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Abstract

Deep neural networks have demonstrated high
performance on many natural language pro-
cessing (NLP) tasks that can be answered di-
rectly from text, and have struggled to solve
NLP tasks requiring external (e.g., world)
knowledge. In this paper, we present OSCR
(Ontology-based Semantic Composition Regu-
larization), amethod for injecting task-agnostic
knowledge from an Ontology or knowledge
graph into a neural network during pre-training.
We evaluated the performance of BERT pre-
trained on Wikipedia with and without OSCR
by measuring the performance when fine-
tuning on two question answering tasks in-
volving world knowledge and causal reasoning
and one requiring domain (healthcare) knowl-
edge and obtained 33.3 %, 18.6 %, and 4 %
improved accuracy compared to pre-training
BERT without OSCR.

1 The Problem

“The detective flashed his badge to the police of-
ficer.” The nearly effortless ease at which we, as
humans, can understand this simple statement be-
lies the depth of semantic knowledge needed for
its understanding: What is a detective? What is a
police officer? What is a badge? What does it mean
to flash a badge? Why would the detective need to
flash his badge to the police officer? Understanding
this sentence requires knowing the answer to all
these questions and relies on the reader’s knowledge
about this world: a detective investigates crime, po-
lice officers restrict access to the crime scene, and
a badge can be a symbol of authority.
As shown in Figure 1, suppose we were inter-

ested in determining whether, upon showing the
policeman his badge, it is more plausible that the
detective would be let into the crime scene or that
the police officer would confiscate the detective’s
badge? To answer this question, we would need

Premise: The detective flashed his badge to
the police officer.

Question: What is the most likely effect?

A: The police officer confiscated the
detective’s badge.

B: The police officer let the detective enter
the crime scene.

Figure 1: Example of a question requiring common-
sense and causal reasoning (Roemmele et al., 2011)
with entities highlighted.

to leverage our accumulated expectations about
the world: although both scenarios are certainly
possible, our accumulated expectations about the
world suggest it would be very extraordinary for
the police officer to confiscate the detective’s badge
rather than allow him to enter the crime scene.
Evidence of Grice’s Maxim of Quantity (Grice,

1975), this shared knowledge of the world is rarely
explicitly stated in text. Fortunately, some of this
knowledge can be extracted from Ontologies and
knowledge bases. For example ConceptNet (Speer
et al., 2017) indicates that a detective is a TypeOf
police officer, and is CapableOf finding evidence;
that evidence can be LocatedAt a crime scene;
and that a badge is a TypeOf authority symbol.
While neural networks have been shown to ob-

tain state-of-the-art performance on many types of
question answering and reasoning tasks from raw
data (Devlin et al., 2018; Rajpurkar et al., 2016;
Manning, 2015), there has been less investigation
into how to inject ontological knowledge into deep
learning models, with most prior attempts embed-
ding ontological information outside of the network
itself (Wang et al., 2017).
In this paper, we present a pre-training regular-
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ization technique we call OSCR (Ontology-based
Semantic Composition Regularization), which is
capable of injecting world knowledge and onto-
logical relationships into a deep neural network.
We show that incorporating OSCR into BERT’s
pre-training injects sufficient world knowledge to
improve fine-tuned performance in three question
answering datasets. The main contributions of this
work are:
1. OSCR, a regularization method for injecting

ontological information and semantic compo-
sition into deep learning models;

2. Empirical evidence showing the impact of
OSCRon two tasks requiringworld knowledge,
causal reasoning, and discourse understanding
even with as few as 500 training example,
as well as a task requiring medical domain
knowledge; and

3. Experimental results showing that the same
technique used to infer background knowl-
edge about the world can also capture domain-
specific knowledge in the case of medical
question answering; and

4. An open-source implementation of OSCR and
BERT supporting mixed-precision training,
non-TPU model distribution, and enhanced
numerical stability.

