
Proceedings of the CoNLL 2020 Shared Task: Cross-Framework Meaning Representation Parsing, pages 65–72
Online, Nov. 19-20, 2020. c©2020 Association for Computational Linguistics

65

HIT-SCIR at MRP 2020:
Transition-based Parser and Iterative Inference Parser

Longxu Dou, Yunlong Feng, Yuqiu Ji, Wanxiang Che, Ting Liu
Research Center for Social Computing and Information Retrieval

Harbin Institute of Technology, China
{lxdou,ylfeng,yqji,car,tliu}@ir.hit.edu.cn

Abstract

This paper describes our submission system
(HIT-SCIR) for the CoNLL 2020 shared task:
Cross-Framework and Cross-Lingual Mean-
ing Representation Parsing. The task includes
five frameworks for graph-based meaning rep-
resentations, i.e., UCCA, EDS, PTG, AMR,
and DRG. Our solution consists of two sub-
systems: transition-based parser for Flavor (1)
frameworks (UCCA, EDS, PTG) and itera-
tive inference parser for Flavor (2) frameworks
(DRG, AMR). In the final evaluation, our sys-
tem is ranked 3rd among the seven team both
in Cross-Framework Track and Cross-Lingual
Track, with the macro-averaged MRP F1 score
of 0.81/0.69.

1 Introduction

The goal of the CoNLL 2020 shared task (Oepen
et al., 2020) is to develop a unified parsing sys-
tem to process all five semantic graph banks across
different languages. This task combines five frame-
works for graph-based meaning representation,
each with its specific formal and linguistic assump-
tions, including UCCA, EDS, PTG, AMR, and
DRG. 1

In the context of the shared task, the organiz-
ers distinguish different flavors of semantic graphs
based on the nature of the relationship they assume
between the linguistic surface string and the nodes
of the graph. They call this relation anchoring.
Therefore, the involved five frameworks could be
divided into two classes: (a) Flavor (1), including
UCCA, EDS, and PTG, allowing arbitrary parts of
the sentence as node anchors, as well as multiple
nodes anchored to overlapping sub-strings, and (b)
Flavor (2), including AMR and DRG, not consid-
ering the correspondence between nodes and the
surface tokens.

1See http://mrp.nlpl.eu/ for further technical de-
tails, information on how to obtain the data, and official results.

Our submitted system could be summarized in
the following:

• Transition-based Parser for Flavor (1)

Following Che et al. (2019), the top system in
CoNLL 2019 shared task (Oepen et al., 2019),
we employ the transition-based parser for Fla-
vor (1) frameworks since it’s very flexible in
predicting the anchor information. We directly
use their parser for UCCA and EDS. And we
design a new parser for PTG.

• Iterative Inference Parser for Flavor (2)

Recently, Cai and Lam (2020) proposed
Graph⇔Sequence Iterative Inference system
for AMR parsing, which treats parsing as
a series of dual decisions on the input se-
quence and the incrementally constructed
graph, achieving state-of-the-art results. We
adopt their model for Flavor (2) frameworks
(AMR, DRG).

• Pretrained Language Model

Our systems benefit a lot from the pretrained
language models, i.e., BERT (Devlin et al.,
2019), ELECTRA (Clark et al., 2020) and
XLM-RoBERTa (Conneau et al., 2020).

2 Background

In the following, we will give a brief introduction to
these frameworks and our corresponding solutions.

Universal Conceptual Cognitive Annotation
(UCCA) is a multi-layer linguistic framework (Fla-
vor (1)) firstly proposed by Abend and Rappoport
(2013), which treats input words as terminal nodes.
The non-terminal node might govern one or more
nodes, which may be discontinuous. Moreover, one
node can have multiple governing (parent) nodes
through multiple edges, consisting of a single pri-
mary edge and other remote edges. Relationships

http://mrp.nlpl.eu/

66

between nodes are represented by edge labels. The
primary edges form a tree structure, whereas the re-
mote edges introduce reentrancy, forming directed
acyclic graphs (DAGs). We directly employ the
system of Che et al. (2019), which achieves the 1st

at CoNLL 2019 shared task.
Elementary Dependency Structure (EDS) is a

graph-structured semantic representation formal-
ism (Flavor (1)) proposed by Oepen and Lønning
(2006). Che et al. (2019) introduce a neural
encoder-decoder transition-based parser for the
EDS graph, which extracts the node alignment (or
anchoring) information effectively.

