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Abstract

Sentence encoders map sentences to real val-
ued vectors for use in downstream applica-
tions. To peek into these representations—e.g.,
to increase interpretability of their results—
probing tasks have been designed which query
them for linguistic knowledge. However, de-
signing probing tasks for lesser-resourced lan-
guages is tricky, because these often lack large-
scale annotated data or (high-quality) depen-
dency parsers as a prerequisite of probing task
design in English. To investigate how to probe
sentence embeddings in such cases, we in-
vestigate sensitivity of probing task results to
structural design choices, conducting the first
such large scale study. We show that de-
sign choices like size of the annotated prob-
ing dataset and type of classifier used for eval-
uation do (sometimes substantially) influence
probing outcomes. We then probe embeddings
in a multilingual setup with design choices that
lie in a ‘stable region’, as we identify for En-
glish, and find that results on English do not
transfer to other languages. Fairer and more
comprehensive sentence-level probing evalua-
tion should thus be carried out on multiple lan-
guages in the future.

1 Introduction

Sentence embeddings (a.k.a. sentence encoders)
have become ubiquitous in NLP (Kiros et al., 2015;
Conneau et al., 2017), extending the concept of
word embeddings to the sentence level. In the con-
text of recent efforts to open the black box of deep
learning models and representations (Linzen et al.,
2019), it has also become fashionable to probe
sentence embeddings for the linguistic informa-
tion signals they contain (Perone et al., 2018), as
this may not be clear from their performances in
downstream tasks. Such probes are linguistic micro
tasks—like detecting the length of a sentence or its
dependency tree depth—that have to be solved by

classifier
LR MLP NB RF

si
ze

High (A,B,C) (A,B,C) (C,A,B) (C,B,A)
Mid (A,C,B) (C,B,A) (A,B,C) (C,B,A)
Low (A,B,C) (B,A,C) (B,C,A) (A,B,C)

Table 1: Schematic illustration of our concept of stabil-
ity across two dimensions (classifier and training size).
Here, three encoders, dubbed A,B,C, are ranked. The
region of stability is given by those settings that support
the majority ranking of encoders, which is A�B�C.

a classifier using given representations.
The majority of approaches for probing sen-

tence embeddings target English, but recently
some works have also addressed other languages
such as Polish, Russian, or Spanish in a multi-
and cross-lingual setup (Krasnowska-Kieraś and
Wróblewska, 2019; Ravishankar et al., 2019). Mo-
tivations for considering a multi-lingual analysis in-
clude knowing whether findings from English trans-
fer to other languages and determining a universal
set of probing tasks that suits multiple languages,
e.g., with richer morphology and freer word order.

Our work is also inspired by probing sentence
encoders in multiple (particularly low-resource)
languages. We are especially interested in the for-
mal structure of probing task design in this context.
Namely, when designing probing tasks for low-
resource languages, some questions arise naturally
that are less critical in English. One of them is
the size of training data for probing tasks, as this
training data typically needs to be (automatically
or manually) annotated, an inherent obstacle in
low-resource settings.1

Thus, at first, we ask for the training data size

1The main issue is that high-quality dependency parsers, as
required for standard probing tasks, exist only for a handful of
languages. E.g., UDPipe (Straka, 2018) is available for only
about 100 languages, and performance scores for some of
these are considerably below those of English (Straka, 2018).
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required for obtaining reliable probing task results.
This question is also relevant for English: on the
one hand, Conneau et al. (2018) claim that training
data for a probing task should be plentiful, as oth-
erwise (highly parametrized) classifiers on top of
representations may be unable to extract the rele-
vant information signals; on the other hand, Hewitt
and Liang (2019) note that a sufficiently powerful
classifier with enough training data can in principle
learn any task, without this necessarily allowing to
conclude that the representations adequately store
the linguistic signal under scrutiny. Second, we ask
how stable probing task results are across different
classifiers (e.g., MLP vs. Naive Bayes). This ques-
tion is closely related to the question about size,
since different classifiers have different sensitivities
to data size; especially deep models are claimed to
require more training data.