2 Background and Related Work

The idea of training a model on a related problem
before training on the problem of interest has been
shown to be effective for many natural language
processing tasks (Dai and Le, 2015; Peters et al.,
2017; Howard and Ruder, 2018). More recent
uses of pre-training adapt transfer learning by first
training a network on a language modeling task
and then fine-tuning (retraining) that model for a
supervised problem of interest (Dai and Le, 2015;
Howard and Ruder, 2018; Radford et al., 2018).
Pre-training, in this way, has the advantage that
the model can build on previous parameters to
reduce the amount of information it needs to learn
for a specific downstream task. Conceptually, the
model can be viewed as applying what it has already
learned from the languagemodel taskwhen learning
the downstream task.
BERT (Bidirectional Encoder Representations

from Transformers) is a pre-trained neural network
that has been shown to obtain state-of-the-art results
on eleven natural language processing tasks after
fine-tuning (Devlin et al., 2018). BERT relies on

two pre-training objectives: (1) a variant of lan-
guage modeling called Cloze (originally proposed
in Taylor 1953) where-in 20 % of the words in a sen-
tence are masked, and the model must unmask them
and (2) a next sentence prediction task where-in
the model is given two pairs of sentences and must
decide if the second sentence immediately follows
the first. Despite its strong empirical performance,
the architecture of BERT is relatively simple: four
layers of transformers (Vaswani et al., 2017) are
stacked to process each sentence.

In terms of injecting knowledge into pre-training,
Zhang et al. (2019) explored injecting entity in-
formation into BERT using multi-head attention.
However, their approach requires explicitly indicat-
ing entity boundaries or relation constituents with
special input tokens for down-stream fine-tuning.
By contrast, OSCR requires no modification of
input formats in the host network. Sun et al. (2019)
explored modifying BERT’s pre-training by mask-
ing entire entities and phrases extracted from ex-
ternal knowledge. Meanwhile, Xie et al. (2019)
explored projecting propositional knowledge using
Graph Convolutional Networks (GCNs). OSCR,
instead, introduces a regularization term that can
be added to any natural language pre-training ob-
jectives, without modifying the architecture of the
network or the pre-training objectives themselves.

3 The Data

Incorporating OSCR into pre-training requires an
embedded ontology (or knowledge) graph, and one
or more natural language pre-training objectives to
regularize – in our case, BERT’s Cloze and next-
sentence prediction tasks. These objectives, in turn,
require a document collection.

3.1 The Ontology
ConceptNet 5 is a semantic network containing
relational knowledge contributed to Open Mind
Common Sense (Singh et al., 2002) and to DB-
Pedia (Auer et al., 2007), as well as dictionary
knowledge fromWiktionary, the Open Multilingual
WordNet (Singh et al., 2002; Miller, 1995), the
high-level ontology from OpenCyc1, and knowl-
edge about word associations from “Games with
a Purpose” (von Ahn, 2006). In our experiments
we used ConceptNet 5 as our ontology relying on
an embedded representation of the ontology known
as ConceptNet NumberBatch (Speer et al., 2017),

1http://www.cyc.com/opencyc/

http://www.cyc.com/opencyc/
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in which embeddings for all entities in ConceptNet
were built using an ensemble of (a) data from Con-
ceptNet, (b) word2vec (Mikolov et al., 2013), (c)
GloVe (Pennington et al., 2014), and (d) OpenSub-
titles 20162 using retrofitting.

3.2 The Documents
Our text corpus was a 2019 dump of English
Wikipedia articles with templates expanded as pro-
vided by Wikipedia’s Cirrus search engine3. Pre-
processing relied on NLTK’s Punkt sentence seg-
menter4 (Loper and Bird, 2002), and theWordPiece
subword tokenizer provided with BERT.

4 The Approach

Virtually all neural networks designed for natu-
ral language processing represent language as a
sequence of words, subwords, or characters. By
contrast, Ontologies and knowledge bases encode
semantic information about entities, which may
correspond to individual nouns (e.g., “badge”)
or multiword phrases (“police officer”). Conse-
quently, injecting world and domain knowledge
from a knowledge base into the network requires
semantically decomposing the information about
an entity into the supporting information about its
constituent words. For example, injecting the se-
mantics of “Spanish Civil War” into the network
requires learning what information the word “Span-
ish” introduces to the nominal “Civil War” and
what information “Civil” adds to the word “War”.
To do this, OSCR is implemented using a three-step
approach illustrated in Figure 2:
Step 1. entities are recognized in a sentence using

a Finite State Transducer (FST);
Step 2. the sequence of subwords corresponding

to each entity are semantically composed
to produce an entity-level encoding; and

Step 3. the average energy between the composed
entity encoding and the pre-trained entity
encoding from the ontology is used as a
regularization term in the pre-training loss
function.