Prague Tectogrammatical Graphs (PTG) are
graph-structured multi-layered semantic represen-
tation formalism (Flavor (1)) proposed by Zeman
and Hajič (2020). PTG graphs essentially recast
core predicate–argument structure in the form of
mostly anchored dependency graphs, albeit intro-
ducing ‘empty’ (or generated, in FGD terminology)
nodes, for which there is no corresponding surface
token. We didn’t find any existing parser for PTG.
Thus we design a list-based arc-eager transition-
based parser for PTG.

Abstract Meaning Representation (AMR), pro-
posed by Banarescu et al. (2013), is a broad-
coverage sentence-level semantic formalism (Fla-
vor (2)) used to encode the meaning of natural
language sentences. AMR can be regarded as a
rooted labeled directed acyclic graph. Nodes in
AMR graphs represent concepts and labeled di-
rected edges are relations between the concepts.
We directly employ state-of-the-art parser of Cai
and Lam (2020).

Discourse Representation Graphs (DRG) are pro-
posed by Abzianidze et al. (2020) (Flavor (2)),
which are derived from the DRS annotations in the
Parallel Meaning Bank (Bos et al., 2017; Abzian-
idze et al., 2017). Its concepts are represented by
WordNet 3.0 (Fellbaum, 1998) senses and semantic
roles by the adapted version of VerbNet (Schuler,
2006) roles. Similar to PTG, we don’t find any
existing parser for DRG, thus we modify the AMR
parser to process the DRG.

3 Transition-based Parser for Flavor (1)

3.1 Background

A tuple (S,L,B,E, V) is used to represent the
parsing state, where S is a stack holding processed
words, L is a list holding words popped out of S
that will be pushed back in the future, and B is a

buffer holding unprocessed words. E is a set of
labeled dependency arcs. V is a set of graph nodes
including concept nodes and surface tokens. The
initial state is ([0], [], [1, · · · , n], [], V) , where V
only contains surface tokens, whereas the concept
nodes will be generated during parsing. And the
terminal state is ([0], [], [], E, V

′
). We model the

S, L, B and action history with Stack-LSTM, which
supports PUSH and POP operations. 2

3.2 Transition Systems
For brevity, we omit the descriptions of the transi-
tion system for UCCA and EDS (Che et al., 2019).
As for PTG, we propose a new arc-eager transition-
based parser. To illustrate the transition-set and
configuration more clearly, we list the transition
process in Table 1 (UCCA), Table 2 (EDS) and
Table 3 (PTG).

3.2.1 PTG
We are not aware of any parser specifically de-
signed for PTG. But we found it is highly related to
UCCA and EDS. Thus, based on the transition sys-
tems of UCCA and EDS and the definition of PTG
(Čmejrek et al., 2004), we design a new system
for PTG as shown in Table 3. x is the top element
in the buffer and y is the top element in the stack.
Moreover, y could only be a concept node (stack
and list only contain concept nodes), and x could
be a concept node or a surface token.

LEFT-EDGEX , RIGHT-EDGEX , SHIFT, DROP,
REDUCE, PASS and FINISH are the same as EDS.

• SELF-EDGEX adds an arc with label X be-
tween x and itself.

• TERMINAL-NOLABEL creates new non-
terminal nodes without label. These nodes
have corresponding surface token(s) and their
labels will be determined by rule, which will
be introduced in Section 5.

• TERMINALX creates new non-terminal nodes
with label X .

• NODEX creates a new node on the buffer as a
parent of the first element on the stack, with
X as its label.

• NODE-ROOTX creates a new node on the
buffer as a child of the root with X as its
label.

2We recommend reading Dyer et al. (2015) for more de-
tails.