We evaluate the sensitivity of probing task re-
sults to the two outlined parameters—which are
mere machine learning design choices that do not
affect the linguistic content stored in the sentence
representations under scrutiny—and then deter-
mine a ‘region of stability’ for English (en), where
outcomes are predicted to be similar for the major-
ity of parameter choices. Table 1 illustrates this.
Using parameter choices within our region of sta-
bility, we turn to three lower-resource languages,
viz.: Turkish (tr), Russian (ru), and Georgian
(ka). tr is a Turkic language written in Latin
script which makes exhaustive use of agglutination.
ru is a Slavic language written in Cyrillic script
characterized by strong inflection and rich morphol-
ogy. ka is a South-Caucasian language using its
own script called Mkhedruli. It makes use of both
agglutination as well as inflection. For these, our
main research questions are whether probing task
results transfer from English to the other languages.

Overall, our research questions are:

• (i) How reliable are probing task results across
machine learning design choices?

• (ii) Will encoder performances correlate across
languages, even though the languages and their
linguistic properties may differ?

• (iii) Will probing task performances correlate
across languages?

• (iv) Will the correlation between probing and
downstream tasks be the same across languages?

These questions are important because they indi-
cate whether or not probing tasks (and their relation

to downstream tasks) have to be re-evaluated in lan-
guages other than en.2

2 Related work

Our goal is to probe for sentence-level linguistic
knowledge encoded in sentence embeddings (Per-
one et al., 2018) in a multilingual setup which
marginalizes out the effects of probing task design
choices when comparing sentence representations.

Sentence embeddings have become central for
representing texts beyond the word level, e.g., in
small data scenarios, where it is difficult to induce
good higher-level text representations from word
embeddings (Subramanian et al., 2018) or for clus-
tering or text retrieval applications (Reimers and
Gurevych, 2019). To standardize the comparison
of sentence embeddings, Conneau and Kiela (2018)
proposed the SentEval framework for evaluating
the quality of sentence embeddings on a range of
downstream and 10 probing tasks.

Probing tasks are used to introspect embed-
dings for linguistic knowledge, by taking “probes”
as dedicated syntactic or semantic micro tasks
(Köhn, 2016). As opposed to an evaluation
in downstream applications or benchmarks like
GLUE (Wang et al., 2018), probing tasks target
very specific linguistic knowledge which may oth-
erwise be confounded in downstream applications.
Since they are artificial tasks, they can also be better
controlled for to avoid dataset biases and artifacts.
Probing is typically either executed on type/token
(word) (Tenney et al., 2019) or sentence level (Adi
et al., 2017). For sentence level evaluation, SentE-
val thus far only includes en data. Each probing
task in SentEval is balanced and has 100k train, 10k
dev, and 10k test instances. The effects of these
design choices are unclear, which is why our work
addresses their influence systematically.

In the multilingual setting, Sahin et al. (2019)
propose 15 token and type level probing tasks.
Their probing task data is sourced from UniMorph
2.0 (Kirov et al., 2018), Universal Dependency tree-
banks (McCarthy et al., 2018) and Wikipedia word
frequency lists. To deal with lower-resourced lan-
guages, they only use 10K samples per probing
task/language pair (7K/2K/1K for train/dev/test)
and exclude task/language pairs for which this
amount cannot be generated. Their final experi-

2Code and data are available from https://github.
com/UKPLab/conll2020-multilingual-
sentence-probing.

https://github.com/UKPLab/conll2020-multilingual-sentence-probing
https://github.com/UKPLab/conll2020-multilingual-sentence-probing
https://github.com/UKPLab/conll2020-multilingual-sentence-probing
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ments are carried out on five languages (Finnish,
German, Spanish, ru, tr), for which enough train-
ing data is available. They find that for morpholog-
ically rich (agglutinative) languages, several prob-
ing tasks positively correlate with downstream ap-
plications. Our work also investigates correlation
between probing and downstream performance, but
we do so on sentence level.