By training the model to compose sequences of
subwords into entities, during back-propagation,
the semantics of each entity are decomposed and

2http://opus.nlpl.eu/OpenSubtitles-v2016.
php

3https://www.mediawiki.org/wiki/Help:
CirrusSearch

4https://www.nltk.org/_modules/nltk/
tokenize/punkt.html

injected into the network based on the neural acti-
vations associated with its constituent words.

4.1 Entity Detection

We designed OSCR to require as few modifica-
tions to the underlying host network (e.g., BERT)
as possible. We recognized entities during train-
ing and inference online by (1) tokenizing each
entity in our ontology using the same tokenizer
used to prepare the BERT pre-training data, and
(2) compiling a Finite State Transducer to detect
sequences of subword IDs corresponding to enti-
ties. The FST, illustrated in Figure 3, allowed us to
detect entities on-the-fly without hard coding a spe-
cific ontology and without inducing any discernible
change in training or inference time. Although we
did not explore it in this work, this potentially al-
lows for multiple ontologies to be injected through
OSCR during pre-training. In these experiments,
due to the simplicity of ConceptNet entities, we
relied on exact string matching to detect entities.
Formally, let ^ = x1, x2, · · · , x# represent the se-
quence of words in a sentence. The FST processes
^ and returns three sequences: B1, B2, · · · , B" ;
;1, ;2, · · · , ;" ; and 41, 42, · · · , 4" representing the
start offset, length, and the pretrained embedded
representation of every mention of any entity in the
Ontology.

Entity Subsumption. When detecting entities,
it is often the case that multiple entities may cor-
respond to the same span of text. As illustrated
in Figure 2, the entity “Spanish Civil War” con-
tains the subsumed entities “Spanish”, “Civil War“,
“Civil”, and “War”. Likewise, becauseBERTmasks
20 % of the words in each sentence, it is possible
for entities to involve masked words. Note: includ-
ing or excluding subsumed and de-masked entities
(as illustrated in Figure 2) provided no discernible
effect in our experiments.

Entity Demasking. Because BERT masks to-
kens when pre-training, we evaluated the impact of
(a) de-masking words before detecting entities and
(b) ignoring all entity mentions involving masked
words.

4.2 Semantic Composition

The role of semantic composition in OSCR, is to
learn a composed representation c1, c2, · · · , c"
for each entity detected in ^ such that c8 =

compose
(
GB8 , GB8+1, · · · , GB8+;8

)
. As pre-training in

http://opus.nlpl.eu/OpenSubtitles-v2016.php
http://opus.nlpl.eu/OpenSubtitles-v2016.php
https://www.mediawiki.org/wiki/Help:CirrusSearch
https://www.mediawiki.org/wiki/Help:CirrusSearch
https://www.nltk.org/_modules/nltk/tokenize/punkt.html
https://www.nltk.org/_modules/nltk/tokenize/punkt.html
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British policy during the Spanish Civil War was officially that of [MASK] ##intervention
Pre-training Sentence:

⋯ .
𝒙𝒙1 𝒙𝒙2 𝒙𝒙3 𝒙𝒙4 𝒙𝒙5 𝒙𝒙6 𝒙𝒙7 𝒙𝒙8 𝒙𝒙9 𝒙𝒙10 𝒙𝒙11 𝒙𝒙12 𝒙𝒙13 ⋯ 𝒙𝒙𝑁𝑁

𝒄𝒄1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝒙𝒙1
𝒄𝒄2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝒙𝒙2
𝒄𝒄3 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝒙𝒙5

𝒄𝒄4 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝒙𝒙5,𝒙𝒙6,𝒙𝒙7

Semantic Composition (§4.2)

𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
1
𝑀𝑀
�
𝑡𝑡=1

𝑀𝑀

𝑓𝑓 𝒄𝒄𝑡𝑡 ,𝒆𝒆𝑡𝑡

Energy Regularization (§4.3)

FST

NumberBatch
⋮
𝒆𝒆1
⋮
𝒆𝒆𝐾𝐾
⋮

ConceptNet

British (𝑐𝑐1 = 1; 𝑙𝑙1 = 1) Spanish Civil War (𝑐𝑐4 = 5; 𝑙𝑙4 = 3) War (𝑐𝑐7=7; 𝑙𝑙7=1)† Nonintervention (𝑐𝑐10 = 12; 𝑙𝑙10 = 2)‡

Policy (𝑐𝑐2 = 2; 𝑙𝑙2 = 1) Civil War (𝑐𝑐5 = 6; 𝑙𝑙5 = 2)† Officially (𝑐𝑐8 = 9; 𝑙𝑙8 = 1)† Intervention (𝑐𝑐11 = 13; 𝑙𝑙11 = 1)†