67

Before Transition Transition After Transition Condition
Stack Buffer Nodes Edges Stack Buffer Nodes Edges
S x | B V E SHIFT S | x B V E
S | x B V E REDUCE S B V E
S | x B V E NODEX S | x y | B V ∪ {y} E ∪ {(y, x)X} x 6= root
S | y, x B V E LEFT-EDGEX S | y, x B V E ∪ {(x, y)X}

x 6∈ w1:n,
y 6= root,
y 6;G x

S | x, y B V E RIGHT-EDGEX S | x, y B V E ∪ {(x, y)X}
S | y, x B V E LEFT-REMOTEX S | y, x B V E ∪ {(x, y)∗X}
S | x, y B V E RIGHT-REMOTEX S | x, y B V E ∪ {(x, y)∗X}
S | x, y B V E SWAP S | y x | B V E i(x) < i(y)
[root] ∅ V E FINISH ∅ ∅ V E

Table 1: The transition set of UCCA parser. We write the Stack with its top to the right and the Buffer with its
head to the left. (·, ·)X denotes a primary X-labeled edge, and (·, ·)∗X a remote X-labeled edge. i(x) is a running
index for the created nodes. In addition to the specified conditions, the prospective child in an EDGE transition
must not already have a primary parent. From (Hershcovich et al., 2017).

Before Transition Transition After Transition Condition
Stack List Buffer Nodes Edges Stack List Buffer Nodes Edges
S L x | B V E SHIFT S | L | x ∅ B V E concept(x)
S | x L B V E REDUCE S L B V E
S | x L y | B V E RIGHT-EDGEX S | x L y | B V E ∪ {(x, y)X} concept(x) ∧ concept(y)
S | y L x | B V E LEFT-EDGEX S | y L x | B V E ∪ {(x, y)X} concept(x) ∧ concept(y)
S | x L B V E PASS S x | L B V E
S L x | B V E DROP S | L ∅ B V E token(x)
S L x | B V E TOP S L x | B V ∪ Top(x) E concept(x)
S L x | B V E NODE-STARTX S | y L x | B V ∪ {ystart=x,label=X} E token(x)
S | y L x | B V E NODE-END S | y L x | B V ∪ {yend=x} E token(x)
[root] ∅ ∅ V E FINISH ∅ ∅ ∅ V E

Table 2: The transition set of EDS parser. We write the Stack with its top to the right, the Buffer with its head
to the left and the List with its head to the left. The elements in Stack and List are all concept nodes. Indicator
function token(x) means x is a token of the sentence, while concept(x) means it’s a concept node. Top(x) indicates
x is the top node. ystart=wi,label=X,end=wj

indicates the alignments of concept node y is starting at token wi,
ending at token wj and its label is X .

Before Transition Transition After Transition Condition
Stack List Buffer Nodes Edges Stack List Buffer Nodes Edges
S L x | B V E SHIFT S | L | x ∅ B V E concept(x)
S | x L B V E REDUCE S L B V E
S | x L y | B V E RIGHT-EDGEX S | x L y | B V E ∪ {(x, y)X}
S | y L x | B V E LEFT-EDGEX S | y L x | B V E ∪ {(x, y)X}
S | y L x | B V E SELF-EDGEX S | y L x | B V E ∪ {(x, x)X}
S | x L B V E PASS S x | L B V E
S L x | B V E DROP S | L ∅ B V E token(x)
S L x | B V E NODEX S L y | x | B V ∪ {ylabel=X} E token(x)
S L x | B V E NODE-ROOTX S L y | x | B V ∪ {ylabel=X} E root(x)
S L x | B V E TERMINAL-NOLABEL S L y | x | B V ∪ {y} E
S L x | B V E TERMINALX S L y | x | B V ∪ {ylabel=X} E
[root] ∅ ∅ V E FINISH ∅ ∅ ∅ V E

Table 3: The transition set of PTG parser. We write the Stack with its top to the right, the Buffer with its head
to the left and the List with its head to the left. The elements in Stack and List are all concept nodes. Indicator
function token(x) means x is a token of the sentence, while concept(x) means it’s a concept node. root(x) indicates
x is the top node.

68

The differences between TERMINAL and NODE are
(a) TERMINAL generates the node ahead of NODE

in the oracle transition sequence, which means the
nodes generated by TERMINAL are more closer
to the surface tokens, and (b) TERMINAL could
generate the concept node that aligns to surface
tokens(s) while NODE could only generates the
node with the particular label.

