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Abstract

The cloze test for Chinese idioms is a new
challenge in machine reading comprehension:
given a sentence with a blank, choosing a can-
didate Chinese idiom which matches the con-
text. Chinese idiom is a type of Chinese id-
iomatic expression. The common misuse of
Chinese idioms leads to error in corpus and
causes error in the learned semantic representa-
tion of Chinese idioms. In this paper, we intro-
duce the definition written by Chinese experts
to correct the misuse. We propose a model for
the Chinese idiom cloze test integrating vari-
ous information effectively. We propose an at-
tention mechanism called Attribute Attention
to balance the weight of different attributes
among different descriptions of the Chinese
idiom. Besides the given candidates of every
blank, we also try to choose the answer from
all Chinese idioms that appear in the dataset as
the extra loss due to the uniqueness and speci-
ficity of Chinese idioms. In experiments, our
model outperforms the state-of-the-art model.

1 Introduction

The Chinese idiom comprehension requires the
ability to understand Chinese idioms. Chinese id-
iom, which is called “成语” (chengyu) in Chinese,
consists of four characters. Chinese idioms are
mostly derived from stories in ancient literature
from Chinese history, and often reflect the moral
behind the stories. To measure the ability of un-
derstanding Chinese idioms, the Chinese idiom
cloze test dataset was proposed (Zheng et al., 2019):
given a sentence with a blank, an examinee is re-
quired to choose an idiom which best matches the
context surrounding the blank. Table 1 shows an
example of the Chinese idiom cloze test.

The misuse of Chinese idioms is prevalent
among Chinese native speakers who did not re-
ceive a professional Chinese education. Due to the

metaphorical meaning of Chinese idioms, even Chi-
nese native speakers who do not major in Chinese
would use a Chinese idiom with its literal meaning,
which causes misuse. Table 2 shows some common
misuses of Chinese idioms. The misuse meaning
is often related to the literal meaning.

The misuse of Chinese idiom appears in various
social media and text such as Weibo and Zhihu.
The Chinese word embeddings and Chinese lan-
guage models are pretrained on these corpora that
contain the misuse of Chinese idioms and learn the
incorrect meaning of Chinese idioms. For example,
in Table 3, we use Google Translate to translate
Chinese idioms finding that some results are incor-
rect, and the incorrect meanings happen to be the
common misuses of these Chinese idioms. In this
paper, we introduce the definition of Chinese idiom,
which is written by the Chinese experts, to correct
the misuse. The complete definition describes the
accurate interpretation and usage of Chinese id-
ioms. Besides, because the misuse often comes
from the literal meaning of the Chinese idiom, we
propose an attention mechanism called Attribute
Attention that extracts the relationships between
the character-level and word-level representations.

Moreover, using the definition to correct the mis-
use does not mean that the non-misuse part would
be dropped. Take 七月流火 in Table 2 as an ex-
ample. The common misuse of 七月流火 is not
totally incorrect.七月流火 referring to the weather
is correct, but the weather turning hot is incorrect.
Therefore, we propose Attribute Attention to make
use of other representations of七月流火 even if
they contain incorrect information.

In addition, Chinese idioms are derived from
stories in ancient literature and contain abundant
information. Chinese idioms contain more infor-
mation so they are more likely to be used in a
more specific context than common words. For
example,美 means “beautiful”,轮 means “wheel”,
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Sentence with a blank 他们希望能 再进一步
They hope that they can and achieve greater success.

A candidate idiom 百尺竿头
Literal translation: at the top of a hundred-foot pole.

Free translation: make still further progress.

Definition
比喻到了极高的境地，仍须继续努力，求更大的进步。

When one has achieved great success, one should
continue to work hard to make greater progress.

Table 1: An example of the Chinese idiom cloze test that contains a sentence, one of the candidate idioms, and the
definition of the idiom.

