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Abstract

Studies have shown that deep neural networks
are vulnerable to adversarial examples – per-
turbed inputs that cause DNN-based models
to produce incorrect results. One robust ad-
versarial attack in the NLP domain is the syn-
onym substitution. In attacks of this vari-
ety, the adversary substitutes words with syn-
onyms. Since synonym substitution perturba-
tions aim to satisfy all lexical, grammatical,
and semantic constraints, they are difficult to
detect with automatic syntax check as well as
by humans. In this work, we propose the first
defensive method to mitigate synonym substi-
tution perturbations that can improve the ro-
bustness of DNNs with both clean and adver-
sarial data. We improve the generalization of
DNN-based classifiers by replacing the embed-
dings of the important words in the input sam-
ples with the average of their synonyms’ em-
beddings. By doing so, we reduce model sen-
sitivity to particular words in the input samples.
Our algorithm is generic enough to be applied
in any NLP domain and to any model trained
on any natural language.

1 Introduction

Deep Neural Networks (DNNs) have achieved re-
markable success in various machine learning tasks,
including computer vision (Krizhevsky et al., 2012;
He et al., 2019), speech recognition (Hinton et al.,
2012; Chen et al., 2019), and natural language pro-
cessing (NLP) (Kim, 2014; Pirinen, 2019; Kamb-
hatla et al., 2018). However, studies have found
that DNNs are vulnerable to adversarial examples –
artificially modified input samples that lead DNNs
to produce incorrect results, while not being de-
tectable by humans (Szegedy et al., 2014). These
vulnerabilities have been exposed in the domains
of computer vision (Goodfellow et al., 2015; Paper-
not et al., 2016; Carlini and Wagner, 2017), speech

(Alzantot et al., 2017; Carlini and Wagner, 2018),
and NLP (Ebrahimi et al., 2018; Jin et al., 2020).

Based on the adversary’s level of perturbation,
three categories of adversarial attacks in NLP sys-
tems have been proposed: Character-level, token-
level, and sentence-level adversarial attacks (Alshe-
mali and Kalita, 2020; Zhang et al., 2020). One ro-
bust existing token-level adversarial attack in NLP
is black-box synonym substitution (Alzantot et al.,
2018; Ren et al., 2019; Zhang et al., 2019; Jin et al.,
2020). In attacks of this variety, the adversary sub-
stitutes tokens with synonyms. Since synonym
substitution perturbations aim to satisfy all lexical,
grammatical, and semantic constraints, they are dif-
ficult to detect with automatic syntax check as well
as by humans.

In this work, we propose a defensive method to
mitigate synonym substitution perturbations. We
propose to improve the generalization of DNN-
based models by replacing the embeddings of the
important tokens in the input samples with the av-
erage of their synonyms’ embeddings. By doing
so, we reduce model sensitivity to particular tokens
in the input samples. Experimenting on two pop-
ular datasets, for two types of text classification
tasks, demonstrates that the proposed defense is
not only capable of defending against these adver-
sarial attacks, but is also capable of improving the
performance of DNN-based models when tested on
benign data. To our knowledge, our defense is the
first proposed method that can effectively (1) Im-
prove the robustness of DNN-based models against
synonym substitution adversarial attacks and (2)
Improve the generalization of DNN-based models
with both clean and adversarial data.

2 Related Work

Alzantot et al. (2018) developed a black-box syn-
onym substitution attack to generate adversarial
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samples for sentiment analysis. They first com-
puted the nearest neighbors of a token based on
the Euclidean distance in the embedding space.
Then, they picked the token that maximizes the
target label prediction when replacing the origi-
nal token. Their adversarial examples successfully
fooled their LSTM model’s output with a 100%
success rate, using the IMDB dataset (Maas et al.,
2011).

Ren et al. (2019) proposed a black-box synonym
substitution attack for text classification tasks.
They employed word saliency to select the token
to be replaced. For each token, they selected the
synonym that causes the most significant change
in the classification probability after replacement.
They experimented with three datasets: IMDB,
AG’s News (Zhang et al., 2015), and Yahoo! An-
swers1 using the word-level CNN of Kim (2014),
the character-level CNN of Zhang et al. (2015), a
Bi-directional LSTM, and an LSTM. Their results
showed that, under their attack, the classification
accuracies on the three datasets IMDB, AG’s News,
and Yahoo! Answers were reduced by an average
of 81.05%, 33.62%, and 38.65% respectively.