4 Iterative Inference Parser for Flavor
(2)

4.1 Overview
We adopt the Graph⇔Sequence Iterative Inference
system proposed by Cai and Lam (2020) to parse
the Flavor (2) graphs. We name it iterative infer-
ence parser in this paper. At each time step, the
model performs multiple rounds of attention, rea-
soning, and composition that aim to answer two
critical questions: (a) which part of the input se-
quence to abstract, and (b) where in the output
graph to construct the new concept.

4.2 Implementation
This model consists of four modules:

• Sentence Encoder encodes the input se-
quence and generates a set of text memories
to provide grounding for concept node gener-
ation.

• Graph Encoder encodes the partial graph
and generate a set of graph memories to pro-
vide grounding for relation prediction.

• Concept Solver uses the graph hypothesis for
concept node generation.

• Graph Solver uses the concept node hypoth-
esis for relation prediction.

The last two components correspond to the reason-
ing functions g(·) and f(·) respectively.

More specifically, at the beginning of parsing,
Sentence Encoder computes the text memories,
while Graph Encoder constructs the graph memo-
ries incrementally.3 During the iterative inference,
a semantic representation of the current state is
used to attend to both graph and text memories to
locate the new concept and obtain its relations to
the existing graph, both of which subsequently re-
fine each other. Then in each step, Concept Solver

3In the beginning, we represent the empty graph with a
special symbol: BOG (begin of graph).

generates the concept node and Relation Solver
predicts the relation between the concept node with
other node(s) through attention.4

This process could be described as follows:

yit = g(Gi, xit),

xit+1 = f(W, yit),

where W and Gi are the input sentence and the
current semantic graph respectively. g(·) looks for
where to construct (edge prediction) and f(·) seeks
what to abstract (node prediction) respectively. The
xit, y

i
t are the t−th graph hypothesis and the t−th

sequence hypothesis for the i−th expansion step
respectively.

In summary, Iterative Inference Parser uses a
sentence encoder to encode the input sequence and
a graph encoder to build the graph iteratively. In
each step, the parser uses the graph state and the
sentence representation to generate a new concept
node and build the relation between the concept
node and other parts of the graph.5

5 Pre-processing and Post-processing

In this session, we introduce the pre-processing and
post-processing work. The MRP graph can be bro-
ken down into seven component pieces: top nodes,
node labels, node properties, node anchoring, di-
rected edges, edge labels, and edge attributes.

The directed edges, edge labels, and node id
form the standard input of our system. For node
anchoring, we directly derive the anchoring infor-
mation through segmentation from companion data.
For other elements, such as top nodes, are a bit dif-
ferent among the frameworks. We will introduce
these framework-specific work in the following.

5.1 UCCA
Top Nodes There is only one top node for each
sentence in UCCA, which is used to initialize the
stack. Meanwhile, the top node is the protected
symbol of the stack (which will never be popped
out).

Edge Properties The edge property in UCCA is
used as the sign for remote edges. We treat remote
edges in the same way as primary edges, except for
those with a special star (*) symbol.

4The iterative process between concept node generation
and relation prediction will last until the concept solver pre-
dicts a special symbol: EOG (end of graph).

5More details could be found in the original paper (Cai
and Lam, 2020).

69

Node Anchoring Referring to the original
UCCA framework design, we link the node in the
foundational layer to the surface token with the
edge label ‘Terminal’. In post-processing, we com-
bine surface tokens and foundational layer nodes
via collapsing ‘Terminal’ edge to extract the anchor
information.

5.2 EDS

Top Nodes The TOP operation will set the first
concept node in the buffer as top node.

Node Labels We train a tagger to predict the
node labels. The tagger is directly adopted from
AllenNLP. Although there are thousands of node
labels, the result shows our system performs well
on this.

Node Properties We count the co-occurrence of
node label, upos, dep and property value in the
training dataset, and select the property based on
the co-occurrence statistics in the predicting pro-
cedure. If the triple (node label, upos, dep) is not
found, we backoff to the tuple (upos, dep).6

Node Anchoring We obtain alignment informa-
tion through NODE START and NODE END opera-
tion.