On sentence level, Ravishankar et al. (2019) train
an InferSent-like encoder (Conneau et al., 2017)
on en and map this encoder to four languages (ru,
French, German, Spanish) using parallel data. Sub-
sequently, they probe the encoders on the prob-
ing tasks proposed by Conneau et al. (2018) us-
ing Wikipedia data for each language, with the
same size of probing task data as in SentEval, i.e.,
100k/10k/10k for train/dev/test. Their interest is
in whether probing tasks results are higher/lower
compared to en scores. They find particularly the
ru probing scores to be low, which they speculate
to be an artifact of cross-lingual word embedding
induction and the language distance of ru to en.
In contrast to us, their focus is particularly on the
effect of transferring sentence representations from
en to other languages. The problem of such an
analysis is that results may be affected by the na-
ture of the cross-lingual mapping techniques.

Krasnowska-Kieraś and Wróblewska (2019)
probe sentence encoders in en and Polish (pl).
They use tasks defined in Conneau et al. (2018)
but slightly modify them (e.g., replacing depen-
dency with constituency trees), reject some tasks
(Bigram-Shift, as word order may play a minor
role in pl), and add two new tasks (Voice and Sen-
tence Type). Since pl data is less abundant, they
shrink the size of the pl datasets to 75k/7.5k/7.5k
for train/dev/test and, for consistency, do the same
for en. They extract probing datasets from an en-
pl parallel corpus using COMBO for dependency
parsing (Rybak and Wróblewska, 2018). They
find that en and pl probing results mostly agree,
i.e., encoders store the same linguistic information
across the two languages.

3 Approach

In the absence of ground truth, our main interest
is in a ‘stable’ structural setup for probing task
design—with the end goal of applying this design
to multilingual probing analyses (keeping their re-
strictions, e.g., small data sizes, in mind). To this
end, we consider a 2d space X comprising probing

data size and classifier choice for probing tasks.3

For a selected set of points p0, p1, . . . in X , we
evaluate all our encoders on pi, and determine the
‘outcomes’ Oi (e.g., ranking) of the encoders at
pi. We consider a setup pi as stable if outcome Oi
is shared by a majority of other settings pj . This
can be considered a region of agreement, similarly
to inter-annotator agreement (Artstein and Poesio,
2008). In other words, we identify ‘ideal’ test con-
ditions by minimizing the influence of parameters
pi on the outcome Oi. Below, we will approximate
these intuitions using correlation.

3.1 Embeddings

We consider two types of sentence encoders, non-
parametric methods which combine word embed-
dings in elementary ways, without training; and
parametric methods, which tune parameters on
top of word embeddings. As non-parametric meth-
ods, we consider: (i) average word embeddings
as a popular baseline, (ii) the concatenation of
average, min and max pooling (pmeans) (Rücklé
et al., 2018); and Random LSTMs (Conneau et al.,
2017; Wieting and Kiela, 2019), which feed word
embeddings to randomly initialized LSTMs, then
apply a pooling operation across time-steps. As
parametric methods, we consider: InferSent (Con-
neau et al., 2017), which induces a sentence rep-
resentation by learning a semantic entailment re-
lationship between two sentences; QuickThought
(Logeswaran and Lee, 2018) which reframes the
popular SkipThought model (Kiros et al., 2015)
in a classification context; LASER (Artetxe and
Schwenk, 2019) derived from massively multilin-
gual machine translation models, and BERT base
(Devlin et al., 2019), where we average token em-
beddings of the last layer for a sentence representa-
tion. Dimensionalities of encoders are listed in the
appendix.

3.2 Probing Tasks

Following Conneau et al. (2018), we consider the
following probing tasks: BigramShift (en, tr,
ru, ka), TreeDepth (en), Length (en, tr, ru,
ka), Subject Number (en, tr, ru), WordCon-
tent (en, tr, ru, ka), and TopConstituents (en).

3We also looked at further parameters, in particular, the
class (im)balances of training datasets. Details and results
can be found in the appendix. Since, however, their influ-
ence seemed to be less critical and an increased search space
would blow up computational costs, we decided to limit our
investigation to the described dimensions.
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Task Description Example

Bigram Shift Whether two words in a sentence are inverted This is my Eve Christmas. −→ True
Tree Depth Longest path from root to leaf in constituent tree “One hand here , one hand there , that ’s it” −→ 5
Length Number of tokens I like cats −→ 1-4 words
Subject Number Whether the subject is in singular or plural They work together −→ Plural
Word Content Which mid-frequency word a sentence contains Everybody should step back −→ everybody
Top Constituents Classific. task where classes are given by 19 most Did he buy anything from Troy −→ VDP NP VP

common top constituent sequences in corpus

Voice Whether sent. contains a passive construct He likes cats −→ False
SV-Agree Whether subject and verb agree They works together −→ Disagree
SV-Dist Distance between subject and verb The delivery was very late −→ 1

Table 2: Probing tasks, their description and illustration. Upper tasks are defined as in SentEval.