Zhang et al. (2019) adopted the Metropolis-
Hastings (M-H) sampling approach (Metropolis
et al., 1953; Hastings, 1970) to generate black-
box synonym substitution perturbations against text
classification and textual entailment tasks. They
used the M-H approach to replace targeted words
with synonyms, followed by a language model to
enforce the fluency of the sentence after replacing
the words. Their attack successfully changed the
output of their Bi-LSTM model and the Bi-DAF
model (Seo et al., 2017) with 98.7% and 86.6%
success rates, respectively, using the IMDB dataset,
and the SNLI dataset (Bowman et al., 2015).

Jin et al. (2020) also proposed a black-box syn-
onym substitution attack to evaluate text classifica-
tion systems. They first identified important tokens
for the target model, then gathered the top tokens
whose cosine similarity with the selected tokens are
greater than a threshold. They kept the candidates
that altered the prediction of the target model. Us-
ing their attack, they evaluated the word-level CNN
and a word-level LSTM, using the AG’s News and
IMDB datasets. Their results suggested that their
attack reduced the accuracy of all target models by
at least 64.2%.

1https://webscope.sandbox.yahoo.com/catalog.php?

3 Methodology

This paper proposes improving the generalization
of DNN-based models by reducing a model’s sen-
sitivity to particular tokens in the input samples.
This effectively mitigates black-box synonym sub-
stitution perturbations. We propose a method that
combines word importance ranking, synonym ex-
traction, word embedding averaging, and majority
voting techniques to mitigate adversarial perturba-
tions. Figure 1 illustrates the overall schema of
the proposed approach. The proposed approach for
mitigating adversarial text consists of four main
steps:

• Step 1: Determine the N important tokens in
the input sequence.

• Step 2: Build a synonym set for each impor-
tant token.

• Step 3: Replace the embedding of each im-
portant token by the average of its synonyms’
embeddings.

• Step 4: Perform a majority voting for the N
replacements based on their predictions.

3.1 Scoring Function
Given a sequence of tokens, only some key tokens
act as influential signals for the model’s prediction.
Therefore, we use a selection mechanism to choose
the tokens that most significantly influence the final
prediction results. We use the Replace-1 scoring
function R1S() of Gao et al. (2018) to score the im-
portance of tokens in an input sequence according
to the observed results from the targeted model.

By assuming the input sequence x = x1x2...xn,
where xi is the token at the ith position, we mea-
sure the effect of the xi token on the output of the
targeted model (F ). The scoring function R1S()
measures the effect of xi on the model by replacing
xi with x′i. More formally:

R1S(xi) = F (x1, x2, ..., xi−1, xi, ..., xn)−
F (x1, x2, ..., xi−1, x

′
i, ..., xn),

(1)

where x′i is chosen to be out-of-vocabulary (OOV)
and it is obtained by inserting, deleting, or sub-
stituting a letter in xi for a random letter. R1S()
measures the importance of a token by calculating
the effect of replacing it with an OOV token, while
observing the model’s prediction. The token’s im-
portance is thus calculated as the prediction change
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Figure 1: Schema of the proposed defensive method. The proposed defense involves the following steps: Step 1:
Extract the important tokens in the input sample (here, we extract the three most important tokens). Step 2: Build
a synonym set for each important token. Step 3: Replace the embedding of each important token by the average of
its synonyms’ embeddings. Step 4: Perform a majority voting for the replacements based on their predictions.

before and after replacing it with an OOV. By cal-
culating the effect of replacing xi with OOV, the
importance of all tokens in the input sample can
be measured and ranked. This step is employed to
report the N most important tokens in an input sam-
ple. In our experiments, setting N to be 5 produces
the best results.