Spanish (𝑐𝑐3 = 5; l3 = 1)† Civil (𝑐𝑐6 = 6; 𝑙𝑙6 = 1)† Non (𝑐𝑐9 = 12; 𝑙𝑙9 = 1)†‡ ⋮

Entity Detection (§4.1)

Figure 2: Architecture of OSCR when injecting ontology knowledge from ConceptNet into BERT where ‘†’
indicates subsumed entities, ‘‡’ indicates de-masked entities, # is the length of the input sentence, " is the number
of entities detected in the sentence, and  is the number of entities with embeddings in ConceptNet.

87

15

113

𝐸𝐸1
42

⋯

𝐸𝐸1,329

⋯

26
𝐸𝐸21,404

15

13

𝐸𝐸516

42

42

13

𝐸𝐸246

𝐸𝐸39

Figure 3: Finite State Transducer (FST) used to detect
entities during pretraining; each node corresponds to a
word ID, double circles represent terminal states, and
48 indicates the 8th pretrained entity embedding in Con-
ceptNet’s NumberBatch.

BERT is computationally expensive, we consid-
ered three computationally-efficient methods for
composing words and subwords into entities.

Recurrent Additive Networks (RANs) are a
simplified alternative to LSTM- or GRU-based
recurrent neural networks that use only additive
connections between successive layers and have
been shown to obtain similar performance with
38% fewer learnable parameters (Lee et al., 2017).
Given a sequence of words x1, x2, · · · , x! we

use the following layers to accumulate information
about how the semantics of each word in an entity
contribute to the overall semantics of the entity:

m̃C = ]<xC (1a)
iC = f (]8 [hC−1, xC ] + b8) (1b)
fC = f

(
] 5 [hC−1, xC ] + b 5

)
(1c)

mC = iC ◦ m̃C + fC ◦ mC−1 (1d)
hC = 6 (mC ) (1e)

where [•] represents vector concatenation, m̃C rep-
resents the content layer which encodes any new
semantic information provided by word xC , ◦ in-
dicates an element-wise product, iC represents the

input gate, fC represents the forget gate, mC repre-
sents the internal memories about the entity, and hC
is the output layer encoding accumulated semantics
about word xC . We define the composed entity
c8 B hB8+;8 (i.e., the content vector of the RAN
after processing the last token in the entity) for the
sequence beginning with xB8 .

Linear Recurrent Additive Networks To fur-
ther reduce model complexity, we considered a
second, simpler version of a RAN omits the content
and output layers (i.e., Equations 1a and 1e) and
Equation 1d is updated to depend on xC directly:
mC = iC ◦ xC + fC ◦ mC−1. As above, we define the
composed entity c8 B mB8+;8 for the sequence of
subwords beginning with xB8 .

Linear Interpolation Finally, we considered a
third, even simpler form of semantic compo-
sition. Inspired by Goodwin and Harabagiu
(2016), we represented the semantics of an en-
tity as an unordered linear combination of the
semantics of its constituent words, i.e.: c8 B
]4

(
xB8 + xB8+1 + · · · + xB8+;8

)
+ ;8 · b4.

4.3 Energy Regularization
We project the composed entities into the same
vector space as the pretrained entity embeddings
from the Ontology, and measure the average energy
across all entities detected in the sentence:

ROSCR =
1
"

"∑
8=1

5
(
]?c8 + b?, e8

)
(2)

where 5 is an energy function capturing the energy
between the composed entity 28 and the pretrained
entity embedding 48. We considered three energy
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functions: (1) the Euclidean distance, (2) the abso-
lute distance, and (3) the angular distance, which
can handle negative values.

5 Experiments

5.1 Experimental Setup
Hyper-parameter Tuning For each fine-tuning
task, we used a greedy approach to hyper-parameter
tuning by incrementally and independently opti-
mizing: batch size ∈ {8, 16, 32}; initial learning
rate ∈

{
1 × 10−5, 2 × 10−5, 3 × 10−5}; whether to

include subsumed entities ∈ {yes, no}; and whether
to include masked entities ∈ {yes, no}.
For CoPA, the Story Cloze task, and RQE, we

found an optimal batch size of 16 and an optimal
learning rate of 2 × 10−5. We also found that includ-
ing subsumed entities and masked was optimal (at a
net performance improvement of < 1% accuracy).