We choose Length, BigramShift and WordCon-
tent because they are unsupervised tasks that re-
quire no labeled data and can thus be easily im-
plemented across different languages—they also
represent three different types of elementary prob-
ing tasks: surface, syntactic and semantic/lexical.
We further include Subject Number across all our
languages because number marking is extremely
common across languages and it is comparatively
easy to identify. We adopt Voice (en, tr, ru,
ka) from Krasnowska-Kieraś and Wróblewska
(2019). For en, we additionally evaluate on
TreeDepth and TopConstituents as hard syntactic
tasks. We add two tasks not present in the canon of
probing tasks given in SentEval: Subject-Verb-
Agreement (SV-Agree) (en, tr, ru, ka) and
Subject-Verb-Distance (SV-Dist) (en, tr, ru).
We probe representations for these properties be-
cause we suspect that agreement between subject
and verb is a difficult task which requires inferring
a relationship between pairs of words which may
stand in a long-distance relationship (Gulordava
et al., 2018). Moverover, we assume this task to
be particularly hard in morphologically rich and
word-order free languages, thus it could be a good
predictor for performance in downstream tasks.

To implement the probing tasks, for en, we use
the probing tasks datasets defined in Conneau and
Kiela (2018) and we apply spaCy4 to sentences ex-
tracted from Wikipedia for the newly added prob-
ing tasks Voice and SV-Agree. For tr, ru, and
ka, we do not rely on dependency parsers because
of quality issues and unavailability for ka. Instead,
for trand ru, we use information from Universal
Dependencies (UD) (Nivre et al., 2016). E.g., for
SV-Dist, we determine the dependency distance
between the main verb and the subject from UD.

4https://spacy.io

Instead of the exact distances, we predict binned
classes: [1], [2,4], [5,7], [8,12], [13,∞). For ka,
we use data and grammatical information from the
Georgian National Corpus (GNC)5. We could not
implement SV-Dist for ka, due to missing depen-
dency information in the GNC. For the same reason,
we omit Subject Number for ka.

For SV-Agree, we create a list of frequently oc-
curring verbs together with their corresponding
present tense conjugations for all involved lan-
guages including English. We check each indi-
vidual candidate sentence from Wikipedia for the
presence of a verb form in the list. If no word is
present, we exclude the sentence from consider-
ation. Otherwise, we randomly replace the verb
form by a different conjugation in 50% of the cases.

An overview of the probing tasks, along with
descriptions and examples, is given in Table 2.

3.3 Downstream Tasks
In addition to probing tasks, we test the embed-
dings in downstream applications. Our focus is
on a diverse set of high-level sentence classifica-
tion tasks. We choose Argument Mining, Sen-
timent Analysis and TREC question answering.
Required training data for languages other than en
has been machine translated using Google Trans-
late6 for Argument Mining and TREC.7 Statistics
for all datasets are reported in Table 6.

Argument Mining (AM) AM is an emergent
NLP task requiring sophisticated reasoning capabil-
ities. We reuse the sentence-level argument (stance)

5https://clarino.uib.no/gnc
6http://translate.google.com
7To estimate the quality of the machine translation, we

measured its performance on parallel data. Details can be
found in the appendix. While the machine translation is gener-
ally of acceptable quality, we cannot exclude the possibility
that it may effect some of our downstream tasks results re-
ported below.

https://spacy.io
https://clarino.uib.no/gnc
http://translate.google.com


112

detection dataset by Stab et al. (2018), which la-
bels sentences extracted from web pages as pro-,
con-, or non-arguments for eight different topics.
A sentence only qualifies as pro or con argument
when it both expresses a stance towards the topic
and gives a reason for that stance. The classifier
input is a concatenation of the sentence embedding
and the topic encoding. In total, there are about
25,000 sentences.