Chinese idiom Literal meaning Misuse meaning Correct meaning
翻云覆雨 A huge change for

clouds and rain
Magnificent Skillful

七月流火 Fire in July The weather turned hot The weather turned cold

三人成虎 Three persons become
a tiger

Cooperation lead to
great strength

Spread rumors

Table 2: Some common misuses of Chinese idioms.

and奂 means “magnificent”. The Chinese idiom
美轮美奂 means “a building is beautiful”. 美轮
美奂 can be used only when describing a build-
ing, whereas those four characters are not related
to building. When those four characters are com-
bined, the meaning becomes narrow. It is more
difficult to find two similar Chinese idioms than
normal words. In this paper, besides choosing the
answer from the given candidates, our model tries
to choose the answer from the whole vocabulary of
candidate Chinese idioms that appear in the dataset
and calculate its loss as a part of the final loss. In
this way, relationships between much more idioms
can be captured every time. It costs very few ex-
tra computing resources but provides significant
improvement.

In experiments, our model outperforms the state-
of-the-art model. Our main contributions are sum-
marized as follows:

• We introduce the definition and propose At-
tribute Attention to balance the importance of
different representations of the Chinese idiom.

• We add an extra loss obtained by choosing
the answer from all Chinese idioms that ap-
pear in the dataset, which costs very few extra
computing resources but provides significant
improvement.

2 Related Work

The cloze test is a classic task of reading compre-
hension and many methods were proposed (Her-
mann et al., 2015; Chen et al., 2016; Wang et al.,
2018; Zhang et al., 2018; Fu et al., 2019; Fu and
Zhang, 2019). The Chinese idiom cloze test is more
challenging because Chinese idioms convey the
metaphorical meaning and are misused sometimes.
Most works related to idioms focused on English id-
ioms identification (Gedigian et al., 2006; Katz and
Giesbrecht, 2006; Fazly et al., 2009; Shutova et al.,
2010; Salton et al., 2016; Do Dinh et al., 2018b;
Flor and Beigman Klebanov, 2018; Do Dinh et al.,
2018a; Liu and Hwa, 2018). Some works have tried
to use definitions: Spasic et al. (2017) analyzed
the sentiment of definitions; Fathima Shirin and
Raseek (2018) used the similarity between differ-
ent definitions. However, these methods introduced
definitions but did not try to understand them. Liu
et al. (2017) used CharLSTM to encode the mean-
ing of idioms, which has a similar idea to (Jiang
et al., 2018). Only a few works have been done
with Chinese idioms such as building Chinese emo-
tion lexicons (Xu et al., 2010) and improving Chi-
nese word segmentation (Chan and Chong, 2008;
Sun and Xu, 2011; Wang and Xu, 2017). Chengyu
Reader (CR) (Jiang et al., 2018) is proposed for
the Chinese idiom cloze test, which used the def-
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Chinese idiom Common misuse meaning Google Translate Correct translation

空穴来风 Groundless Groundless Grounded and justified
危言危行 Dangerous words and behavior Dangerous words Upright words and behavior
差强人意 Unsatisfactory Unsatisfactory Generally satisfactory

Table 3: Some incorrect translations of Chinese idioms form Google Translate.

initions and the attention mechanism of Attentive
Reader (AR) (Hermann et al., 2015; Chen et al.,
2016).

3 Approach

Formally, the Chinese idiom cloze test requires the
model to choose the correct answer from a number
of the candidate idioms given a sentence with a
blank. The sentence is defined as a sequence of
characters with a blank, which is also called context
in the following. The candidate Chinese idiom is
defined as a sequence of four characters, which
is called idiom in the following. The definition
is defined as a sequence of characters interpreting
the corresponding idiom. In this paper, the term
“BERT” refers to the BERT-like models (Devlin
et al., 2019; Liu et al., 2019; Lan et al., 2019; Sanh
et al., 2019), because any one of them and even the
new BERT-like model in the future can be used in
our model. Figure 1 is an overview of our model.
The following sections will introduce every part of
our model one by one.