5.3 PTG

The original PTG is not a directed acyclic graph
(DAG). We find that all the cycles are caused by
coref.gram edges. Thus we reverse these edges to
convert PTG to DAG to avoid this problem.

Top Nodes The top node of PTG is the root of
the stack, which is used to initialize the stack.

Node Labels We obtain the node label through a
rule-based method: (1) collecting the tokens that
node aligns to, and (2) setting the node label as
the lemma of one of the tokens. Which token to
be chosen is determined by a rule considering the
pos-tag, dependency tree.

Node Properties Similar to EDS, we used the
statistic-based method to compute the properties.

Node Anchoring We obtain alignment informa-
tion through NODE or TERMINAL operation.

6The ‘upos’ and ‘dep’ are obtained from corresponding
companion data, which refers to the upos-tag of the token(s)
that the concept node aligns to, and the label of the edge
between the token(s) and its parents in the dependency tree.

5.4 AMR
The original definition of AMR consists of TOP

NODES, NODE LABELS and NODE PROPERTIES.
Thus we directly used the system’s output.

5.5 DRG
The DRG parsing system is based on the parser of
AMR (Cai and Lam, 2020). Before training, we
need to convert DRG to AMR. After prediction, we
recover it reversely. More specifically, we attach
the unreal label to the unlabeled node of DRG to
satisfy the requirement of AMR that all nodes must
have a label. The labeled node of DRG can be
divided into three types:

• Abstract Node Such nodes are representing
comparison relations, e.g., EQU, which is usu-
ally uppercased.

• Labeled Node with property: We split the
node into the label part and property parts.
For example, impossible.a.01 could be spilt
into label part (impossible) and property parts
(a and 01). Then we add two edges with the
label ‘op’ from label part to property parts.

• Labeled Node without property: Such node
are covered by double quotes, like “now”. We
simply copy the node label to the AMR graph
ignoring the double quotes. We will add them
back during post-processing.

6 Experiments

In this section, we will show the basic model setup
and overall evaluation results.

6.1 Model Setup
Transition-based Parser Based on the system
of Che et al. (2019), we build the transition-based
parser for UCCA, EDS, and PTG. We split pa-
rameters into two groups, i.e., BERT parameters
and other parameters (base parameters). The two
parameter groups differ in the learning rate. For
training, we use the Adam optimizer (Kingma and
Ba, 2015).

Iterative Inference Parser Based on the system
of Cai and Lam (2020), we build the parser for
AMR and DRG.7

Code for our parser and model weights are
available at https://github.com/DreamerDeo/

HIT-SCIR-CoNLL2020.
7https://github.com/jcyk/AMR-gs

https://github.com/DreamerDeo/HIT-SCIR-CoNLL2020
https://github.com/DreamerDeo/HIT-SCIR-CoNLL2020
https://github.com/jcyk/AMR-gs

70

System UCCA EDS PTG AMR DRG ALL
Hitachi 0.75 0.94 0.89 0.82 0.93 0.86
UFAL 0.76 0.93 0.88 0.80 0.94 0.86
HIT-SCIR 0.75 0.87 0.84 0.70 0.89 0.81
HUJI-KU 0.73 0.80 0.54 0.52 0.63 0.64
ISCAS 0.06 0.86 0.18 0.61 0.69 0.48
TJU-BLCU 0.10 0.49 0.21 0.3 0.40 0.30

Table 4: Evaluation results on Cross-Framework Track upon MRP F1.

System UCCA PTG AMR DRG ALL
UFAL 0.81 0.91 0.78 0.90 0.85
Hitachi 0.79 0.87 0.80 0.93 0.85
HIT-SCIR 0.80 0.78 0.49 0.68 0.69
HUJI-KU 0.75 0.58 0.45 0.62 0.60

Table 5: Evaluation results on Cross-Lingual Track upon MRP F1.

6.2 Fine-Tuning BERT with Parser

Based on Devlin et al. (2019), fine-tuning BERT
with supervised downstream task will receive the
most benefit. So we choose to fine-tune BERT
model together with the original parser. In our
preliminary study, gradual unfreezing and slanted
triangular learning rate scheduler is essential for
BERT fine-tuning model.