Sentiment Analysis As opposed to AM, senti-
ment analysis only determines the opinion flavor
of a statement. Since sentiment analysis is a very
established NLP task, we did not machine translate
en training data, but used original data for en, ru
and tr and created a novel dataset for ka. For en,
we use the US Airline Twitter Sentiment dataset,
consisting of 14,148 tweets labeled in three senti-
ment classes8. For tr, we took the Turkish Twitter
Sentiment Dataset with 6,172 examples and three
classes9. For ru, we used the Russian Twitter Cor-
pus (RuTweetCorp), which we reduced to 30,000
examples in two classes.10 For ka, we followed the
approach by Choudhary et al. (2018) and crawled
sentiment flavored tweets in a distant supervision
manner. Emojis were used as distant signals to
indicate sentiment on preselected tweets from the
Twitter API. After post-processing, we were able to
collect 11,513 Georgian tweets in three sentiment
classes. The dataset will made available publicly,
including more details on the creation process.

TREC Question Type Detection Question type
detection is an important part of Question-
Answering systems. The Text Retrieval Confer-
ence (TREC) dataset consists of a set of questions
labeled with their respective question types (six
labels including e.g. “description” or “location”)
and is part of the SentEval benchmark (Conneau
and Kiela, 2018). We used the data as provided in
SentEval, yielding 5,952 instances.

4 Experiments

Experimental Setup To the SentEval toolkit
(Conneau and Kiela, 2018), which addresses both
probing and downstream tasks and offers Logis-
tic Regression (LR) and MLP classifiers on top
of representations, we added implementations of

8https://www.kaggle.com/crowdflower/
twitter-airline-sentiment

9https://github.com/hilalbenzer/
turkish-sentiment-analysis

10http://study.mokoron.com/

Random Forest (RF) and Naive Bayes (NB) from
scikit-learn as other popular but ‘simple’ clas-
sifiers. SentEval defines specific model valida-
tion techniques for each task. Following Sen-
tEval, we tune the size of the hidden layer in
{50, 100, 200}, dropout in {0.0, 0.1, 0.2} and L2

regularization in {10−5, 10−1} when training an
MLP. For RF, we tune the maximum tree depth in
{10, 50, 100,∞}. For LR, we tune the L2 regular-
ization in {10−5, 10−1}. We do not tune any hyper-
parameters for NB. For all probing tasks and TREC,
we use predefined splits. For AM and sentiment
analysis, we use 10-fold inner cross validation.

4.1 Probing task design in en

In our design, we consider (a) four well-known and
popular classifiers—LR, MLP, NB, RF—on top of
sentence representations, and (b) six different train-
ing data sizes (between 2k and 100k). We perform
an exhaustive grid-search for size and classifier
design, considering all combinations.

Size For each classifier, we obtain results (on 10k
test instances) when varying the training data size
over 2k, 5k, 10k, 20k, 30k, 100k. Downsampling
was implemented by selecting the same percentage
of samples that appears in the full dataset for each
class. We then report average Spearman/Pearson
correlations ρ/p between any two training set sizes
s and t over all 9 probing tasks:11

simc(s, t) =
1

n

n∑
i=1

ρ∗(ci(s), ci(t)) (1)

where n is the number of probing tasks (n = 9
for en), and ci(s) is the vector that holds scores
for each of the 7 sentence encoders in our experi-
ments, given training size s, for probing task i and
classifier c. We set correlations to zero if the p-
value > 0.2.12 In Table 3, we then report the min-
imum and average scores min(s,t) simc(s, t) and
1
M

∑
(s,t) simc(s, t), respectively, per classifier c.

We observe that the minimum values are small to
moderate correlations between 0.2 (for NB) and
0.6 (for RF). The average correlations are moder-
ate to high correlations ranging from 0.6 (for NB)
to above 0.8 (for the others).

11We report both Spearman and Pearson for some of the
results but give only Pearson for the remainder, reporting
Spearman in the appendix.