3.2 Synonym Extraction

For a given token with a high importance score ob-
tained in Step 1, we build a synonym set (Synset)
for the selected token. Synonyms can be found in
WordNet2 (Miller, 1995), a large lexical resource
for the English language. For each token, we use
WordNet to build a synonym set that contains all
possible synonyms of the token. More formally,

Synset(token) = {syn1, syn2, ..., synm},
(2)

where m is the quantity of the token’s synonyms
that exist in the lexical resource (WordNet). If a
token does not have any synonyms in the lexical re-
source, the processing moves to the next important
token. In this step, we use WordNet as a lexical re-
source, but the proposed defense can use any other
lexical resource (e.g. Wiktionary3).

2https://wordnet.princeton.edu/
3https://www.wiktionary.org/

3.3 Embedding Averaging

In the previous steps, we determine the N important
tokens in an input sample (Step 1), and then extract
a synonym set for each one of the important tokens
(Step 2). In the third step, for each important token,
we replace its embedding by the average of its
synonyms’ embeddings. More formally,

E(token) =
1

m

m∑
i=1

E(syni), (3)

where E() represents the word embeddings re-
source, and m is the count of synonyms in the
synonym set of the token.

3.4 Majority Voting

In the previous step, for each important token, we
replace the embedding of the token by the average
of its synonyms’ embeddings. In this step, the
model makes a prediction after each replacement,
and assigns each replacement a vote based on its
prediction. The model’s final prediction will be
the prediction with the majority of the votes. An
example of this step is illustrated in Figure 2. In this
figure, the model made three predictions and the
final classification is positive, based on the votes.
The proposed approach with all steps is shown in
Algorithm 1.
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Input sample with the 1st most important token replacement Positive

Negative
Positive

Positive

Prediction Vote

Input sample with the 2nd most important token replacement 

Input sample with the 3rd most important token replacement 

Figure 2: Step 4: The model makes a prediction after each replacement, and assigns each replacement a vote based
on its prediction. The model’s final prediction is the prediction with the majority of the votes.

Algorithm 1: The overall procedure of the
proposed defensive method.
input : Input sample X , classifier F (),

Replace-1 scoring function to
extract important tokens in an input
sample R1S(), lexical resource to
extract synonyms Synset(), word
embeddings resource to represent
tokens E(), prediction set P ,
majority voting method V ().

output :F (X)
R1S(X) = {token1, token2, ..., tokenn}
for c← 1 to n do

Synset(tokenc) =
{syn1, syn2, ..., synm}

E(tokenc) =
1
m

∑m
i=1E(syni)

S = X
S ← E(tokenc)
P ← F (S)

end
F (X) = V (P )
Return F (X)

In this paper, we proposed a simple and structure-
free defensive strategy which can be successful
in hardening DNNs against synonym substitution
based adversarial attacks. As shown in Section 5,
the proposed defense yielded great performance.
The advantage of our approach is that it can use
any embeddings and lexical resources. It does not
require any additional data to train, or modify the
architecture of the models. Our implementation is
generic enough to be applied in any domain and to
models trained on any natural language.

4 Experiments

We implemented the proposed defensive method us-
ing Python, Numpy, Tensorflow, Scikit-learn, and
Pandas libraries.

4.1 Corpus
To study the efficiency of our defense, we used
the Internet Movie Database (Maas et al., 2011).
IMDB is a sentiment classification dataset which
involves binary labels annotating the sentiment of
sentences in movie reviews. IMDB consists of
25,000 training samples and 25,000 test samples,
labeled as positive or negative. The average length
of samples in IMDB is 262 words.

4.2 Targeted Classification Models
To evaluate our proposed approach, several experi-
ments on the word-level CNN model of Kim (2014)
and the Bi-directional LSTM model of Ren et al.
(2019) were conducted. We replicated Kim’s CNN
architecture, which contains three convolutional
layers, a max-pooling layer, and a fully-connected
layer. The Bi-directional LSTM model involves a
Bi-directional LSTM layer and a fully connected
layer.

4.3 Adversarial Attacks
We evaluated our defensive method with two black-
box synonym substitution attacks: The attack of
Alzantot et al. (2018) and the attack of Ren et al.
(2019), explained in Section 2.

4.4 Word Embeddings
We used the Global Vectors for Word Representa-
tion (GloVe) embedding space (Pennington et al.,
2014) to generate word vectors of 300 dimensions.

