and 4.87%
across CADEC and PsyTAR datasets respectively.

From Table 4, we infer that among the three ap-
proaches, Kalyan and Sangeetha (2020b) achieved

the lowest performance in case of CADEC and
PsyTAR datasets. When compared to Kalyan and
Sangeetha (2020b), the performance of a) Pattis-
apu et al. (2020) is 9.42% and 9.87% higher b)
our approach is 13.88% and 14.74% higher across
CADEC and PsyTAR datasets respectively. Kalyan
and Sangeetha (2020b) learn the vector represen-
tations of concept mentions and concepts jointly.
The authors randomly assigned values to target
concepts and then updated them during training.
However, learning concept vectors from scratch
requires more number of training instances. As
the number of training instances generated from
synonyms is less in number, this approach results
in poor performance.

In case of SMM4H2017, Kalyan and Sangeetha
(2020b) achieved the best performance of 63.28%
which is 2.55% more than our approach. Here
as the number of training instances generated
from synonyms is more in number, Kalyan and
Sangeetha (2020b) outperformed our approach.
This shows that learning target concept vectors
from scratch is effective only when training in-
stances are more in number.

6.2 Failure Analysis

Here we analyse the reasons for the wrong predic-
tions given by our best performing model. For this,
we check all the failure cases in CADEC dataset.

Our model failed to handle the concept mentions
which are misspelled words of ground truth con-
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Concept-ID Concept Description Concept Synonyms

60119000 Exhaustion Washed out, Worn out

278040002 Loss of hair Thinning hair, Falling hair

386705008 Lightheadedness Feels light headed, Dizziness light headed , Lightheaded

131148009 Bleeding Haemorrhage, Hemorrhage

247640008 Unable to think clearly Muddled thought , Muddled thinking

102897001 Feeling intoxicated Feeling drunk, Feeling groggy

Table 3: Concepts and their synonyms from SNOMED-CT lexicon

Method CADEC PsyTAR SMM4H2017

Existing Methods
(Pattisapu et al., 2020) 64.80 58.4 -

(Kalyan and Sangeetha, 2020b)π 51.55 45.77 55.75

(Kalyan and Sangeetha, 2020b)Π 55.38 48.53 63.28
Ours

Roberta-base + CVγ 62.44 59.47 58.78

Roberta-base + RCVδ 63.73 60.14 57.31

Roberta-large + CVγ 69.26 63.06 58.82

Roberta-large + RCVδ 69.14 63.27 60.73

Table 4: Performance of our model and existing methods when trained only on mapping lexicon synonyms.
π - model based on Roberta-base and Π - model based on Roberta-large. γ - concept vectors generated using
SRoBERTa. δ - concept vectors generated using SRoBERTa and then retrofitted using synonym relationship from
domain lexicon.

cepts. For example, the concept mention ‘insomina
is mapped to ‘nausea - 422587007 ’ instead of
the ground truth concept ‘insomnia - 193462001’.
Similarly, the concept mentions ’naseua’, ‘fatique’,

‘insommnia’, ‘diziness’, ‘nausia’ and ‘diarreah’ are
not mapped to the ground truth concepts ‘nausea
- 422587007’, ‘fatigue - 84229001 ’, ‘insomnia
- 193462001 ’, ‘dizziness - 404640003’, ‘nausea
- 422587007’ and ‘diarrhea - 62315008’ respec-
tively. Here, all the concept mentions are mis-
spelled words of the ground truth concepts.

In some of the cases, our model assigned con-
cepts which are more specific than the ground truth
concepts. For example, our model mapped the
concepts mentions ‘pain so bad’, ‘so much pain’,

‘worse pain’ and ‘pain bad’ to the concept ‘severe
pain - 76948002’ rather than the ground truth ‘pain
- 22253000’. Here we observe that in case of all
these concept mentions, the concept ‘severe pain’
is more specific and hence appropriate compared
to the ground truth ‘pain’.

In few cases, our model assigned concepts which
are closely related to the ground truth concept. For
example, the concept mention ‘difficult to concen-
trate is assigned to the concept ‘unable to con-

centrate - 60032008’ instead of the ground truth
concept ‘poor concentration - 26329005’. Here
the predicted and ground truth concepts are closely
related. Similarly, ‘could not walk across the room’
is assigned to ‘unable to walk - 282145008’ instead
of ‘walking disability - 228158008’.

One more case in which our model failed is
when the concept mention is an abbreviation of
the ground truth concept. For example, the concept
mention ‘ibu’ is assigned to the concept ‘ubide-
carenone’ and the ground truth concept is ‘ibupro-
fen. Here, ‘ibu’ is an abbreviation of ‘ibuprofen’.

6.3 Limitations

In case of SMM4H2017 dataset, we find the cor-
responding CUI for each MedDRA concept and
include all the associated synonyms excluding non-
English synonyms. Here the limitation is that,
some CUIs can be mapped to more than one Med-
DRA concept. For example, ‘C0020649 (Hypoten-
sion)’ can be mapped to both the MedDRA con-
cepts ‘10021097 (Hypotension)’ and ‘10005734
(Blood pressure decreased)’. Similarly, ‘C0036974
(Shock)’ can be mapped to both the MedDRA
concepts ‘10009192 (Circulatory collapse)’ and
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‘10034567 (Peripheral circulatory failure)’.

7 Conclusion

Here, we propose a model based on RoBERTa and
target concept embeddings to normalize concepts
in medical related user-generated texts. Our model
integrates target concept knowledge as well do-
main lexicon knowledge in a simple and novel way.
The existing state-of-the-art approach (Kalyan and
Sangeetha, 2020b) exploits target concept knowl-
edge by learning vector representations of target
concepts from scratch. As target concept vectors
are learned from scratch, this approach requires
more training instances and it performs poorly with
less number of training instances. Our model ex-
ploits target concept information and domain lex-
icon knowledge in the form of retrofitted target
concept vectors. We encode target concepts using
SRoBERTa and enrich these concept vectors with
synonym relationship knowledge from standard
lexicon using retrofitting algorithm. Our model out-
performs all the existing methods and achieves sig-
nificant improvements on three standard datasets.
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ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, et al. 2019. Huggingface’s transformers: State-
of-the-art natural language processing. ArXiv, pages
arXiv–1910.

Maryam Zolnoori, Kin Wah Fung, Timothy B Patrick,
Paul Fontelo, Hadi Kharrazi, Anthony Faiola,
Yi Shuan Shirley Wu, Christina E Eldredge, Jake
Luo, Mike Conway, et al. 2019. A systematic ap-
proach for developing a corpus of patient reported
adverse drug events: a case study for ssri and snri
medications. Journal of biomedical informatics,
90:103091.

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://proceedings.mlr.press/v116/pattisapu20a.html
http://proceedings.mlr.press/v116/pattisapu20a.html
https://doi.org/https://doi.org/10.1016/j.procs.2020.04.145
https://doi.org/https://doi.org/10.1016/j.procs.2020.04.145