12We choose a high p-value, because we correlate small
vectors of size 7.

https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://github.com/hilalbenzer/turkish-sentiment-analysis
https://github.com/hilalbenzer/turkish-sentiment-analysis
http://study.mokoron.com/
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In Figure 1 (left), we show all the values
simc(s, t) for c = LR, NB. We observe that, indeed,
LR has high correlations between training sizes es-
pecially starting from 10k training data points. The
corresponding correlations of NB are much lower
comparatively.

In Figure 2, we plot the stability of each training
data size s

simc(s) =
1

N

∑
t

simc(s, t) (2)

for all of our classifiers c and where N is a normal-
izer equal to the number of different training set
sizes, N = 6 in our case. The higher this score
for a training size s, the more similar are the prob-
ing results for another training size t, on average.
Across all classifiers, 2k and 100k are least stable—
100k is the default setting of SentEval. Most stable
are 10k and 20k.

Min Avg
Classifier ρ p ρ p

MLP .480 .420 .810 .843
LR .524 .502 .808 .805
RF .529 .623 .800 .853
NB .174 .292 .626 .671

Table 3: Stability over training sizes, in terms of min-
imum and average Spearman (ρ) / Pearson (p) correla-
tion between any two sizes.

Classifier Next, we add the classifier choice as
a second dimension: we examine whether correla-
tions (Spearman/Pearson) between vectors c (hold-
ing scores for each of 7 sentence encoders for a
classifier c) and d (holding the same scores for
a classifier d) are similar in the same sense as in
Eq. (1):

simc,d(s, t) =
1

n

n∑
i=1

ρ∗(ci(s),di(t)) (3)

Again, we average across all probing tasks, and set
correlation values to zero if the p-value exceeds 0.2.
In Table 4, we give min/avg values across data set
sizes in this setup. We observe that LR and MLP
most strongly agree. They have acceptable average
agreement with RF, but low agreement with NB,
on average, and, in the worst cases, even negative
correlations with NB.

In Figure 1 (right), we illustrate correlations be-
tween LR and NB, on the one side, and LR and RF,
on the other side, across all possible training set

LR RF NB

MLP .481/.790 .492/.632 -.043/.236
LR .406/.640 -.057/.197
RF .029/.320

Table 4: Min/Avg values simc,d(s, t) across (s, t) (us-
ing Pearson) between classifiers c and d.

sizes. We observe that as the training data set sizes
for RF and LR become larger, these two classifiers
agree more strongly with LR. RF starts to have
acceptable agreement with LR from 10k training
instances onwards, while NB has acceptable agree-
ment with LR only in the case of 100k training
instances.

We now operationalize our intuition of ‘region
of stability’ outlined in Table 1. For each of nine
probing tasks, we compute the following. Let rj =
Eζ(1) � Eζ(2) � Eζ(3) � · · · be a specific ranking
of encoders, where ζ is a fixed permutation. Let
r(c,s) be the ranking of encoders according to the
classifier, size combination (c, s). We compute the
Spearman correlation τ(c,s,j) between r(c,s) and rj .
For each possible ranking rj of our 7 encoders, we
then determine its support as the average over all
values τ(c,s,j) and then find the ranking rmax with
most support according to this definition. Finally,
we assign a score to the combination (c, s) not only
when r(c,s) equals rmax, but also when r(c,s) is close
to rmax: we again use the Spearman correlation
between r(c,s) and rmax as a measure of closeness
(we require a closeness of at least 0.75). The final
score for (c, s) is given by (ignoring the threshold
of 0.75 in the equation):

µ(c,s) =
n∑
i=1

ρ∗(r
(i)
(c,s), r

(i)
max) (4)

Table 5 shows classifier, size combinations with
highest µ scores. LR and MLP are at the top, along
with RF in the setting of 100k training data size.
LR with size 10k is most stable overall, but the
distance to the other top settings is small. Least
stable (not shown) is NB.

classifier LR LR RF MLP MLP MLP
size 10k 20k 100k 20k 30k 10k

µ(c,s) 7.6 7.3 7.2 7.0 7.0 6.9

Table 5: Most stable classifier, size combinations ac-
cording to Eq. (4).