3.1 Integrating Context and Definition

The definition is not the next sentence of the con-
text. The context and definition do not belong to
the same document. It is inappropriate to set the
context as the first sentence and set the definition
as the second sentence separated by [SEP] for
BERT. In this section, as shown in Figure 2, we
propose a way to integrate the context and defini-
tion with BERT, which lets the model “know” that
the definition is mainly related to the idiom.

We input the context, the candidate idiom, and
definition together. For example, we input the
context “他们希望能 再进一步 (they hope
they can and achieve greater success)”, the
candidate idiom “百尺竿头 (make still further
progress)”, and the definition “比喻高的成就 (an
outstanding achievement)” together as “他们希望
能 [MASK]再进一步 [SEP]百尺竿头:比喻高
的成就 [SEP]”. The context is defined as v. The
candidate idiom and the definition are defined as d

here.
The Multi-Head Attention is applied to the con-

text and definition in different ways. Formally, the
Multi-Head Attention for the context is:

v
(l)
i =MultiHeadAttention(m(l−1),

v
(l−1)
1 ,v

(l−1)
2 , . . . ,v

(l−1)
|v| )

(1)

where v
(l)
i denotes the i-th character of the context

at the l-th layer, and m(l) denotes the [MASK]
token at the l-th layer; |v| denotes the number of
characters of the context. The context only can
“see” itself and the [MASK].

The Multi-Head Attention for the definition is:

d
(l)
i =MultiHeadAttention(m(l−1),

v
(l−1)
[SEP ],d

(l−1)
1 ,d

(l−1)
2 , . . . ,d

(l−1)
|d| )

(2)

where d
(l)
i denotes the i-th character of the defini-

tion d at the l-th layer, and v
(l−1)
[SEP ] denotes the first

[SEP] token at the l-th layer; |d| denotes the num-
ber of characters of the definition. The definition is
inaccessible to the context, which avoids that the
BERT regards the definition as the next sentence
of the context.

The Multi-Head Attention for the [MASK] is:

m(l) =MultiHeadAttention(m(l−1),

v
(l−1)
1 ,v

(l−1)
2 , . . . ,v

(l−1)
|v| ,

d
(l−1)
1 ,d

(l−1)
2 , . . . ,d

(l−1)
|d| )

(3)

The [MASK] can pay attention to the characters of
both the context and definition. On the one hand,
[MASK] “knows” what kind of idiom could match
the context as the correct answer. On the other
hand, [MASK] “knows” the candidate idiom def-
inition. [MASK] integrates the information from
context v definition and d in the character-level.

In this way, the relation between the context and
the definition is built through the [MASK]. The
output of the [MASK] is defined as hm.
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Figure 1: Architecture of our model.

3.2 Attribute Attention
This section is about how to do Attribute Attention
and the preparations. In the beginning, we extract
the summaries of the context, idiom, and definition.
Then we calculate the weight of Attribute Attention
with hm from Section 3.1. After that, Attribute
Attention will be done with these summaries and
the weight.

3.2.1 Summarizing Context
Summarizing context is to predict what kind of
idiom would be the correct answer for the blank
based on the contextual information. For example,
in Figure 3a, the sentence is “他们希望能 再进
一步 (they hope they can and achieve greater
success)”. The input is “他们希望能[MASK]再
进一步”. The output of [MASK] is defined as hc

as shown in Figure 3a.

3.2.2 Summarizing Idiom
We use BERT to extract and summary character-
level information of Chinese idiom. The output is
defined as ho, as shown in Figure 3b.

The context and candidate idioms are from the
same corpus and share a similar contextual repre-
sentation. Besides, the [CLS] is not used when
summarizing context. Therefore, we use one BERT
to model both the context and idiom and use the
[CLS] to summarize idioms. In the example

of Figure 3b, the candidate idiom is “百尺竿
头 (achieve great achievement)”. The input is
“[CLS]百尺竿头”

3.2.3 Summarizing Definition
Introducing the definitions can correct the misuse
of idioms. We use [CLS] to summary definition.
In the example of Figure 3c, the definition is “比
喻高的成就 (an outstanding achievement)”. The
input is “[CLS]比喻高的成就”. The output of
[CLS] is defined as hd.