4.5 Performance Evaluation
Classification accuracy is used as the metric to
evaluate the performance of the proposed defensive
model. Higher accuracy denotes a more effective
approach.

5 Results

The CNN and Bi-LSTM models were trained on
the IMDB training set, and achieved training accu-
racy scores similar to the original implementations.
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Model Model w/o defense Model w/defense Percent Increase
CNN 76.50 80.00 3.50
Bi-LSTM 73.44 78.90 5.46

Table 1: The accuracy of the classification models on the original benign data with and without our defen-
sive method. No adversarial perturbations were used. “w/o defense” denotes using the model with no defense.
“w/defense” denotes using the model with our defense. Percent Increase is the percent increase of the classification
accuracy after using the defense.

Model Attack Model w/o defense Model w/defense Percent Increase
CNN Alzantot et al. 35.00 74.20 39.20
CNN Ren et al. 24.60 68.00 43.40
Bi-LSTM Alzantot et al. 23.50 72.70 49.20
Bi-LSTM Ren et al. 5.07 67.20 62.13

Table 2: The accuracy of the classifiers under adversarial attacks, with and without the defense applied. The accu-
racies of the models with the original data were 76.50% and 73.44% for the CNN and the Bi-LSTM, respectively.

Following the practices of previous studies that
have explored adversarial examples (Alzantot et al.,
2018; Ren et al., 2019; Zhang et al., 2019; Jin et al.,
2020), and because the process of generating adver-
sarial examples to evaluate the defense is time and
resource-consuming, we randomly sampled 1280
examples from the IMDB testing set to evaluate
the efficiency of the proposed defensive method.
As shown in Section 3, for each sample, our defen-
sive method first extracts the five important tokens.
It then extracts their synonyms from the lexical
resource. Overall, there were 2.15 synonyms per
important token on average, as the majority of im-
portant tokens had 2 or 3 synonyms.

We first present how the defensive method be-
haves on benign data with no adversarial attacks.
In Table 1, we report the accuracy of the targeted
models on the original test samples, with and with-
out the defense applied. Table 1 shows that the
defense is capable of improving the performance
of the models even when they are not under attack.
The classification accuracy of the CNN increases
by 3.50%, and that for the Bi-LSTM is also in-
creased by 5.46%. This indicates that the defense
is beneficial not only in adversarial situations, but
also in secure situations with no adversarial attacks.

5.1 Effectiveness of the Defense

To evaluate the efficiency of our defense in adver-
sarial situations, we used the adversarial attacks of
Alzantot et al. (2018) and Ren et al. (2019) to per-
turb the 1280 benign samples and convert them to
adversarial examples. A more effective defensive
method should cause a smaller drop in model clas-

sification accuracy when said model is under attack.
Table 2 shows the efficacy of various adversarial
attacks and the defensive method.

Under the adversarial attacks of Alzantot et
al. and Ren et al., the classification accuracy of
the models dropped significantly. For the CNN, the
accuracy degraded more than 41.50% and 51.90%,
under the Alzantot et al. and Ren et al. attacks, re-
spectively. Similarly, the accuracy of the Bi-LSTM
model reduced more than 49.94% and 68.37%, un-
der the same attacks. Our results suggest that (1)
DNN-based models with higher original accuracy
(with clean data) are more difficult to be attacked.
For instance, as shown in Tables 1 and 2, the under-
attack accuracy is higher for the CNN model com-
pared with the Bi-LSTM model under all attacks.
This agrees with the observation from previous re-
search that, in general, models with higher original
accuracy have higher under-attack accuracy (Jin
et al., 2020). (2) The Bi-LSTM model is more vul-
nerable to the two attacks than the CNN model by
a 12.45% accuracy difference on average. This sup-
ports the conclusion from previous research that,
in the NLP domain, deep CNNs tend to be more
robust than RNN models (Ren et al., 2019; Alshe-
mali and Kalita, 2019). (3) While Alzantot et al.
randomly selected the tokens to be replaced, Ren
et al. employed the word saliency technique to de-
termine the tokens to be replaced. This makes the
attack of Ren et al. more effective than the attack
of Alzantot et al. on both models by an average
margin of 10.40% for the CNN and 18.43% for the
Bi-LSTM.