Pretraining We pretrained BERT using a 2019
Wikipedia dump formatted for Wikipedia’s Cirrus
search engine.5 Preprocessing relied on NLTK’s
Punkt sentence segmenter6 (Loper and Bird, 2002),
and the WordPiece subword tokenizer provided
with BERT. We used the vocabulary from BERT
base (not large) and a maximum sequence size of
384 subwords, training 64 000 steps, with an initial
learning rate of 2 × 10−5, and 320 warm-up steps.

BERT Modifications We used a modified ver-
sion of BERT, allowing for mixed-precision train-
ing. This necessitated a number of minor changes
to improve numerical stability around softmax op-
erations. Training was performed using a single
node with 4 Tesla P100s each (multiple variants
of OSCAR were trained simultaneously using five
such nodes at a time). Non-TPUmulti-GPU support
was added to BERT based on Horovod7 and relying
on Open MPI.

5.2 Results
We evaluated the impact of OSCR on three ques-
tion answering tasks requiring world or domain
knowledge and causal reasoning.

Choice of Plausible Alternatives a SemEval
2012 shared task, (CoPA) presents 500 training
and 500 testing sets of two-choice questions and

5https://www.mediawiki.org/wiki/Help:
CirrusSearch

6https://www.nltk.org/_modules/nltk/
tokenize/punkt.html

7https://eng.uber.com/horovod/

Premise: Gina misplaced her phone at her
grandparents. It wasn’t anywhere in the living
room. She realized she was in the car before.
She grabbed her dad’s keys and ran outside.

Ending A: She found her phone in the car.

Ending B: She didn’t want her phone
anymore.

Figure 4: Example of a Story Cloze question (correct
answer is A).

Consumer Health Question: Can sepsis be
prevented. Can someone get this from a
hospital?

FAQ A:Who gets sepsis?

FAQ B:What is the economic cost of sepsis?

Figure 5: Example of a Recognizing Question Entail-
ment (RQE) question (correct answer is A).

requires to choose the most plausible cause or effect
entailed by the premise, as illustrated in Figure 1
(Roemmele et al., 2011). The topics of these ques-
tions were drawn from two sources: (1) personal
stories taken from a collection of blogs (Gordon
and Swanson, 2009); and (2) subject terms from
the Library of Congress Thesaurus for Graphic Ma-
terials, while the incorrect alternatives were created
so as to penalize “purely associative methods”.

The StoryCloze Test evaluates story understand-
ing, story generation, and script learning and re-
quires a system to choose the correct ending to
a four-sentence story, as illustrated in Figure 4
(Mostafazadeh et al., 2016). In our experiments,
we used only the 3,744 labeled stories.

Recognizing Question Entailment Healthcare
questions can be highly complex compared to gen-
eral open-domain questions, potentially involving
accounting for family, social, and medical history.
A proposed solution to healthcare question complex-
ity is to decompose the question into simpler sub-
questions, which can be more easily answered. Rec-
ognizing Question Entailment (RQE, Ben Abacha
and Demner-Fushman 2016) consists of 8588 train-
ing and 302 testing pairs of consumer health ques-
tions (CHQs) and frequently asked questions (FAQs)
with labels indicating whether answering the FAQ

https://www.mediawiki.org/wiki/Help:CirrusSearch
https://www.mediawiki.org/wiki/Help:CirrusSearch
https://www.nltk.org/_modules/nltk/tokenize/punkt.html
https://www.nltk.org/_modules/nltk/tokenize/punkt.html
https://eng.uber.com/horovod/
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Model CoPA Cloze RQE
Cirrus BERT 55.2 74.200 74.834
Cirrus BERT + OSCR 73.6 87.974 77.815
Composition: RAN 60.6 85.890 77.815
Composition: Attention 73.6 87.974 75.497
Composition: Linear 72.8 85.516 76.490

Energy: Absolute 72.0 83.431 75.497
Energy: Euclidean 60.6 85.890 75.497
Energy: Angular 59.2 86.264 77.815

Table 1: Accuracy of fine-tuned BERT after pretraining
on the Cirrus Wikipedia data with and without OSCR.

entails answering the CHQ, as illustrated in Fig-
ure 5.
Table 1 presents the results of BERT when pre-

trained on Wikipedia with and without OSCR, the
state-of-the-art, and the average performance of
different semantic composition methods and energy
functions when calculating OSCR.