3.2.4 Word Embedding of Idiom
We use word embeddings to extract word-level in-
formation in this section. To utilize more infor-
mation from various corpora, more than one word
embedding can be introduced. Different attributes
of different word embeddings will be assigned dif-
ferent weights in Attribute Attention. The word
embeddings from different sources of one idiom
are defined as {ei}|e|i=1, where |e| is the number of
word embeddings.

3.2.5 Weight Generation
As shown in Figure 1, this section is about gen-
erating the weight with hm and {ei}|e|i=1. For the
standard attention mechanism, the attention weight
is a series of scalars, whereas the attention weight
is a series of vectors in Attribute Attention.
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Figure 2: Integrating the context and definition with BERT, where “V” denotes the context, “D” denotes the idiom
and definition, and “M” denotes [MASK]. The Multi-Head Attention is applied to the context, definition, and
[MASK] in different ways. The input is “他们希望能 [MASK] 再进一步 [SEP] 百尺竿头:比喻高的成就
[SEP]”.

hm contains information about the context and
idiom. A Chinese idiom may not be misused in
all contexts. hm can tell the importance of differ-
ent attributes of an idiom under a certain context.
The attention weight vectors for hm are defined as
{a<i>

m }|e|+2
i=1 :

a<i>
m = W<i>

m hm (4)

where W<i>
m ∈ Rm×b is a learnable parameter; m

denotes the hidden size of attention, and b denotes
the hidden size of BERT such as 768 or 1024.
hm generates the weight based on the context,

which is more accurate but also more likely to over-
fit. The weight {a<i>

m }|e|+2
i=1 may “remember” ev-

ery context-idiom pair in the training set. |e| is the
number of word embeddings. In this case, we also
introduce word embeddings here. The word embed-
ding cannot provide context information but will
have stronger generalization ability because it is
hard to overfit the training set unless an idiom only

appears several times. The attention weight vectors
for word embeddings are defined as {a<i>

e }|e|+2
i=1 :

a<i>
e =

1

|e|

|e|∑
j

We
<i>
j ej (5)

where We
<i>
j ∈ Rm×d is a learnable parameter; d

denotes the size of word embedding such as 300.
a<i>
m ∈ Rm gives more accurate weight but may

overfit, whereas a<i>
e ∈ Rm is more generalized

but lacks the context. We add them up to get the
final weight {a<i>}|e|+2

i=1 :

a<i> = a<i>
m + a<i>

e (6)

where a<i> ∈ Rm. In this way, we can have accu-
racy and generalization from the two weights.

3.2.6 Attention Calculation
We define a<i>

j as the j-th element of a<i>. In
other words a<i>

j is the j-th element of the i-th
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Figure 3: Summarizing the context, idiom, and definition.

vector of {a<i>}|e|+2
i=1 . Then the softmax function

is applied as:

a<i>
j =

ea
<i>
j∑|e|+2

k=1 ea
<k>
j

(7)

After that, before applying the attention:

ho ←Waoho

hd ←Wadhd

ei ←Waeiei

(8)

where Wao ∈ Rm×b, Wad ∈ Rm×b, and Waei ∈
Rm×d are learnable parameters; m denotes the hid-
den size of attention, b denotes the hidden size of
BERT, d denotes the size of word embedding.

As shown in Figure 1, the attention goes through
as:

hj = a
<|e|+1>
j hoj + a

<|e|+2>
j hdj +

|e|∑
i=1

a<i>
j eij

(9)
where hj is the j-th element of the output which is
defined as h ∈ Rm; hoj is the j-th element of ho,
hdj is the j-th element of hd, and eij is the j-th
element of ei;
h contains an accurate and correct description

of an idiom under a certain context by choosing
information from the idiom, definition, and word
embeddings. The correct and important part of
every representation remains, and the incorrect and
unimportant part is dropped.

The final output of Attribute Attention is:

ua = h
T
Wuahc (10)

where Wua ∈ Rm×b is a learnable parameter. ua ∈
R1 is the score to describe whether a candidate
idiom is the correct answer.