After employing our defensive method, the ro-
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Model Attack Model w/o defense Model w/defense Percent Increase
SVM No-attack 88.28 92.35 4.06
SVM Alzantot et al. 60.00 76.10 16.10
SVM Ren et al. 55.00 74.15 19.15
XGBoost No-attack 85.15 89.93 4.77
XGBoost Alzantot et al. 49.61 70.00 20.39
XGBoost Ren et al. 40.94 66.41 25.47

Table 3: The accuracy of the nonneural classification models under adversarial attacks, with and without the
defense applied. Percent Increase is the percent increase of the classification accuracy with the defense applied.

bustness of the models significantly improved un-
der all attacks. The effectiveness of the proposed
defense is evaluated under the two attacks and
the results are presented in Table 2. Our results
show that the proposed defense effectively miti-
gated most of the adversarial examples generated
by the two attacks. Under the Alzantot et al. attack,
the defense increased the accuracies of the models
by 39.20% and 49.20% for the CNN and Bi-LSTM,
respectively. Under the Ren et al. attack, the accu-
racies of the models were improved by an average
of 43.40% and 62.13% for the CNN and Bi-LSTM,
respectively. Our results highlight that (1) Under
the same attack, the proposed defense performs bet-
ter with the Bi-LSTM model than with the CNN by
an average difference of 14.36%; and (2) Under the
same model, the proposed defense performs better
in mitigating Ren et al.’s adversarial examples than
in mitigating the adversarial examples generated
by the attack of Alzantot et al., with an average
difference of 8.56%. This is likely because Ren et
al. used WordNet to obtain their synonyms, while
Alzantot et al. considered the nearest neighbors of
a token’s embedding vector as its synonyms.

5.2 Nonneural Models

In this section, we evaluated the defense using
two nonneural machine learning classification al-
gorithms, that were selected due to their high per-
formance on a variety of text classification tasks:
(1) Support Vector Machine (SVM) (Cortes and
Vapnik, 1995); and (2) Extreme Gradient Boosting
(XGBoost) (Chen and Guestrin, 2016). We exam-
ined the performance of our defense with the SVM
and XGBoost models, trained on the IMDB dataset,
and using the GloVe embedding space.

To evaluate the defense with the SVM and XG-
Boost models, we used the adversarial attacks of
Alzantot et al. (2018) and Ren et al. (2019) to per-
turb the same 1280 benign samples of IMDB re-

views (used in Section 5.1) and convert them to
adversarial examples. Table 3 shows how the de-
fense behaves with nonneural models on benign
and adversarial data. Table 3 shows that the SVM
model has more than 28.00% and 33.00% accuracy
degradation under the Alzantot et al. and Ren et
al. attacks, respectively. Similarly, the accuracy of
the XGBoost model was reduced by 35.54% and
44.21%, under the same attacks, respectively.

By utilizing our defense, the robustness of the
nonneural models improved under all attacks. Our
results illustrate that the proposed defense is ef-
fectively able to mitigate most of the adversarial
examples generated by the two attacks. Under the
Alzantot et al. attack, the defense increased the
accuracies of the models by 16.10% and 20.39%
for SVM and XGBoost, respectively. Under the
Ren et al. attack, the accuracies of the models were
improved by 19.15% and 25.47% for SVM and
XGBoost, respectively. Table 3 also shows that the
defense improved the performance of the models
with benign data. The classification accuracy of the
SVM model increases by 4.06%, and that for the
XGBoost is also increased by 4.77%.

5.3 News Categorization Task

In Sections 5.1 and 5.2, we evaluated the effec-
tiveness of the discussed defense on the sentiment
analysis task. Here, we evaluated it on the news cat-
egorization task, using the Bidirectional Encoder
Representations from Transformers (BERT) em-
bedding space and the BERT model (Devlin et al.,
2019). This model was trained on the AG’s News
categorization dataset (Zhang et al., 2015). We
used the 12-layer BERT model, also called the
base-uncased version4.

AG’s News is a news categorization dataset
which contains news articles categorized into four
classes: World, Sports, Business and Sci/Tech.