Overall, we answer our first research question—
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Figure 1: Left two: Average correlations simc(s, t) for LR (first) and NB (second), using Pearson, for any two
sizes s, t ∈ {2k, 5k, 10k, 20k, 30k, 100k}. Right two: Average correlations simc,d(s, t) for c = LR and d = RF
(third) and c = LR and d = NB (fourth). Best viewed in color.
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Figure 2: Stability of each training size computed using
Eq. (2) for different classifiers c.

(i) How reliable are probing task results across
machine learning design choices?—as follows
(for en): probing tasks results can be little reli-
able and may vary greatly among machine learning
parameter choices. The standard training set size of
SentEval, 100k, appears to be less stable. As region
of stability, we postulate especially the setting with
10k training instances for the LR classifier.

4.2 Multi-lingual results

Experimental Setup Given our results for en,
we choose the LR classifier with a size of roughly
10k instances overall. Table 6 provides more details
about the datasets. In line with SentEval (and partly
supported by our results on dataset balance given in
the appendix), we aim for as balanced label distri-
butions as possible. Because of the small test sizes,
we use inner 5-fold cross validation for all tasks
except for SubjNumber, where we use pre-defined
train/dev/test splits as in Conneau et al. (2018) to
avoid leaking lexical information from train to test
splits.

We obtain average and pmeans embeddings
through pooling over pre-trained FastText embed-
dings (Grave et al., 2018). The same embeddings

are used for the random LSTM. For average BERT,
we use the base-multilingual-cased model. We ma-
chine translate the AllNLI corpus into tr, ru and
ka, to obtain training data for Infersent.13 The
models are then trained using default hyperparam-
eters and with pre-trained FastText embeddings.
Compared to en, we modify the WC probing task
in the multilingual setting to only predict 30 mid-
frequency words instead of 1000. This is more
appropriate for our much smaller data sizes.

4.2.1 Probing tasks
Results are shown in Figures 3 and 4.
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Figure 3: Pearson correlations across languages for dif-
ferent encoders.

(ii) Will encoder performances correlate across
languages? For each encoder e, we correlate per-
formances of e between en and the other languages
on 5 (for ka) and 7 (for tr, ru) probing tasks (us-
ing 10k dataset size and LR for all involved lan-
guages, including en). In Figure 3, we observe
that correlations between en and other languages
are generally either zero or weakly positive. Only
average embeddings have more than 1 positive cor-
relation scores across the 3 language combinations
with en. Among low-resource languages, there

13Using Google Translate, see appendix for details.
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EN TR RU KA
Task Size Balance Size Balance Size Balance Size Balance

Bigram Shift 100k 1:1 10k 1:1 10k 1.1:1 10k 1.1:1
Length 100k 1:1 10k 1:1 12k 1:1 10k 1:1
Subject Number 100k 1:1 4,093 5:1 11,877 1:1 - -
Word Content 100k 1:1 10k 1.5:1 10k 1.2:1 10k 4:1
Top Constituents 100k 1:1 - - - - - -
Tree Depth 100k 2.2:1 - - - - - -
Voice 100k 1:1 8,417 6:1 10k 2:1 10k 1.9:1
SV-Agree 100k 1:1 10k 1:1 10k 1:1 10k 1:1
SV-Dist 100k 1:1 1,642 1.9:1 8,231 1.1:1 - -

Arg. Mining (macro-F1) 25,303 3:1 25,303 3:1 25,303 3:1 25,303 3:1
TREC (Accuracy) 5,952 14:1 5,952 14:1 5,952 14:1 5,952 14:1
Sentiment Analysis (macro-F1) 14,148 4.2:1 6,172 1.7:1 30k 1:1 11,513 5.5:1

Table 6: Probing and downstream tasks. We report the balance between the class with the most and the least
samples. For downstream tasks, the evaluation measure is given in brackets.

are no negative correlations and fewer zero correla-
tions. All of the low-resource languages correlate
more among themselves than with en. This makes
sense from a linguistic point of view, since en is
clearly the outlier in our sample given its minimal
inflection and fixed word order. Thus, the answer to
this research question is that our results support the
view that transfer is better for typologically similar
languages.