3.3 Classification
This section will introduce the classification part
in Figure 1. One reason for Attribute Attention
summarizing the context and definition is to make
use of word embedding. Using hm for classifica-
tion can provide more details about the relationship
between characters of the context and characters of
the definition.

Formally, the classification for hm is:

um = Wcmhm + bcm (11)

where Wcm ∈ R1×b and bcm ∈ R1 are learn-
able parameters. um ∈ R1 is the score describing
whether a candidate idiom is the correct answer.
ua and um denote the score of one candidate id-

iom. We further define the {uai}ni=1 and {umi}ni=1

as the scores of all candidate idioms, where n de-
notes the number of candidate idioms. Then we
add them up:

usi = uai + umi (12)

and pass usi through softmax function:

pi =
eusi∑n
k=1 e

usk
(13)

pi is the possibility for the i-th candidate idiom to
be the correct answer. This is the end of inferring
but not training.

3.4 Extra Loss
Because Chinese idioms are used in more unique
and specific context than common words, we
choose the answer from all Chinese idioms that
appear in the whole cloze test dataset as an extra
loss for training. Formally, we use hc to predict
the correct answer from the whole vocabulary of
candidate Chinese idioms:

uc = Wcvhc + bv (14)
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where Wcv ∈ Rv×b and bv ∈ Rv are learnable
parameters; v denotes the number of all candidate
Chinese idioms which is much larger than n.

q = softmax(uc) (15)

q ∈ Rv are possibilities for all candidate idioms be-
ing the correct answer. In this way, the model can
learn relationships between much more idioms ev-
ery time. Due to the uniqueness and specificity of
Chinese idioms, this will not cause limited noises
but improve the performance significantly. With-
out Extra Loss, relationships between only given
candidate idioms are considered every time.

When inferring, the max possibility of {pi}ni=1 is
the final result. For training, the cross entropy loss
of {pi}ni=1 is defined as lp, and the cross entropy
loss of q is defined as lq. The final loss is:

l = lp + βlq (16)

where β is a hyper-parameter to determine the
weight of the loss lq. Empirically, we suggest set-
ting the value of β as 0.5. l is the final loss for
training.

4 Experiment

4.1 Training Details
In this section, we will introduce the details and
hyper-parameters for training our model.

Dataset ChID dataset (Zheng et al., 2019) is used
in experiments. Table 1 shows a simple example
of the dataset. Given a sentence with a blank and
several candidate Chinese idioms, an examinee is
required to choose a Chinese idioms which best
matches the context surrounding the blank. The
corpus of ChID contain news, novels, and essays.
News and novels are treated as in-domain data,
which contains a training set, a development set
Dev, and a test set Test. Essays are reserved for
out-of-domain test Out, which can evaluate the
generalization ability. In this way, the model is
trained on news and novels but evaluated on essays.
Ran and Sim are two test sets which have the same
sentences as Test. In Ran, candidate idioms are
not similar to the golden answer. In Sim, candidate
idioms are similar idioms to golden answer.

BPretrained Model Pretrained RoBERTa-base
(Liu et al., 2019) for Chinese with 12 layers and
word embeddings from (Song et al., 2018; Li et al.,
2018; Qiu et al., 2018) are used.

Hyper-parameters n is 7 because there are
seven candidate idioms for every blank in ChID
dataset (Zheng et al., 2019). v is 3848 because
ChID dataset (Zheng et al., 2019) contains 3848
candidate idioms in total. The hidden size of atten-
tion m is 100. β as 0.5.

Optimizer The optimizer is Adam (Kingma and
Ba, 2014) for BERT with linear schedule and
a warm-up ratio of 0.05. The learning rate for
RoBERTa is 2e-5, and for other parameters is 1e-3.

Parameters number The number of parameters
of our model for experiments is 322M. The learn-
able parameters are initialized by (He et al., 2015).