4https://github.com/huggingface/transformers
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Attack Model w/o defense Model w/defense Percent Increase
No-attack 65.56 68.00 2.44
Alzantot et al. 35.00 58.60 23.60
Ren et al. 30.00 59.61 29.61

Table 4: The classification accuracy of the BERT model under adversarial attacks, with and without the defense
applied. Percent Increase is the percent increase of the classification accuracy with the defense applied.

The total number of training samples is 120,000
and testing 7,600. The average number of words
per sample is 278.6. We randomly selected 1280
samples from the AG’s News testing set to eval-
uate the effectiveness of the proposed defensive
method. We used the adversarial attacks of Alzan-
tot et al. and Ren et al. to perturb the 1280 benign
samples and convert them to adversarial examples.
Table 4 shows the efficacy of the defensive method
with various adversarial attacks.

Even for the powerful BERT, which has achieved
great performance in various NLP tasks, adversar-
ial attacks can still reduce its classification accu-
racy by about 30.56% with the attack of Alzantot
et al. and by 35.56% with the attack of Ren et al..
These accuracy drops are unprecedented, however,
employing our defense boosted the robustness of
the BERT model under all attacks. Table 4 shows
that, under the Alzantot et al. attack, the defense
improved the accuracy of the model by 23.60%.
Similarly, under the Ren et al. attack, the accuracy
of the model was increased by 29.61%.

5.4 Statistical Analysis

While the defended classifiers had higher accuracy
scores than the undefended classifiers across all
tasks, adversarial attacks, and datasets, it is im-
portant to determine whether the difference in per-
formance of the defended models is statistically
significant. Many researchers recommend McNe-
mar’s test (McNemar, 1947) for comparing the per-
formance of two classifiers (Salzberg, 1997; Di-
etterich, 1998; Japkowicz and Shah, 2011; Costa
et al., 2018) as it has a lower probability of Type I
error. McNemar’s is a non-parametric pairwise test
designed for comparing two populations, or in this
case, the predictions from two different classifiers
on the same test dataset. In this paper, McNemar’s
test was applied to compare the performance of the
defended models with their undefended counter-
parts (studied in Sections 5.1, 5.2, and 5.3). Here,
we wish to compare the performance of the de-
fended CNN with the undefended CNN, the de-

fended SVM with the undefended SVM, etc.
We performed McNemar’s test to determine if

there was a significant difference between the accu-
racy of the defended models and that of the unde-
fended ones. We tested the null hypothesis, which
states that there is no significant difference in the
accuracy of the models studied, and the alternative
hypothesis, which states that there is a difference
in the accuracy of the models studied. Several
comparisons were performed, and the significance
threshold for each individual pairwise test was ad-
justed to 0.05. In all cases, the difference between
the defended models and the undefended models
(the p-value) was significant (< 0.05). Thus, we
reject the null hypothesis which assumed there was
no difference between the classifiers, in favor of
the alternative. The results show that there was a
statistically significant difference in the accuracy
of all models, which indicates that the defended
models had significantly better performance.

6 Conclusion

In this paper, we proposed a structure-free defen-
sive method that is capable of improving the per-
formance of DNN-based models with both clean
and adversarial data. Our findings show that replac-
ing the embeddings of the important words in the
input samples with the average of their synonyms’
embeddings can significantly improve the general-
ization of DNN-based models. Our results indicate
that the proposed defense is not only capable of
defending against adversarial attacks, but is also
capable of improving the performance of DNN-
based models when tested on benign data. On
average, the proposed defense improved the classi-
fication accuracy of the CNN and Bi-LSTM models
by 41.30% and 55.66%, respectively, when tested
under adversarial attacks. Extended investigation
shows that our defensive method can improve the
robustness of nonneural models, achieving an aver-
age of 17.62% and 22.93% classification accuracy
increase on the SVM and XGBoost models, respec-
tively. The proposed defensive method has also



27

shown an average of 26.60% classification accu-
racy improvement when tested with the infamous
BERT model. In further work, we plan to gener-
alize our approach to achieve robustness against
other types of adversarial attacks in NLP. We also
hope to evaluate the defense with a variety of NLP
systems, such as textual entailment systems.
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