We find it beneficial to warm up the learning
rate at beginning of training progress and cool
down after. With the slanted triangular learning
rate scheduler, the learning rate increases linearly
from lr/ratio to lr during the first num step ×
cut frac steps and decreases linearly back to
lr/ratio during the left steps.

Gradual unfreezing is also used during training
so in the first few (1 ∼ 5) epochs BERT parame-
ters are frozen. While being gradually unfrozen,
the learning rate experiences a full warm-up and
cool-down cycle per epoch. And then a full cycle
is performed during the rest training progress once
all parameters are unfrozen. Batch normalization
(Sergey and Christian, 2015) is useful when avoid-
ing the gradient exploding during training UCCA
and EDS.

6.3 Hyperparameters

Pretrained Language Model The model
choices for each framework across two tracks, are
listed in Table 6.

Transition-based Parser Following Che et al.
(2019), we adopt the hyper-parameters listed in
Table 7.

Iterative Inference Parser Following Cai and
Lam (2020), we perform N = 4 steps of iterative
inference. Other hyper-parameter settings can be
found in the Table 8.

6.4 Overall Evaluation Results and Analysis
We list the evaluation results on Table 4 and Table
5, which is ranked by the cross-framework metric,
named macro-averaged MRP F1.8

For Flavor (1) framework, our transition-based
parser is a local-decision model. Thus, our parser
cannot effectively use global information when pre-
dicting the attributes of graph nodes, resulting in
some more complex structures that can not be ef-
fectively generated. On another hand, our system
in UCCA achieves nearly state-of-the-art perfor-
mance but falls behind in EDS and PTG. We argue
that the main reason is that we obtain the properties
by the statistic-based way instead of training a spe-
cific model, which lower the overall performance
in EDS and PTG.

For Flavor (2) framework, we suppose that the
main reason for the performance degradation in
AMR is the entity vocabulary, which is obtained
in AMR2.0 from Cai and Lam (2020) and doesn’t
match the MRP2020-AMR very well. Based on
our experience, the AMR parser will benefit a lot
from a high-quality entity vocabulary.

7 Conclusion

In this paper, we describe our submission system
for the CoNLL 2020 shared task. We separate

8Evaluation results of CoNLL 2020 shared task are avail-
able at http://bit.ly/cfmrp20.

http://bit.ly/cfmrp20

71

Track Cross-Framework Cross-Lingual
UCCA BERT-Base BERT-Base German
EDS BERT-Base -
PTG BERT-Base BERT-Base Multilingual
AMR ELECTRA-Large ELECTRA-Large Chinese
DRG ELECTRA-Large XLM-RoBERTa-Large

Table 6: The pretrained language model used in each track .
.

HYPERPARAMETER VALUE

Hidden dimension 200
Action dimension 50
Optimizer Adam
β1, β2 0.9, 0.99
Dropout 0.5
Layer dropout 0.2
Recurrent dropout 0.2
Input dropout 0.2
Batch size 16
Epochs 50
Base learning rate 1× 10−3

BERT learning rate 5× 10−5

Gradient clipping 5.0
Gradient norm 5.0
Learning rate scheduler slanted triangular
Gradual Unfreezing True
Cut Frac 0.1
Ratio 32

Table 7: Transition-based parser hyper-parameters set-
tings.

our solutions into two classes based on the flavor
of the framework: (a) transition-based parser for
Flavor (1) (UCCA, EDS, PTG), and (b) iterative
inference parser for Flavor (2) (AMR, DRG). Espe-
cially, we propose a new transition-based parser for
the PTG framework, which achieves comparable
performance. In the final evaluation, our system
positions at 3rd in both tracks.

Acknowledgments

We thank the reviewers for their insightful com-
ments and the HIT-SCIR colleagues for the coordi-
nation on the machine usage. This work was sup-
ported by the National Natural Science Foundation
of China (NSFC) via grant 61976072, 61632011
and 61772153.

References
Omri Abend and Ari Rappoport. 2013. Universal

conceptual cognitive annotation (UCCA). In ACL,
pages 228–238.