GPU & Environment The model is running on a
GPU of NVIDIA GeForce RTX 2080 Ti. Due to the
limited GPU RAM, we use gradient accumulation
for training. The operating system is Ubuntu 18.04.
We use PyTorch 1.4.0 (Paszke et al., 2019) and
Transformers 2.4.1 (Wolf et al., 2019) to implement
our model. We also use mixed precision training
with NVIDIA Apex 0.1 (Micikevicius et al., 2017)
to accelerate our model. It takes an average of 42
hours per epoch, and the model achieves the best
result within 10 epochs.

Metrics The metric for evaluation is the accuracy,
which is implemented by Scikit-learn (Pedregosa
et al., 2011).

4.2 Comparison

The description of other models are as follows:

AR Attentive Reader (AR) (Hermann et al.,
2015). AR uses an attention mechanism to read the
sentence.

SAR Stanford Attentive Reader (SAR) (Chen
et al., 2016). SAR is a improvement based on AR.

CR Chengyu Reader (CR) (Jiang et al., 2018).
CR extracts the summary of definition and adopts
a similar attention mechanism of AR.

EAR Enhanced Attentive Reader (EAR) (Fu and
Zhang, 2019) EA Reader contains a method called
Multi-Space Context Fusion and integrates the
method with the attention mechanism of AR.

X-RoBERTa We design AR-RoBERTa, SAR-
RoBERTa, CR-RoBERTa, and EAR-RoBERTa to
make a fair comparison. The LSTMs of them are
all replaced by RoBERTa-base which has 12 layers,
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Dev Test Ran Sim Out

Human - 87.1 97.6 82.2 86.2

AR (Hermann et al., 2015) 72.7 72.4 82.0 66.2 62.9
SAR (Chen et al., 2016) 71.7 71.5 80.0 64.9 61.7
CR (Jiang et al., 2018) 74.1 73.5 82.8 68.5 65.2
EAR (Fu and Zhang, 2019) 74.6 74.5 84.4 67.9 65.5
AR-RoBERTa (Hermann et al., 2015; Liu et al., 2019) 77.1 77.1 89.0 68.9 70.9
SAR-RoBERTa (Chen et al., 2016; Liu et al., 2019) 76.3 76.7 88.5 68.0 69.8
CR-RoBERTa (Jiang et al., 2018; Liu et al., 2019) 78.0 78.3 89.9 70.0 71.7
EAR-RoBERTa (Fu and Zhang, 2019; Liu et al., 2019) 78.7 79.2 90.5 71.7 72.3
Our model 83.0 83.1 92.3 76.1 77.6

Table 4: Comparison of accuracies of different models on ChID dataset.

Figure 4: Performance of our model with different β on Test.

which is the same as our model. Both LSTM and
RoBERTa provides contextual information.

Table 4 shows the accuracies of all methods. The
result of human is given by (Zheng et al., 2019).
Our model outperforms all other models in Dev,
Test, Ran, Sim, and Out. Besides, our model has
much better generalization ability. For example,
comparing with EAR-RoBERTa, our model has a
3.9% improvement on Test but 5.3% on Out.

4.3 Extra Loss Studies

This section explores how β influence the accuracy
of our model on Test. Figure 4 shows the results.
When β = 0, the Extra Loss is not used, which
shows the performance of our model that does not
use Extra Loss. The accuracy increase very quickly
when β < 0.3. The accuracy reaches the highest
point when β = 0.5. The accuracy start decreasing
slowly when β > 1. A larger β makes the extra loss

lq too important and overshadow the normal loss lp,
which makes the model deviate from its purpose.
Extra Loss gives a significant improvement and
costs very few computing resources.

5 Conclusion

In this paper, we propose a model for the Chinese
idiom cloze test. We introduce the definition and
propose Attribute Attention to balance the impor-
tance of different representations of the Chinese
idiom. We add Extra Loss calculated by choos-
ing the answer from the whole vocabulary of Chi-
nese idioms to improve the performance further,
which costs very few computing resources. In ex-
periments, our model outperforms state-of-the-art
method.
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