6 Discussion

6.1 The Impact of External Knowledge.

It is clear from Table 1 that incorporating OSCR
provided a significant improvement in accuracy for
both common sense causal reasoning tasks, indi-
cating that OSCR was able to inject useful world
knowledge into the network. We also evaluated the
impact of OSCR on the Stanford Question Answer-
ing Dataset (SQuAD), version 1.1, and observed no
discernable change in performance (an Accuracy
of 86.6 % without and 86.5 % with OSCR). The
lack of impact of SQuAD is unsurprising, as the
vast majority of SQuAD questions can be answered
directly by surface-level information in the text, but
it shows that injecting world knowledge with OSCR
does not come at the expense of model performance
for tasks that require little outside knowledge.

6.2 The Impact of Domain Knowledge.

While less pronounced than the general domain, for
the clinical domain, OSCR provided a modest im-
provement over standard BERT, and both improved
over the state-of-the-art.

6.3 The Impact of Entity Masking

Entity Subsumption We evaluated the impact
of including subsumed entities when calculating
OSCR and found it provided, on average, only a
minor increase in accuracy (< 1 % average relative
improvement) at a 10 % increase in total training

time. Consequently, we recommend ignoring all
subsumed entities.

Entity De-masking De-masking entities had lit-
tle over-all impact on model performance (< 1%
average relative improvement) and no discernible
effect on training time. This may be explained
by the fact that Wikipedia sentences are typically
much longer than standard English sentences, so
the likelihood of an important entity being masked
is relatively small.

6.4 The Role of Semantic Composition
When comparing semantic composition methods,
the Linear method had the most consistent perfor-
mance across both domains; the Recurrent Additive
Network (RAN) obtained the lowest performance
on the general domain and the highest performance
on medical texts, while the Linear RAN exhibited
the opposite behavior. While this suggests more
complex domains require more complex represen-
tations of semantic composition, we recommend
Linear composition as it exhibits consistent perfor-
mance and requires 50% less training time than the
RAN and 40% less than the Linear RAN.

6.5 The Impact of the Energy Functions
In terms of energy functions, the Euclidean distance
was the most consistent, the Angular distance was
the best for the Story Cloze and RQE tasks, and
the Absolute difference was the best for CoPA. The
Angular distance (being scale-invariant) is least
affected by the number of subwords constituting an
entity while the Absolute distance is most affected.
Consequently, we believe the Absolute distance was
only effective on the CoPA evaluation because the
entities in CoPA are typically very short (single
words or subwords). We recommend selecting the
energy function based on the average length of
entities in the fine-tuning tasks: Angular distance
with long entities, Absolute distance with short
entities, and Euclidean distance with varied entities.

Finally, we compared the impact of including and
excluding subsumed and masked entities and found
that neither resulted in any substantial change in
model improvements (< 1 % change in accuracy),
while ignored masked and subsumed entities lead
to a 20 % average reduction in training time.

6.6 Limitations and Future Work
In this study, we only considered ConceptNet as our
ontology because we were primarily interested in in-
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jecting common-sense world knowledge. However,
OSCR is not specific to any Ontology. Likewise,
we considered only one type of pretrained entity em-
beddings: ConceptNet NumberBatch (Speer et al.,
2017), despite the availability of other, more sophis-
ticated approaches for knowledge graph embedding
including, TransE (Bordes et al., 2013), TranR (Lin
et al., 2015), TransH (Wang et al., 2014), RESCAL
(Nickel et al., 2011) and OSRL(Xiong et al., 2018).
In future work, we hope to explore the impact of
incorporating different Ontologies and knowledge
graphs as well as alternative types of entity embed-
dings (Bordes et al., 2013; Lin et al., 2015; Wang
et al., 2014; Nickel et al., 2011; Xiong et al., 2018).

7 Conclusions

In this paper we presented OSCR (Ontology-based
Semantic Composition Regularization), a learned
regularization method for injecting task-agnostic
knowledge from an Ontology or knowledge graph
into a neural network during pretraining. We eval-
uated the impact of including OSCR when pre-
training BERT with Wikipedia articles by mea-
suring the performance when fine-tuning on two
question answering tasks involving world knowl-
edge and causal reasoning and one requiring do-
main (healthcare) knowledge and obtained 33.3 %,
18.6 %, and 4 % improved accuracy compared to
pre-training BERT without OSCR.

Reproducibility

All code, data, and experiments are available on
GitHub at https://github.com/h4ste/oscar.
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