(iii) Will probing task performances correlate
across languages? For each probing task π, we
report Pearson correlations, between all language
pairs, of vectors holding scores of 7 encoders on π.
Figure 4 shows the results. The pattern is overall

en
-tr

en
-ru

en
-ka tr-r

u
tr-k

a
ru-

ka

Lang

BigramShift

Length

SubjNumber

SubjVerbAgreement

SubjVerbDistance

Voice

WordContent

Ta
sk

0.8

0.4

0.0

0.4

0.8

Figure 4: Pearson correlations across languages for dif-
ferent probing tasks.

similar as for (ii) in that there are many zero correla-
tions between en and the other languages. tr also
negatively correlates with en for SV-Agree. Only
BigramShift has positive correlations throughout.
Low-resource languages correlate better among
themselves as with en. Our conclusions are the
same as for question (ii).

Note that our findings contrast with Krasnowska-

Kieraś and Wróblewska (2019), who report that
probing results for en and pl are mostly the same.
Our results are more intuitively plausible: e.g., a
good encoder should store linguistic information
relevant for a particular language.

4.2.2 Downstream Tasks
Results are shown in Figure 5.

(iv) Will the correlation between probing and
downstream tasks be the same across lan-
guages? For each of our languages, we corre-
late probing and downstream task performances.
The results show that the answer to research ques-
tion (iv) is clearly negative. In particular, en be-
haves differently to the other languages—while ru
and tr behave more similarly. ka is the only lan-
guage with negative correlations for Length, en
the only one with positive scores. For the senti-
ment task, Word Content correlates positively for
all languages except ka. The AM task correlates
only in en and ka, but with different probing tasks.
SV-Agree correlates positively with TREC and sen-
timent in all languages but en. This might be be-
cause determining the agreement of subject and
verb is more grammatically complex in the other
languages compared to English, and storing an ad-
equate amount of grammatical information may be
beneficial for certain downstream tasks. Predicting
the performances of embeddings in downstream
tasks via probing tasks thus appears idiosyncratic
for individual languages. Opposed to Sahin et al.
(2019), who suggest a direct relation between word
level probing and downstream performance on ag-
glutinative languages, we see little to no system-
atic correlation on the sentence level. Overall, SV-
Agree is the best predictor across languages, with
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Figure 5: Pearson correlation among probing task and downstream performance for all languages.

7 positive correlations out of 12 possible. Interest-
ingly, this task is missing from the current canon
of SentEval.

5 Concluding Remarks

We investigated formal aspects of probing task
design, including probing data size and classi-
fier choice, in order to determine structural condi-
tions for multilingual (low-resource) probing. We
showed that probing tasks results are at best partly
stable even for en and that the rankings of encoders
varies with design choices. However, we identified
a partial region of stability where results are sup-
ported by a majority of settings—even though this
may not be mistaken for a ‘region of truth’. This
region was identified in en, which has most re-
sources available. Our further findings then showed
that probing and downstream results do not transfer
well from English to our other languages, which in
turn challenges our identified region of stability.

Overall, our results have partly negative implica-
tions for current practices of probing task design as
they indicate that probing tasks are to some degree
unreliable tools for introspecting linguistic informa-
tion contained in sentence encoders. The relation
of probing to downstream tasks is also unclear, as
our multilingual results show. This is supported
by recent findings giving contradictory claims re-
garding, e.g., the importance of the Word Content
probing task for downstream performances (Eger
et al., 2019; Wang and Kuo, 2020; Perone et al.,
2018). Our findings further add to contemporane-
ous work by Ravichander et al. (2020) and Elazar
et al. (2020), who showed that probes do not nec-
essarily identify linguistic properties required for
solving an actual task, thus questioning a common
interpretation of probing itself.

An important aspect to keep in mind for cor-
relation analyses as we conducted is that results
may heavily depend on the selection of encoders
involved—in our case, we selected a number of
recently proposed state-of-the-art models in con-

junction with weaker baseline models, for a diverse
collection of encoders. While the small number of
encoders we examined is a clear limitation of our
approach, many of our results are significant (at
relatively large p-values).

To the degree that the supervised probing tasks
examined here will remain important tools for inter-
pretation of sentence encoders in the future, our re-
sults indicate that multilingual probing is important
for a fairer and more comprehensive comparison
of encoders.
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