HYPERPARAMETER VALUE

lemma dimension 300
NER dimension 16
POS dimension 32
concept dimension 300
char dimension 32
CNN
filters 256
filter size 3
output size 128
Transformer
heads 8
hidden size 512
feed-forward hidden size 1024
Sentence Encoder transformer layers 4
Graph Encoder transformer layers 2
Concept Solver feed-forward hidden size 1024
Releation Solver feed-forward hidden size 1024
Releation Solver feed-forward heads 8
Deep biaffine classifier hidden size 100

Table 8: Iterative Inference parser hyper-parameters
settings.

Lasha Abzianidze, Johannes Bjerva, Kilian Evang,
Hessel Haagsma, Rik van Noord, Pierre Ludmann,
Duc-Duy Nguyen, and Johan Bos. 2017. The paral-
lel meaning bank: Towards a multilingual corpus of
translations annotated with compositional meaning
representations. In EACL, pages 242–247.

Lasha Abzianidze, Johan Bos, and Stephan Oepen.
2020. DRS at MRP 2020: Dressing up Discourse
Representation Structures as graphs. In Proceedings
of the CoNLL 2020 Shared Task: Cross-Framework
Meaning Representation Parsing, pages 23 – 32, On-
line.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186.

Johan Bos, Valerio Basile, Kilian Evang, Noortje J.
Venhuizen, and Johannes Bjerva. 2017. The Gronin-
gen Meaning Bank, pages 463–496.

Deng Cai and Wai Lam. 2020. AMR parsing via graph-

72

sequence iterative inference. In ACL, pages 1290–
1301.

Wanxiang Che, Longxu Dou, Yang Xu, Yuxuan Wang,
Yijia Liu, and Ting Liu. 2019. HIT-SCIR at
MRP 2019: A unified pipeline for meaning rep-
resentation parsing via efficient training and effec-
tive encoding. In Proceedings of the Shared Task
on Cross-Framework Meaning Representation Pars-
ing at the 2019 Conference on Computational Natu-
ral Language Learning, pages 76 – 85, Hong Kong,
China.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In ICLR.

Martin Čmejrek, Jan Cuřı́n, and Jiřı́ Havelka. 2004.
Prague Czech-English dependency treebank: Any
hopes for a common annotation scheme? In HLT-
NAACL, pages 47–54.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
ACL, pages 8440–8451.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT, pages 4171–4186.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In ACL and IJCNLP, pages 334–343.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for UCCA. In ACL, pages 1127–1138.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Stephan Oepen, Omri Abend, Lasha Abzianidze, Jo-
han Bos, Jan Hajič, Daniel Hershcovich, Bin Li,
Tim O’Gorman, Nianwen Xue, and Daniel Zeman.
2020. MRP 2020: The Second Shared Task on
Cross-framework and Cross-Lingual Meaning Rep-
resentation Parsing. In Proceedings of the CoNLL
2020 Shared Task: Cross-Framework Meaning Rep-
resentation Parsing, pages 1 – 22, Online.

Stephan Oepen, Omri Abend, Jan Hajič, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, Nian-
wen Xue, Jayeol Chun, Milan Straka, and Zdeňka
Urešová. 2019. MRP 2019: Cross-framework
Meaning Representation Parsing. In Proceedings of

the Shared Task on Cross-Framework Meaning Rep-
resentation Parsing at the 2019 Conference on Com-
putational Natural Language Learning, pages 1 – 27,
Hong Kong, China.

Stephan Oepen and Jan Tore Lønning. 2006.
Discriminant-based MRS banking. In Proceed-
ings of the Fifth International Conference on
Language Resources and Evaluation (LREC’06).

Karin Kipper Schuler. 2006. VerbNet: A Broad-
Coverage, Comprehensive Verb Lexicon. Ph.D. the-
sis.

Ioffe Sergey and Szegedy Christian. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In ICML.

Daniel Zeman and Jan Hajič. 2020. FGD at MRP 2020:
Prague Tectogrammatical Graphs. In Proceedings
of the CoNLL 2020 Shared Task: Cross-Framework
Meaning Representation Parsing, pages 33 – 39, On-
line.

